Prime Compilation of Non-Clausal Formulae

Alessandro Previti ${ }^{1}$, Alexey Ignatiev ${ }^{2}$, Antonio Morgado ${ }^{2}$, Joao Marques-Silva ${ }^{2}$
${ }^{1}$ HIIT, Department of Computer Science, University of Helsinki
${ }^{2}$ IST/INESC-ID, Portugal

CL Day 2016

Motivation

- Knowledge Compilation

Motivation

- Knowledge Compilation
- Formula Minimization

Motivation

- Knowledge Compilation
- Formula Minimization
- Model-based diagnosis

Motivation

- Knowledge Compilation
- Formula Minimization
- Model-based diagnosis
- Inductive generalization in model checking
- Modal logic

Contributions

- A new approach that can compile non-clausal formulae
- Can compile formulae with thousands of variables
- It's completely based on SAT technology

Basic Definitions

A literal is a variable or its negation

- Clause: A disjunction of literals

$$
(c \vee \neg a)
$$

Satisfied clause: at least one literal is true under the given assignment to variables

- Term: A conjunction of literals

$$
(c \wedge \neg a)
$$

Satisfied term: all of its literals are true under the given assignment to variables

Propositional formulae

- Clausal:
- CNF: conjunction of clauses

$$
(c \vee a) \wedge(c \vee \neg a)
$$

○ DNF: disjunction of terms

$$
(c \wedge a) \vee(c \wedge \neg a)
$$

- Non-clausal:
\circ Non-CNF and Non-DNF
ค. Propositional formulae: well-formed formulae built with standard connectives \neg, \wedge, \vee

$$
((c \wedge a) \vee(c \wedge \neg a)) \wedge d
$$

Prime Implicants and Prime Implicates

- A term I_{n} is called an implicant of F if $I_{n} \vDash F$.
∞ An implicant I_{n} of F is called prime if any subset $I_{n}^{\prime} \subsetneq I_{n}$ is not an implicant of F.

Prime Implicants and Prime Implicates

- A term I_{n} is called an implicant of F if $I_{n} \vDash F$.
- An implicant I_{n} of F is called prime if any subset $I_{n}^{\prime} \subsetneq I_{n}$ is not an implicant of F.
∞ A satisfying assignment (model) expressed as a conjunction of literals is an implicant (i.e if $p=1, s=0, t=1$ is a satisfying assignment then $p \wedge \neg s \wedge t$ is an implicant)

Prime Implicants and Prime Implicates

- A term I_{n} is called an implicant of F if $I_{n} \vDash F$.
- An implicant I_{n} of F is called prime if any subset $I_{n}^{\prime} \subsetneq I_{n}$ is not an implicant of F.
00 A satisfying assignment (model) expressed as a conjunction of literals is an implicant (i.e if $p=1, s=0, t=1$ is a satisfying assignment then $p \wedge \neg s \wedge t$ is an implicant)
- A clause I_{e} is called an implicate of F if $F \vDash I_{e}$.
\circ An implicate I_{e} of F is called prime if any subset $I_{e}^{\prime} \subsetneq I_{e}$ is not an implicate of F.

Example Prime Implicants/Implicates

$$
F=(p \vee s) \wedge\left(r \vee C_{1}^{C_{1}} \vee \neg s\right) \wedge\left(r \stackrel{C_{3}}{\vee} \neg t\right)
$$

Example Prime Implicants/Implicates

$$
F=(p \vee s) \wedge\left(r \vee t{\stackrel{C}{C_{2}}}_{\vee}^{\vee_{1}} \neg s\right) \wedge\left(r \vee^{C_{3}} \neg t\right)
$$

- Implicate: $p \vee \vee^{C_{4}} \vee t \Rightarrow$ obtained by resolution of C_{1} and C_{2}

Example Prime Implicants/Implicates

$$
F=\left(p \stackrel{C_{1}}{\vee}\right) \wedge\left(r \vee{ }_{2}^{C_{2}} \vee \neg s\right) \wedge\left(r \vee^{C_{3}} \neg t\right)
$$

