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Abstract

We provide in this article experiments made on the eye-ingckhal-
lenge proposed by the PASCAL European network. We condertisae
on symbolic approaches mainly based on finite states maching ex-
perimental study opens many questions mentioned as a simtiu

1 Introduction

We address in this paper some experiments made on a shakegrtamsed by the
PASCAL! network and which concerns proactive information retrigsh In this task a
reader is given a question and 10 sentences, one of them theiraprrect answer to the
guestion, 4 being relevant and 5 irrelevant. Some infolwnatiich as the scheduling of the
reading or the pupil diameter of the eye of user are storedinBthe learning process the
machine is given the reading features and the label of thieisess (2 for correct answer,
1 for relevant, and 0 for irrelevant). At evaluation timee ttmachine is asked to label the
sentences. More information on the task together with the gets can be found at the
challenge web pagért t p: / / www. ci s. hut . fi/eyechal | enge2005/ .

We analyzed the data using different approaches. We firttt dgjraphical interface of
the data from which we get a visual rendering of the user iehaWe then used some
statistical approaches in order to find relevant featuresth&h applied decision trees (C5)
to handle numerical and categorical features. In orderk® itato account the behavior of
the user, we finally transformed the data in a symbolic forch@sed syntactic models.

2 Analysis of the data

2.1 Graphical Data Interface: GDI

We built a graphical interface of the data (GDI) — see figure ib erder to see what
words the user are reading and in which order. On the GDI, wesetect a question (or
assignment) and a number that allows to tune the time uni. Widrds of each of the 10
answers are drawn in a color that corresponds to their laBslshe simulation starts, the
word being read is colored in a different color, showing ttleesluling of the reading.

*EURISE, Jean-Monet University, 42023 Saint-Etienne Cedex 2 Eranc
IPASCAL stands for Pattern Analysis, Statistical Modelling and Computatlasaining.



Figure 1: Eye tracking Graphical Data Interface
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Table 1: Correlation rates
Correlation rates above 0.7 | Overall | Label 0| Label 1 | Label 2

PrevFixPos — FirstSaccLen | 0.794 0.798 0.796 0.785
PupilDiamLag — PupilDiamMax 0.772 0.709 | 0.721 | 0.86

MeanFixDur — totalFixDur 0.696 0.711 0.696 0.681

fixcount — firstPassCnt 0.674 0.813 0.778 0.496

On the left hand side of the sentences, a circle is drawn indlw of the label of the word
being read; Its size changes according to the pupil diameter

This GDI allows us to see that the users, almost always, fitlishparsing of the 10
answers on the correct one. Labeling the last read senterlabel 2 performs a precision
and recall around 92.5% on the validation set.

2.2 Statistical analysis of the data

When facing a new problem, a first natural step could consishiterstanding the data.
We therefore made a computation of correlation rates amttipdl component analysis.

2.2.1 The correlation rate

We first computed the correlation rates between the numerégé@bles. As shown in
table 1, the rates were not very high: only very few correlatiates are above .7. The
highest value is obtained for prevFixPos and firstSaccLen, Bhen we considered only
the records corresponding to each label, the rates did agtcsinstant. For instance the
correlation between fixcount and firstPassCnt is only equél496 for the label 2 when
is equal to 0.674 on the training set. It seems then not pleskitreduce the number of
features by leaving out highly correlated features.

2.2.2 The principal component analysis

We continued our study with Principal Component Analysi€A) in order to find out
whether there were clusters in the data. We used centeradaareserve the distance
between the records instead of normalized data as usually.



