Complexity of propositional logics in team semantics

Jonni Virtema
University of Helsinki, Finland jonni.virtema@gmail.com

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

References

Joint work with Miika Hannula ${ }^{1}$, Martin Lück ${ }^{2}$, Juha Kontinen ${ }^{3}$, and Heribert Vollmer ${ }^{2}$ Related to papers in GandALF 2016, MFCS 2015, Information and Computation 2016
${ }^{1}$ The University of Auckland, ${ }^{2}$ University of Hanover, ${ }^{3}$ University of Helsinki,
8th of December, 2016 - Computational Logic Day 2016

Core of Team Semantics

- In most studied logics formulae are evaluated in a single state of affairs.

E.g.,

- a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.

Movativation

History
Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF
\rightarrow In team semantics sets of states of affairs are considered

Core of Team Semantics

- In most studied logics formulae are evaluated in a single state of affairs.
E.g.,
- a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.

Movativation History

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

- In team semantics sets of states of affairs are considered.
E.g.,
- a set of first-order assignments in first-order logic,
- a set of propositional assignments in propositional logic,
- a set of possible worlds of a Kripke structure in modal logic.
- These sets of things are called teams.

Core of Team Semantics

- In most studied logics formulae are evaluated in a single state of affairs.
E.g.,
- a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.

Movativation History

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

References

- In team semantics sets of states of affairs are considered.
E.g.,
- a set of first-order assignments in first-order logic,
- a set of propositional assignments in propositional logic,
- a set of possible worlds of a Kripke structure in modal logic.
- These sets of things are called teams.

Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of dependence such as functional dependence and independence. Related to similar concepts in statistics, database theory etc.

Historical development:

- Branching quantifiers by Henkin 1959.
- Independence-friendly logic by Hintikka and Sandu 1989.
- Compositional semantics for independence-friendly logic by Hodges 1997. (Origin of team semantics.)
- Dependence logic by Väänänen 2007
- Modal dependence logic by Väänänen 2008
- Introduction of other denendency notions to team semantics such as inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.
- Generalized atoms by Kuusisto (derived from generalised quantifiers)

Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of dependence such as functional dependence and independence. Related to similar concepts in statistics, database theory etc.

Historical development:

- Compositional semantics for independence-friendly logic by Hodges 1997. (Origin of team semantics.)
- Dependence logic by Väänänen 2007.
- Modal dependence logic by Väänänen 2008.
- Introduction of other dependency notions to team semantics such as inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.
- Generalized atoms by Kuusisto (derived from generalised quantifiers).

Propositional logic

Syntax of propositional logic:

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi) \mid(\varphi \vee \varphi)
$$

Semantics via propositional assignments:

$$
\begin{array}{c|ccc}
\text { "name" } & p & q & r \\
\hline s & 0 & 1 & 1
\end{array} \quad s \models(q \wedge r)
$$

Team semantics / semantics via sets of assignments:

"name"	p	q	r
s	0	1	1
t	1	1	0

Team semantics

Complexity of propositional logics in team semantics

We want that for each formula φ of propositional logic and for each team X

$$
X \models \varphi \quad \text { iff } \quad \forall s \in X: s \models \varphi
$$

We define that

Team semantics

We want that for each formula φ of propositional logic and for each team X

$$
X \models \varphi \quad \text { iff } \quad \forall s \in X: s \models \varphi
$$

Movativation

$$
\begin{array}{rll}
X \models p & \text { iff } & \forall s \in X: s(p)=1 \\
X \models \neg p & \text { iff } & \forall s \in X: s(p)=0 \\
X \models \varphi \wedge \psi & \text { iff } & X \models \varphi \text { and } X \models \psi \\
X \models \varphi \vee \psi & \text { iff } & Y \models \varphi \text { and } Z \models \psi, \\
& & \text { for some } Y, Z \subseteq X \text { such that } Y \cup Z=X .
\end{array}
$$

Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams.
Dependence atoms: $\operatorname{dep}(p, q, r)$
"the truth value of r is functionally determined by the truth values of p and q ".

	p	q	r
s	0	1	1
t	1	1	0
u	0	1	0

$$
\begin{array}{ll}
\{s, u\} \not \models \operatorname{dep}(p, r), & \{s, t\} \models \operatorname{dep}(p, q), \\
\{s, t, u\} \models \operatorname{dep}(q), & \{s, t, u\} \models \operatorname{dep}(r) \vee \operatorname{dep}(r) .
\end{array}
$$

Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams.
Inclusion atoms: $\quad\left(p_{1}, p_{2}\right) \subseteq\left(q_{1}, q_{2}\right)$
"truth values that appear for p_{1}, p_{2} also appear as truth values for q_{1}, q_{2} ".

	p	q	r
s	0	1	1
t	1	1	0
u	0	1	0

Extensions of propositional logic

We extend PL by adding atomic formulae that describe properties of teams. Syntax of propositional dependence logic PD:

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| \operatorname{dep}\left(p_{1}, \ldots, p_{n}, q\right)
$$

Syntax of propositional inclusion logic PLInc:

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|\left(p_{1}, \ldots, p_{n}\right) \subseteq\left(q_{1}, \ldots, q_{n}\right)
$$

Syntax of propositional team logic PTL:

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| \sim \varphi,
$$

with the semantics $X \models \sim \varphi$ iff $X \not \models \varphi$.

Important decision problems

Model checking:
Input: A team X and a formula φ.
Output: Does $X \models \varphi$ hold?
Satisfiability:
Input: A formula φ.
Output: Does there exists a non-empty team X s.t. $X \models \varphi$?
Validity:
Input: A formula φ.
Output: Does $X \models \varphi$ hold for every non-empty team X ?

Complexity results

	Satisfiability	Validity	Model checking
PL	NP	coNP	NC 1
PD	NP	NEXPTIME	NP
PLInc	EXPTIME	coNP	P
PTL	AEXPTIME(poly)	AEXPTIME(poly)	PSPACE

Source of hardness:

A well-known NP-complete problem:
3SAT:
Input: A 3CNF-formula φ
(e.g., $\left.\left(p_{2} \vee \neg p_{7}\right) \wedge\left(\neg p_{1} \vee p_{3} \vee p_{2}\right) \wedge\left(p_{3} \vee \neg p_{4} \vee \neg p_{2}\right) \wedge p_{2}\right)$.

Output: Does there exists an assignment s s.t. $s \models \varphi$?

Source of hardness:

A well-known NP-complete problem:
3SAT:
Input: A 3CNF-formula φ
(e.g., $\left.\left(p_{2} \vee \neg p_{7}\right) \wedge\left(\neg p_{1} \vee p_{3} \vee p_{2}\right) \wedge\left(p_{3} \vee \neg p_{4} \vee \neg p_{2}\right) \wedge p_{2}\right)$.

Output: Does there exists an assignment s s.t. $s \neq \varphi$?

Movativation
History
Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

We may rewrite the above as follows:
Input: A existentially prenex quantified QPL-sentence φ
(e.g., $\left.\exists p_{1} \ldots \exists p_{7}\left(\left(p_{2} \vee \neg p_{7}\right) \wedge\left(\neg p_{1} \vee p_{3} \vee p_{2}\right) \wedge\left(p_{3} \vee \neg p_{4} \vee \neg p_{2}\right) \wedge p_{2}\right)\right)$.

Output: Does $\emptyset \mid=\varphi$ hold?

Source of hardness:

A well-known NP-complete problem:
EQBF:
Input: A sentence φ of the form $\exists p_{1} \ldots \exists p_{n} \psi$, where $\psi \in \mathrm{PL}$.
Output: Does $\emptyset \mid=\varphi$ hold?

Source of hardness:

A well-known NP-complete problem:

EQBF:

Input: A sentence φ of the form $\exists p_{1} \ldots \exists p_{n} \psi$, where $\psi \in \mathrm{PL}$.
Output: Does $\emptyset=\varphi$ hold?
A well-known PSPACE-complete problem:

QBF:

Input: A sentence φ of the form $\exists p_{1} \forall p_{2} \ldots \forall p_{n-1} \exists p_{n} \psi$, where $\psi \in \mathrm{PL}$. Output: Does $\emptyset=\varphi$ hold?