- Implicate: $p \vee^{C_{4}} \vee r$ obtained by resolution of C_{1} and C_{2} ∞ Prime implicate: $p \vee r \Rightarrow$ obtained by resolution of C_{3} and C_{4}

Example Prime Implicants/Implicates

$$
F=(p \vee s) \wedge\left(r \vee \stackrel{C}{1}_{C_{1}}^{\vee} \neg s\right) \wedge\left(r \vee^{C_{3}} \neg t\right)
$$

- Implicate: $p \vee^{C_{4}} \vee \vee t \Rightarrow$ obtained by resolution of C_{1} and C_{2} ค. Prime implicate: $p \vee r \Rightarrow$ obtained by resolution of C_{3} and C_{4}
- Implicant: $p \wedge \neg s \wedge r \wedge \neg t(p=1, s=0, r=1, t=0)$

Example Prime Implicants/Implicates

$$
F=(p \vee s) \wedge\left(r \vee \stackrel{C}{1}_{C_{1}}^{\vee} \neg s\right) \wedge\left(r \vee^{C_{3}} \neg t\right)
$$

- Implicate: $p \vee^{C_{4}} \vee \vee t \Rightarrow$ obtained by resolution of C_{1} and C_{2} ค. Prime implicate: $p \vee r \Rightarrow$ obtained by resolution of C_{3} and C_{4}
- Implicant: $p \wedge \neg s \wedge r \wedge \neg t(p=1, s=0, r=1, t=0)$ ค Prime implicant: $p \wedge r(p=1, r=1)$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
C_{2} & C_{3} \\
I_{n} & =\neg a \wedge b \wedge c \wedge d \wedge e \wedge \neg f
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
C_{n} & C_{3} \\
I_{n} & \neg a \wedge b \wedge c \wedge d \wedge e \wedge \neg f
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
& I_{n}=b \wedge f) \\
& I_{n} \\
& C_{3}
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee^{C_{1}}\right. \\
& \left.I_{n}=b \vee f\right) \\
& I_{2} \wedge c \wedge d \wedge e \wedge \neg f
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
I_{n} & =c \wedge d \wedge f)
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
& I_{n}=c \wedge d) \\
& C_{2}
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
& I_{n}=c \wedge d) \\
& C_{2} \\
& C^{\prime}
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
& I_{n}=c \wedge d) \\
& C_{2} \\
& C_{3}
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee \vee_{1}\right. \\
& I_{n}=c \wedge d) \\
& C_{2} \\
& C_{3}
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee e \vee \vee_{1}\right. \\
I_{n} & =c \wedge d \wedge e \wedge \neg
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee e \vee \vee_{1}\right. \\
I_{n} & =c \wedge d \wedge e \wedge \neg f
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee e \vee \vee_{1}\right. \\
I_{n} & =c \wedge d \wedge e \wedge \neg
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee e \vee \vee_{1} C_{2}\right. \\
I_{n} & =c \wedge d \wedge e
\end{aligned}
$$

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=\left(\neg a C_{1} b \vee c\right) \wedge(a \vee d) \wedge\left(\neg d \vee^{C_{3}}{ }^{C_{2}} \vee f\right) \\
& I_{n}=c \wedge d \wedge e
\end{aligned}
$$

- Propositional formulae:

1. Shannon expansion: Worst-case exponential grow of the formula

Reduction of Implicants/Implicates

- CNF formulae:
- Polynomial time procedure

$$
\begin{aligned}
& F=(\neg a \vee b \vee c) \wedge(a \vee d) \wedge\left(\neg d \vee{ }^{C_{3}}\right. \\
& \left.I_{n}=c \wedge d \wedge\right) \\
& I_{n}=c \wedge d \wedge e
\end{aligned}
$$

- Propositional formulae:

1. Shannon expansion: Worst-case exponential grow of the formula

OR

1. Convert F to $F_{C N F}$ using a Tseitin encoding
2. Reduce an implicant I_{n} using the following procedure:
```
input : Formula F}\mp@subsup{F}{CNF}{},\mp@subsup{I}{n}{}\mathrm{ and }\operatorname{Var}(F
output: Prime Implicant in In
1 foreach }I\in\mp@subsup{I}{n}{}\mathrm{ and var }(I)\in\operatorname{Var}(F)\mathrm{ do
```


Related work and drawback

- Iterated consensus or resolution
- Unionist product
- Based on dual rail encoding
- Semantic resolution
- SE-trees
- BDD-based (i.e ZRes)

Related work and drawback

- Iterated consensus or resolution
- Unionist product
- Based on dual rail encoding
- Semantic resolution
- SE-trees
- BDD-based (i.e ZRes)

They all assume the formula in CNF (DNF) or they are limited to formulae with few variables

Hitting Set Duality (1)

- Minimal Hitting Set (MHS):

Given a collection 「 of sets, a hitting set H for Γ is a set such that $\forall S \in \Gamma, H \cap S \neq \emptyset$.
\circ A hitting set H is minimal if none of its subsets is a hitting set.

Hitting Set Duality (1)

- Minimal Hitting Set (MHS):

Given a collection 「 of sets, a hitting set H for Γ is a set such that $\forall S \in \Gamma, H \cap S \neq \emptyset$.
\circ A hitting set H is minimal if none of its subsets is a hitting set.

- Example Minimal Hitting Set:

$$
\Gamma=\left[\begin{array}{l}
\{a, b, c\} \\
\{b, d\} \\
\{e\}
\end{array}\right.
$$

$H_{1}=\{b, e\}, H_{2}=\{a, d, e\}, H_{3}=\{c, d, e\}$.
Note that instead $\{a, b, e\}$ is not a Minimal Hitting Set.

Hitting Set Duality (2)

- Prime Implicants and Implicates are related by a hitting set duality ๑- $P I_{n}(F)$: set of all prime implicants of F ○ $P I_{e}(F)$: set of all prime implicates of F

A term (clause) / is a prime implicant (implicate) of F if and only if I is a minimal hitting set of $P l_{e}(F)\left(P I_{n}(F)\right)$

This remains true for any subset of $P I_{e}(F)\left(P I_{n}(F)\right)$ that is equivalent to F (cover)

MHS on subsets of $P I_{e}(F)\left(P I_{n}(F)\right)$

- Suppose $P l_{e}^{\prime}(F) \subset P I_{e}(F)$ and $P I_{e}^{\prime}(F)$ not equivalent to F ∞ A MHS p of $P I_{e}^{\prime}(F)$ does not necessarily corresponds to a prime implicant

A term p is a prime implicant of F if

1. p is a MHS of $P I_{e}^{\prime}(F)$
2. $p \wedge \neg F$ is unsatisfiable

- When sets are represented as clauses with positive literals, minimal models correspond to MHS
\circ A minimal model is a model containing a minimal number of variables assigned to true

Prime Compilation of Non-Clausal Formulae

- An approach completely based on SAT technology

Prime Compilation of Non-Clausal Formulae

- An approach completely based on SAT technology
- Exploits the existing duality between prime implicants and prime implicates in order to find new prime implicants/implicates

Prime Compilation of Non-Clausal Formulae

- An approach completely based on SAT technology
- Exploits the existing duality between prime implicants and prime implicates in order to find new prime implicants/implicates
- Complements existing approaches (i.e ZRes)

H formula

- We use a CNF formula H to keep track of the already computed prime implicants/implicates

H formula

- We use a CNF formula H to keep track of the already computed prime implicants/implicates

When \mathbf{H} is unsatisfiable either all the $P I_{n}(F)$ or all the $P l_{e}(F)$ have been computed