Table 2: PCA and C5

PCA C5 Comp. nb.| Eigenval. | % ofvar. | cumul. var.
fixcount fixcount 1 3807987.65| 85.249 85.249
firstpasscnt firstpasscnt 2 465286.091| 10.416 95.665
prevfixdur P1stFixation 3 74205.070 | 1.661 97.326
firstfixdur P2stFixation 4 44286.255 | .991 98.318
firstpassfixdur| prevfixdur 5 26521.484 | .594 98.911
nextfixdur firstfixdur 6 14507.983 | .325 99.236
vllin firstpassfixdur 7 7774.952 174 99.410
lastsacclen nextfixdur 8 7009.023 | .157 99.567
prevfixpos firstSaccLen 9 5245.223 117 99.685
landingpos lastsacclen 10 5107.055 114 99.799
leavingpos prevfixpos 11 4116.011 | 9.214E-02| 99.891
totalfixdur landingpos 12 3881.247 8.689E-02| 99.978
meanfixdur leavingpos 13 984.843 2.205E-02| 100.00
nregressfrom | totalfixdur 14 .297 6.659E-06| 100.00
regresslen meanfixdur 15 .281 6.283E-06| 100.00
regressdur nregressfrom 16 4.971E-02 | 1.113E-06| 100.00
puplidiammax| regresslen 17 3.716E-02 | 8.320E-07| 100.00
pupildiamlag | nextWordRegress 18 1.602E-02 | 3.586E-07| 100.00
timeprtctg regressdur 19 4.204E-04 | 9.411E-09| 100.00

puplidiammax

pupildiamlag

timeprtctg

Table 3: Confusion Matrix for the C5 algorithm
| True/Predicted 0 | 1 [ 2 ]

0 37719 | 9
1 255|226 | 2
2 5 6 | 138

Table 2 (left, first column) gives the list of the variablegd$n the PCA. As we can see in
table 2, (right) factor 1 accounts for 85.25% of the variaraetor 2 for 10,42% , and so
on. The last column contains the cumulative variance etadacdccording to the Cattell’s
criterion [1], we could retain two factors to summarize tretadset. Judging from the
projection of the training set on the two principal axes, #swot possible to separate the
three clusters. The identification of each element by itellain the PCA plot (Figure 2)
confirmed this result.

These conclusions lead us to consider a large set of vasialenerical and categorical,
and to use C5 classifier designed by QuiRlarhandle the features given in Table 2 column
2. Besides that, all the records corresponding to the lastsee read have been excluded.
Following the rule deduced from the GDI, the decision forséheacords is correct answer
(label = 2). Results over the evaluation set are reportechbiel3. As expected by the
preliminary analysis, results are not extremely high iasafs accuracy is 61.04% on the
evaluation and 60.57% on the test set. We thus decided tolrtdeser’s behavior.

2Seeht t p: / / www. r ul equest . cond see5-i nfo. ht m for more details on the C5 algo-
rithm.



Figure 2: PCA Analysis
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3 Probabilistic finite state models

The idea of the approach consists in modeling the readingeofiser as a path in a finite
states machine. We applied the following strategy:

discretizing the data,

splitting the training set in order to have a learning eeefich target label,
building three models, one for each label,

guessing the label according to each model, and the fatthbre is exactly 4
(respectively 5) relevant (respectively irrelevant) seces in each assignment.

M w D

3.1 Discretizing the data

The aim of the discretization is to model the behavior of therwas a string.

We decided to describe an eye movement and its intensity kgiraop characters. We
built, by hand, a 9 words vocabulary: BO B1 B2 E FO F1 F2 Q0 QXédpxfor the letter E

which models the end of the reading, each symbol is composegdxcomponents, a letter
indicating an eye movement and a number modeling how impbtit@ movement was. B
stands for Backward reading, F for Forward reading, and @fdtting the sentence.

3.2 Building the models

From this coding we built three multisets of strings (onedach label) of the form:

FO FO FO QO
FO FO FO Q1
FO FO FO Q1
FO Q1
FO FO Q1
FO Q1 FOF1F1 B0 Q0 BO E
FO Q1




Perplexity of the models (the lower, the better).

