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Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.
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Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and independence. Related to similar
concepts in statistics, database theory etc.

Historical development:

I Branching quantifiers by Henkin 1959.

I Independence-friendly logic by Hintikka and Sandu 1989.

I Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

I Dependence logic by Väänänen 2007.

I Modal dependence logic by Väänänen 2008.

I Introduction of other dependency notions to team semantics such as
inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.

I Generalized atoms by Kuusisto (derived from generalised quantifiers).



Complexity of
propositional logics
in team semantics

Jonni Virtema

Movativation
History

Team Semantics

Dependency atoms

Complexity Results

From 3SAT to
ADQBF

References

3/ 14

Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and independence. Related to similar
concepts in statistics, database theory etc.

Historical development:

I Branching quantifiers by Henkin 1959.

I Independence-friendly logic by Hintikka and Sandu 1989.

I Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

I Dependence logic by Väänänen 2007.

I Modal dependence logic by Väänänen 2008.

I Introduction of other dependency notions to team semantics such as
inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.
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Propositional logic

Syntax of propositional logic:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ)

Semantics via propositional assignments:

”name” p q r

s 0 1 1
s |= (q ∧ r)

Team semantics / semantics via sets of assignments:

”name” p q r

s 0 1 1
t 1 1 0
u 0 1 0

{s, t, u} |= q, {s, t} |= (p ∨ r)
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Team semantics

We want that for each formula ϕ of propositional logic and for each team X

X |= ϕ iff ∀s ∈ X : s |= ϕ.

We define that

X |= p iff ∀s ∈ X : s(p) = 1

X |= ¬p iff ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ iff X |= ϕ and X |= ψ

X |= ϕ ∨ ψ iff Y |= ϕ and Z |= ψ,

for some Y ,Z ⊆ X such that Y ∪ Z = X .
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Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams.

Dependence atoms: dep(p, q, r)
”the truth value of r is functionally determined by the truth values of p and q”.

p q r

s 0 1 1
t 1 1 0
u 0 1 0

{s, u} 6|= dep(p, r) , {s, t} |= dep(p, q) ,

{s, t, u} |= dep(q) , {s, t, u} |= dep(r) ∨ dep(r) .
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Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams.

Inclusion atoms: (p1, p2) ⊆ (q1, q2)
”truth values that appear for p1, p2 also appear as truth values for q1, q2”.

p q r

s 0 1 1
t 1 1 0
u 0 1 0

{s, t} 6|= p ⊆ q, {s, t} |= q ⊆ r , {s, t, u} |= (p, q) ⊆ (r , q)
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Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams.

Syntax of propositional dependence logic PD:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | dep(p1, . . . , pn, q)

Syntax of propositional inclusion logic PLInc:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (p1, . . . , pn) ⊆ (q1, . . . , qn)

Syntax of propositional team logic PTL:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∼ϕ,

with the semantics X |= ∼ϕ iff X 6|= ϕ.
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Important decision problems

Model checking:
Input: A team X and a formula ϕ.
Output: Does X |= ϕ hold?

Satisfiability:
Input: A formula ϕ.
Output: Does there exists a non-empty team X s.t. X |= ϕ?

Validity:
Input: A formula ϕ.
Output: Does X |= ϕ hold for every non-empty team X?
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Complexity results

Satisfiability Validity Model checking

PL NP coNP NC1

PD NP NEXPTIME NP
PLInc EXPTIME coNP P
PTL AEXPTIME(poly) AEXPTIME(poly) PSPACE
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Source of hardness:

A well-known NP-complete problem:
3SAT:
Input: A 3CNF-formula ϕ
(e.g.,(p2 ∨ ¬p7) ∧ (¬p1 ∨ p3 ∨ p2) ∧ (p3 ∨ ¬p4 ∨ ¬p2) ∧ p2).
Output: Does there exists an assignment s s.t. s |= ϕ?
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Source of hardness:

A well-known NP-complete problem:
3SAT:
Input: A 3CNF-formula ϕ
(e.g.,(p2 ∨ ¬p7) ∧ (¬p1 ∨ p3 ∨ p2) ∧ (p3 ∨ ¬p4 ∨ ¬p2) ∧ p2).
Output: Does there exists an assignment s s.t. s |= ϕ?

We may rewrite the above as follows:
Input: A existentially prenex quantified QPL-sentence ϕ
(e.g.,∃p1 . . . ∃p7

(
(p2 ∨ ¬p7) ∧ (¬p1 ∨ p3 ∨ p2) ∧ (p3 ∨ ¬p4 ∨ ¬p2) ∧ p2

)
).

Output: Does ∅ |= ϕ hold?
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Source of hardness:

A well-known NP-complete problem:
EQBF:
Input: A sentence ϕ of the form ∃p1 . . . ∃pnψ, where ψ ∈ PL.
Output: Does ∅ |= ϕ hold?
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Source of hardness:

A well-known NP-complete problem:
EQBF:
Input: A sentence ϕ of the form ∃p1 . . . ∃pnψ, where ψ ∈ PL.
Output: Does ∅ |= ϕ hold?

A well-known PSPACE-complete problem:
QBF:
Input: A sentence ϕ of the form ∃p1∀p2 . . . ∀pn−1∃pnψ, where ψ ∈ PL.
Output: Does ∅ |= ϕ hold?
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From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence ϕ (e.g., ∃p1∀p2∀p3∃p4ψ ).
Output: Does ∅ |= ϕ hold?