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& \quad H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b) \\
& (b \vee \neg c)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \\
& \underbrace{}_{(b \vee \neg c)} \wedge(a \vee \neg b)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& \quad H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b)
$$

$$
H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b)
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& \quad H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (1)

- Prime implicants/implicates can be more than 2^{n}
- Example without dual rail encoding:

$$
\begin{aligned}
& F=d \wedge(a \vee \neg b \vee \neg d) \wedge(c \vee b) \\
& \quad H=(b \vee \neg c \vee \neg d) \wedge(\neg a \vee \neg b \vee \neg d) \wedge(b \vee c) \wedge d \wedge(a \vee \neg b)
\end{aligned}
$$

$P I_{n}(F)$	$P I_{e}(F)$
$\neg b \wedge c \wedge d$	$b \vee c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \vee c$
	$a \vee \neg b$

Dual Rail Encoding (2)

- For each variable v in $\operatorname{var}(F)$ create two variables x_{v} and $x_{\neg v}$:

1. $\left(x_{v}=1\right.$ and $\left.x_{\neg v}=0\right) \Rightarrow v=1$
2. $\left(x_{v}=0\right.$ and $\left.x_{\neg v}=1\right) \Rightarrow v=0$
3. $\left(x_{v}=0\right.$ and $\left.x_{\neg v}=0\right) \Rightarrow v$ is a don't care
4. $\left(x_{v}=1\right.$ and $\left.x_{\neg v}=1\right) \Rightarrow$ forbidden

In order to achieve the requirement of point 4 add the clause $\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$

Algorithm primer-b

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
${ }_{5} \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
6
$\left(\mathrm{st}, M^{\neg^{F}}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
if st then $\quad \# F \vDash \neg M^{\neg F}$; i.e. $\neg M^{\neg F}$ is an implicate
$I_{e} \leftarrow \operatorname{ReduceImplicate}\left(M^{\neg F}, F\right)$
ReportImplicate(l_{e})
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else
\# $A^{F} \vDash F$; i.e. A^{F} is an implicant

$$
I I_{n} \leftarrow A^{F}
$$

ReportImplicant(I_{n})
$b \leftarrow\left\{\neg x_{l} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end

Algorithm

```
input : Formula \(F\)
output: \(P I_{n}(F)\) and prime implicate cover
of \(F\)
\(1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}\)
2 while true do
\(3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)\)
4 if not st then return
\(5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)\)
\(6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)\)
7 if st then
\(8 \quad I_{e} \leftarrow\) ReduceImplicate \(\left(M^{\neg F}, F\right)\)
16 end
```

9
10
11

Algorithm

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover

$$
\text { of } F
$$

$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\right.$ st,$\left.M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$I_{e} \leftarrow$ ReduceImplicate $(M \neg F, F)$
ReportImplicate(l_{e})
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{\mid} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end

$$
B=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

Algorithm

```
input : Formula \(F\)
output: \(P I_{n}(F)\) and prime implicate cover
of \(F\)
\(1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}\)
2 while true do
\(3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)\)
4 if not st then return
\(5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)\)
\(6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)\)
7 if st then
    -
            \(I_{e} \leftarrow\) ReduceImplicate \((M \neg F, F)\)
            ReportImplicate( \(l_{e}\) )
            \(b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}\)
    else
            \(I_{n} \leftarrow A^{F}\)
            ReportImplicant \(\left(I_{n}\right)\)
            \(b \leftarrow\left\{\neg x_{1} \mid I \in I_{n}\right\}\)
            \(H \leftarrow H \cup\{b\}\)
```

8

Algorithm

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\right.$ st, $\left.A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
if $s t$ then
$I_{e} \leftarrow \operatorname{ReduceImplicate}(M \neg F, F)$
ReportImplicate(I_{e})
$b \leftarrow\left\{x_{I} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{l} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$

$$
H=B \wedge\left(x_{b} \vee x_{c}\right) \wedge x_{d} \wedge\left(x_{a} \vee x_{c}\right) \wedge\left(x_{a} \vee x_{\neg b}\right)
$$

$$
A^{H}=\begin{array}{cccc}
x_{a} x_{\neg a} & x_{b} x_{\neg b} & x_{c} x_{\neg c} & x_{d} x_{\neg d} \\
10 & 00 & 10 & 10
\end{array}
$$

16 end

Algorithm

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\mathrm{st}, M \neg^{F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7

If unsatisfiable then all the prime implicants have been computed!!