From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence φ (e.g., $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$).
Output: Does $\emptyset=\varphi$ hold?
The formula $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$ may be equivalently written with the help of Skolem functions $f_{1} \in\{0,1\}$ and $f_{2}:\{0,1\}^{2} \rightarrow\{0,1\}$:

$$
\exists f_{1} \exists f_{2} \forall p_{2} \forall p_{3} \psi\left(f_{1} / p_{1}, f_{2}\left(p_{2}, p_{3}\right) / p_{4}\right)
$$

From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence φ (e.g., $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$).
Output: Does $\emptyset \models \varphi$ hold?
The formula $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$ may be equivalently written with the help of

$$
\exists f_{1} \exists f_{2} \forall p_{2} \forall p_{3} \psi\left(f_{1} / p_{1}, f_{2}\left(p_{2}, p_{3}\right) / p_{4}\right)
$$

Formulae φ of the form $\exists f_{1} \ldots \exists f_{n} \forall p_{1} \ldots \forall p_{k} \psi$, where $\psi \in \mathrm{PL}$ and $\arg \left(f_{i}\right) \subseteq\left\{p_{1}, \ldots, p_{n}\right\}$, are called as DQBF-sentences. Moreover, if $\arg \left(f_{i}\right) \subseteq \arg \left(f_{i+1}\right)$ for all i, we say that φ is simple.

From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence φ (e.g., $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$).
Output: Does $\emptyset=\varphi$ hold?
The above PSPACE-complete problem can be reformulated as follows: SDQBF:
Input: A simple DQBF-sentence φ.
Output: Does $\emptyset=\varphi$ hold?

From QBF to DQBF

A well-known PSPACE-complete problem:
QBF:
Input: A prenex quantified QPL-sentence φ (e.g., $\exists p_{1} \forall p_{2} \forall p_{3} \exists p_{4} \psi$). Output: Does $\emptyset=\varphi$ hold?

The above PSPACE-complete problem can be reformulated as follows:

Input: A simple DQBF-sentence φ.
Output: Does $\emptyset=\varphi$ hold?
Not so well-known NEXPTIME-complete problem:
DQBF: (Peterson, Reif, and Azhar 2001)
Input: A DQBF-sentence φ.
Output: Does $\emptyset \mid=\varphi$ hold?

From DQBF to ADQBF

Example: DQBF

Essentially an instance of DQBF is as follows:

$$
\exists f_{1} \ldots \exists f_{n} \forall p_{1} \ldots \forall p_{k} \varphi\left(p_{1}, \ldots, p_{n}, f_{1}\left(\vec{c}_{1}\right), \ldots, f_{n}\left(\vec{c}_{n}\right)\right),
$$

where φ is a propositional formula and \vec{c}_{i} is some tuple of variables from p_{1}, \ldots, p_{k}.

From DQBF to ADQBF

Example: DQBF

Essentially an instance of DQBF is as follows:

$$
\exists f_{1} \ldots \exists f_{n} \forall p_{1} \ldots \forall p_{k} \varphi\left(p_{1}, \ldots, p_{n}, f_{1}\left(\vec{c}_{1}\right), \ldots, f_{n}\left(\vec{c}_{n}\right)\right),
$$

where φ is a propositional formula and \vec{c}_{i} is some tuple of variables from p_{1}, \ldots, p_{k}.

Definition

A Σ_{k}-alternating qBf, Σ_{k} - ADQBF is a formula of the form

$$
\left(\exists f_{1}^{1} \ldots \exists f_{j_{1}}^{1}\right)\left(\forall f_{1}^{2} \ldots \forall f_{j_{2}}^{2}\right) \ldots\left(\exists f_{j_{1}}^{k} \ldots \exists f_{j_{k}}^{k}\right) \forall p_{1} \ldots \forall p_{n} \varphi\left(p_{1}, \ldots, f_{j}^{i}\left(\vec{c}_{j}^{i}\right), \ldots\right),
$$

where φ is a propositional formula and \vec{c}_{j}^{i} is some tuple of variables from p_{1}, \ldots, p_{n}.

From DQBF to ADQBF

Definition

A Σ_{k}-alternating qBf, Σ_{k}-ADQBF is a formula of the form

$$
\left(\exists f_{1}^{1} \ldots \exists f_{j_{1}}^{1}\right)\left(\forall f_{1}^{2} \ldots \forall f_{j_{2}}^{2}\right) \ldots\left(\exists f_{j_{1}}^{k} \ldots \exists f_{j_{k}}^{k}\right) \forall p_{1} \ldots \forall p_{n} \varphi\left(p_{1}, \ldots, f_{j}^{i}\left(\vec{c}_{j}^{i}\right), \ldots\right),
$$

where φ is a propositional formula and \vec{c}_{j}^{i} is some tuple of variables from p_{1}, \ldots, p_{n}.

- Σ_{k}-ADQBF is $\Sigma_{k}^{E X P}$-complete odd k, and $\Sigma_{k-1}^{E X P}$-complete for even k.
- Π_{k}-ADQBF is $\Pi_{k}^{E X P}$-complete even k, and $\Pi_{k-1}^{E X P}$-complete for odd k.
- ADQBF is AEXPTIME(poly)-complete.