Table 4: 0 — 1 means "learning on train 0 and testing on validation 1”
parameter|| 0-0 0-1 1-0 1-1
0.05 5.13839| 6.6329 || 5.32001| 6.4469
0.01 3.46395| 4.69896| 3.58998| 4.55078
0.002 2.94324| 4.68004| 4.28921| 8.33305
0.005 2.99874| 4.64709| 3.10137| 4.3912
0.0005 8.67323| 22.7453|| 8.94031| 21.9032

Table 5: Confusion Matrix for the different approaches

Automaton model| 3-gram model || 3-gram - ad-hoc
True/Predicted| 0 | 1 | 2 0] 1] 2 O] 1] 2
0 438 135] 9 4211 152] 9 381] 194 7
1 267|214 2 248 233 ] 2 183|296 | 4
2 2 9 138 2 9 | 138 2 9 | 138
Overall Accuracy 65% 65% 67%

Since the sets are multisets, we decided to take into acthisninformation by building
probabilistic models. We used two kind of models: smoothgiam and probabilistic
automata. Each of these models provides a probabilityiloliskon overX:*, ¥ being the
vocabulary.

The algorithm for inferring probabilistic automata [3] hesuning parameter. We usually
get the value of the parameter by minimizing the perplexty¢r equivalently maximizing
the average of the probabilities the inferred automatoriges) on a held out set. Table 4
provides the perplexity obtained by the models on diffedatd. Column 0—1 means: train
the model on irrelevant sentences and evaluate it on a hekkbof relevant ones.

According to table 4, we decided to use the parameter 0.00@sder to maximize the
margin between label 0 and 1.

3.3 Guessing the label

For we have a quite good rule for label 2 (extracted from thd)GMBe decided to first
set the label 2 for the sentences on which the user finishegd#uing {.e. sentences that
contain E in their coding) and then consider a two class prabl

On table 4 we can see that the model built on relevant sergéscmt good as it predicts
better irrelevant sentences than relevant ones. We thigedieto consider only the model
built on irrelevant sentencesé sentences labelled 0) and accordingly set label O to the
5 more probable sentences according to the model 0 and laoethk other ones. The
performances of this strategy is given in table 5, left, aedgyms a global accuracy of 65
% on the validation set. We did the same experiments usingrai®s model which obtains
equivalent performances (65%, table 5, center).

Note that a specific method has been designed by hand by C.Higdara for guessing
the label given the models. This ad-hoc strategy raisesehlenmances to 67% (table 5
right).



4 Conclusion and further works

In this article, we proposed to use symbolic approachesdardo tackle the eye tracking
problem. We identified different steps: building a symbaloding of the data, inferring
syntactic models and guessing the final labels.

We proposed different methods for each step: autometi®iand-made building of the
coding, building probabilistic automates 3-grams, general method for guessing and ad-
hoc method. Even if the results are not as bad as compared tihbr methods, we now
face more questions than answers:

Automatic building of the coding: building the coding automatically is a problem in
itself. We tried to build the coding automatically using tluées provided by the C5 algo-

rithm but the preliminary results were very disappointing. (~ 55% of accuracy on the

validation set). We thus built the coding by hand keeping inchthe following rules:

e the same string must belong to only one class,
o the vocabulary must be quite small in order to avoid the "spalata problem”,
¢ the sentences of the coding must be quite short,

the vocabulary must model/select relevant features (regEtsymbol that model
the "end of reading”).

In order to optimize the coding itself, it would be good to defian "off line” quality
measure of a coding, that is, in some way, quantifying thealboles.

Quality measure for the inference: as seen before, the best value for the tuning parameter
for this task was not the one for which the better model — imtef prediction power- is
built. We thus think that a new quality measure is needed¢h sucase.

Final guess of the label:in the experiments presented, we noted that the results were
drastically improved when a consistent labelling is gusgad (which means, in our case,
exactly one sentence is labelled correct, 4 relevant anctleviant). Moreover, the results
can be very different depending on the job done at that step.thiik that some more
automated work is needed here.

Following one of the anonymous reviewers who "guess thasttengths of symbolic ap-
proach [...] might be simplicity, robustness and speed @lémentation”, we would like
to continue this work in that direction.
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