The formula ∃p1∀p2∀p3∃p4ψ may be equivalently written with the help of
Skolem functions f1 ∈ {0, 1} and f2 : {0, 1}2 → {0, 1}:

∃f1∃f2∀p2∀p3 ψ
(
f1/p1, f2(p2, p3)/p4

)
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A well-known PSPACE-complete problem:
QBF:
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Output: Does ∅ |= ϕ hold?

The formula ∃p1∀p2∀p3∃p4ψ may be equivalently written with the help of
Skolem functions f1 ∈ {0, 1} and f2 : {0, 1}2 → {0, 1}:

∃f1∃f2∀p2∀p3 ψ
(
f1/p1, f2(p2, p3)/p4

)
Formulae ϕ of the form ∃f1 . . . ∃fn∀p1 . . . ∀pkψ, where ψ ∈ PL and
arg(fi ) ⊆ {p1, . . . , pn}, are called as DQBF-sentences. Moreover, if
arg(fi ) ⊆ arg(fi+1) for all i , we say that ϕ is simple.
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A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence ϕ (e.g., ∃p1∀p2∀p3∃p4ψ ).
Output: Does ∅ |= ϕ hold?

The above PSPACE-complete problem can be reformulated as follows:
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Output: Does ∅ |= ϕ hold?
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From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence ϕ (e.g., ∃p1∀p2∀p3∃p4ψ ).
Output: Does ∅ |= ϕ hold?

The above PSPACE-complete problem can be reformulated as follows:
SDQBF:
Input: A simple DQBF-sentence ϕ.
Output: Does ∅ |= ϕ hold?

Not so well-known NEXPTIME-complete problem:
DQBF: (Peterson, Reif, and Azhar 2001)
Input: A DQBF-sentence ϕ.
Output: Does ∅ |= ϕ hold?
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From DQBF to ADQBF

Example: DQBF

Essentially an instance of DQBF is as follows:

∃f1 . . . ∃fn∀p1 . . . ∀pkϕ(p1, . . . , pn, f1(~c1), . . . , fn(~cn)),

where ϕ is a propositional formula and ~ci is some tuple of variables from
p1, . . . , pk .
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From DQBF to ADQBF

Example: DQBF

Essentially an instance of DQBF is as follows:

∃f1 . . . ∃fn∀p1 . . . ∀pkϕ(p1, . . . , pn, f1(~c1), . . . , fn(~cn)),

where ϕ is a propositional formula and ~ci is some tuple of variables from
p1, . . . , pk .

Definition

A Σk -alternating qBf, Σk -ADQBF is a formula of the form

(∃f 11 . . . ∃f 1j1 )(∀f 21 . . . ∀f 2j2 ) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij ), . . . ),

where ϕ is a propositional formula and ~c ij is some tuple of variables from
p1, . . . , pn.
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From DQBF to ADQBF

Definition

A Σk -alternating qBf, Σk -ADQBF is a formula of the form

(∃f 11 . . . ∃f 1j1 )(∀f 21 . . . ∀f 2j2 ) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij ), . . . ),

where ϕ is a propositional formula and ~c ij is some tuple of variables from
p1, . . . , pn.

I Σk -ADQBF is ΣEXP
k -complete odd k , and ΣEXP

k−1 -complete for even k .

I Πk -ADQBF is ΠEXP
k -complete even k, and ΠEXP

k−1 -complete for odd k.

I ADQBF is AEXPTIME(poly)-complete.
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Connection between ADQBF and PTL

A Σk -ADQBF is a sentence

(∃f 11 . . . ∃f 1j1 )(∀f 21 . . . ∀f 2j2 ) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij ), . . . )

can be written as the following QPL[∼, dep(·)]-sentence
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Connection between ADQBF and PTL

A Σk -ADQBF is a sentence

(∃f 11 . . . ∃f 1j1 )(∀f 21 . . . ∀f 2j2 ) . . . (∃f kj1 . . . ∃f
k
jk

)∀p1 . . . ∀pnϕ(p1, . . . , f
i
j (~c ij ), . . . )

can be written as the following QPL[∼, dep(·)]-sentence

∀p1 · · · ∀pn (∃q11 · · · ∃q1j1) (Uq21 · · ·Uq2j2) (∃q31 · · · ∃q3j3) . . . (∃qk1 · · · ∃qkjk )

∼

[
∼(p ∧ ¬p) ∧

∧
1≤i≤k
i is even
1≤l≤ji

dep
(
c il , q

i
l

) ]
∨

[( ∧
1≤i≤k
i is odd
1≤l≤ji

dep
(
c il , q

i
l

) )
∧ θ

]
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Connection between ADQBF and PTL

∀p1 · · · ∀pn (∃q11 · · · ∃q1j1) (Uq21 · · ·Uq2j2) (∃q31 · · · ∃q3j3) . . . (∃qk1 · · · ∃qkjk )

∼

[
∼(p ∧ ¬p) ∧

∧
1≤i≤k
i is even
1≤l≤ji

dep
(
c il , q

i
l

) ]
∨

[( ∧
1≤i≤k
i is odd
1≤l≤ji

dep
(
c il , q

i
l

) )
∧ θ

]

Dependence atoms can be eliminated from above by the use of ∼.

The quantifiers can be eliminated by a shift to satisfiability and by simulating
existential quantifiers by ∨ and universal quantifiers by ∼ ∨∼.
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THANKS!
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