Algorithm

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\mathrm{st}, M^{\circ}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$8 \quad \mid \quad I_{e} \leftarrow$ ReduceImplicate $(M \neg F, F)$

15
16 enc

$$
\begin{array}{cccc}
& \left(x_{a} x_{\neg a}\right) & \left(x_{b} x_{\neg b}\right) & \left(x_{c} x_{\neg c}\right)
\end{array}\left(x_{d} x_{\neg d}\right)
$$

Algorithm

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover

$$
\text { of } F
$$

$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
if st then
$I_{e} \leftarrow$ ReduceImplicate $(M \neg F, F)$
ReportImplicate(l_{e})
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{\|} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end

$$
\left(s t, M^{\neg F}\right) \leftarrow \operatorname{SAT}(a \wedge c \wedge d \wedge \neg F)
$$

Algorithm

```
input : Formula \(F\)
output: \(P I_{n}(F)\) and prime implicate cover
of \(F\)
\(1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}\)
2 while true do
\(3 \quad\left(\right.\) st, \(\left.A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)\)
4 if not st then return
\(5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)\)
\(6 \quad\left(\right.\) st,\(\left.M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)\)
7 if st then
            \(I_{e} \leftarrow \operatorname{ReduceImplicate}(M \neg F, F)\)
            ReportImplicate ( \(I_{e}\) )
        \(b \leftarrow\left\{x_{l} \mid l \in I_{e}\right\}\)
    else
        \(I_{n} \leftarrow A^{F}\)
            ReportImplicant \(\left(I_{n}\right)\)
            \(b \leftarrow\left\{\neg x_{l} \mid I \in I_{n}\right\}\)
    \(H \leftarrow H \cup\{b\}\)
                                    \(a \wedge c \wedge d \wedge \neg F\) unsatisfiable
8
10
11

\section*{Algorithm}
input : Formula \(F\)
output: \(P I_{n}(F)\) and prime implicate cover
of \(F\)
\(1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}\)
2 while true do
\(3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)\)
4 if not st then return
\(5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)\)
\(6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)\) if \(s t\) then
\(I_{e} \leftarrow\) ReduceImplicate \((M \neg F, F)\)
ReportImplicate( \(I_{e}\) )
\(b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}\)
else
\(I_{n} \leftarrow A^{F}\)
ReportImplicant \(\left(I_{n}\right)\)
\(b \leftarrow\left\{\neg x_{\mid} \mid I \in I_{n}\right\}\)
\(H \leftarrow H \cup\{b\}\)
16 end
```

input : Formula $F_{C N F}, I_{e}$ and $\operatorname{Var}(F)$
output: Prime Implicate in I_{e}
foreach $I \in I_{e}$ and $\operatorname{var}(I) \in \operatorname{Var}(F)$ do
$I_{e}^{\prime}=I_{e} \backslash\{I\}$
if $I_{e}^{\prime} \wedge F$ unsat then
$I_{e}=I_{e}^{\prime}$
else
continue
return I_{e}
end

```

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad(\mathrm{st}, M \neg F) \leftarrow \operatorname{sAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$8 \quad I_{e} \leftarrow$ ReduceImplicate $\left(M^{\neg F}, F\right)$
ReportImplicate(I_{e})
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant($\left.I_{n}\right)$
$b \leftarrow\left\{\neg x_{1} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end