Connection between ADQBF and PTL

A Σ_{k}-ADQBF is a sentence

$$
\left(\exists f_{1}^{1} \ldots \exists f_{j_{1}}^{1}\right)\left(\forall f_{1}^{2} \ldots \forall f_{j_{2}}^{2}\right) \ldots\left(\exists f_{j_{1}}^{k} \ldots \exists f_{j_{k}}^{k}\right) \forall p_{1} \ldots \forall p_{n} \varphi\left(p_{1}, \ldots, f_{j}^{i}\left(\vec{c}_{j}^{i}\right), \ldots\right)
$$

can be written as the following $Q P L[\sim, \operatorname{dep}(\cdot)]$-sentence

Connection between ADQBF and PTL

A Σ_{k}-ADQBF is a sentence

$$
\left(\exists f_{1}^{1} \ldots \exists f_{j_{1}}^{1}\right)\left(\forall f_{1}^{2} \ldots \forall f_{j_{2}}^{2}\right) \ldots\left(\exists f_{j_{1}}^{k} \ldots \exists f_{j_{k}}^{k}\right) \forall p_{1} \ldots \forall p_{n} \varphi\left(p_{1}, \ldots, f_{j}^{i}\left(\vec{c}_{j}^{i}\right), \ldots\right)
$$

can be written as the following $\operatorname{QPL}[\sim, \operatorname{dep}(\cdot)]$-sentence

$$
\begin{aligned}
& \forall p_{1} \cdots \forall p_{n}\left(\exists q_{1}^{1} \cdots \exists q_{j_{1}}^{1}\right)\left(U q_{1}^{2} \cdots U q_{j_{2}}^{2}\right)\left(\exists q_{1}^{3} \cdots \exists q_{j_{3}}^{3}\right) \ldots\left(\exists q_{1}^{k} \cdots \exists q_{j_{k}}^{k}\right) \\
& \sim\left[\sim(p \wedge \neg p) \wedge \bigwedge_{\substack{1 \leq i \leq k \\
i \text { is even } \\
1 \leq I \leq j_{i}}} \operatorname{dep}\left(\bar{c}_{l}^{i}, q_{l}^{i}\right)\right] \vee\left[\left(\bigwedge_{\substack{1 \leq i \leq k \\
i \text { is odd } \\
1 \leq I \leq j_{i}}} \operatorname{dep}\left(\bar{c}_{l}^{i}, q_{l}^{i}\right)\right) \wedge \theta\right]
\end{aligned}
$$

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

Connection between ADQBF and PTL

$$
\begin{aligned}
& \forall p_{1} \cdots \forall p_{n}\left(\exists q_{1}^{1} \cdots \exists q_{j_{1}}^{1}\right)\left(U q_{1}^{2} \cdots U q_{j_{2}}^{2}\right)\left(\exists q_{1}^{3} \cdots \exists q_{j_{3}}^{3}\right) \ldots\left(\exists q_{1}^{k} \cdots \exists q_{j_{k}}^{k}\right) \\
& \sim\left[\sim(p \wedge \neg p) \wedge \bigwedge_{\substack{1 \leq i \leq k \\
i \leq v e n \\
1 \leq l \leq j_{i}}} \operatorname{dep}\left(\bar{c}_{l}^{i}, q_{l}^{i}\right)\right] \vee\left[\left(\bigwedge_{\substack{1 \leq i \leq k \\
i \leq i \leq d d \\
1 \leq i \leq j_{i}}} \operatorname{dep}\left(\bar{c}_{l}^{i}, q_{l}^{i}\right)\right) \wedge \theta\right]
\end{aligned}
$$

Movativation History

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

References

Dependence atoms can be eliminated from above by the use of \sim.
The quantifiers can be eliminated by a shift to satisfiability and by simulating existential quantifiers by \vee and universal quantifiers by $\sim \vee \sim$.

THANKS!

Complexity of propositional logics in team semantics

Jonni Virtema

Movativation
History
Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF

References

圊 Jonni Virtema, Complexity of validity for propositional dependence logics,

Movativation History

Team Semantics
Dependency atoms
Complexity Results
From 3SAT to ADQBF proceedings of the 7th International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016.
© Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer, Complexity of Propositional Independence and Inclusion Logic, proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science, MFCS 2015.