```

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$8 \quad \mid \quad I_{e} \leftarrow$ ReduceImplicate $(M \neg F, F)$
16 end

```
9
10
11
12
13
14
15

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$8 \quad I_{e} \leftarrow$ ReduceImplicate $\left(M^{\neg F}, F\right)$
16 end

```
9
10
11
12
13
14
15

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
if $s t$ then
$I_{e} \leftarrow$ ReduceImplicate $(M \neg F, F)$
ReportImplicate(l_{e})
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{1} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end

$$
I_{n} \leftarrow a \wedge c \wedge d
$$

```

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$8 \quad I_{e} \leftarrow$ ReduceImplicate $\left(M^{\neg F}, F\right)$
16 end

```
9
10
11

\section*{Algorithm}
```

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover
of F
$1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
2 while true do
$3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{Min} \operatorname{Model}(H)$
4 if not st then return
$5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$6 \quad($ st, $M \neg F) \leftarrow \operatorname{SAT}\left(A^{F} \wedge \neg F\right)$
7 if st then
$I_{e} \leftarrow \operatorname{ReduceImplicate}(M \neg F, F)$
ReportImplicate (I_{e})
$b \leftarrow\left\{x_{I} \mid I \in I_{e}\right\}$
else
$I_{n} \leftarrow A^{F}$
ReportImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{l} \mid I \in I_{n}\right\}$
$H \leftarrow H \cup\{b\}$
16 end
8

$$
b \leftarrow\left(\neg x_{a} \vee \neg x_{c} \vee \neg x_{d}\right)
$$

Algorithm

```
input : Formula \(F\)
output: \(P I_{n}(F)\) and prime implicate cover
of \(F\)
\(1 H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}\)
2 while true do
\(3 \quad\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)\)
4 if not st then return
\(5 \quad A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)\)
\(6 \quad(\mathrm{st}, M \neg F) \leftarrow \operatorname{sAT}\left(A^{F} \wedge \neg F\right)\)
7 if st then
\(I_{e} \leftarrow \operatorname{ReduceImplicate}(M \neg F, F)\)
ReportImplicate( \(I_{e}\) )
\(b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}\)
else
    \(I_{n} \leftarrow A^{F}\)
            ReportImplicant \(\left(I_{n}\right)\)
            \(b \leftarrow\left\{\neg x_{\|} \mid I \in I_{n}\right\}\)
    \(H \leftarrow H \cup\{b\}\)
16 end
```

8

Example using dual rail encoding and minimal models

$H=B \wedge\left(\neg x_{\neg b} \vee \neg x_{c} \vee \neg x_{d}\right) \wedge\left(\neg x_{a} \vee \neg x_{b} \vee \neg x_{d}\right) \wedge\left(x_{b} \vee x_{c}\right) \wedge x_{d} \wedge\left(x_{a} \vee x_{c}\right) \wedge\left(x_{a} \vee x_{\neg b}\right)$

$$
\begin{gathered}
A^{H}=\begin{array}{cccc}
\left(x_{a} x_{\neg a}\right) & \left(x_{b} x_{\neg b}\right) & \left(x_{c} x_{\neg c}\right) & \left(x_{d} x_{\neg d}\right) \\
10 & 00 & 10 & 10 \\
& \\
& \Downarrow & & \\
A^{F}= & 1 & \mathrm{D} & 1 \\
& (a) & (b) & (c) \\
\hline
\end{array}
\end{gathered}
$$

$a \wedge c \wedge d$ is the last remaining prime implicant and is returned as a model!

Results

	QG6	Geffe gen.	F+PHP	F+GT	Total
ZRes-tison	0	0	11	0	11
primer-a $\left(P I_{n}\right)$	53	596	30	26	705
primer-a $\left(P I_{e}\right)$	28	588	30	27	673
primer-b $\left(P I_{n}\right)$	64	595	30	30	719
primer-b $\left(P I_{e}\right)$	30	577	$\mathbf{3 0}$	27	664

primer-b vs Zres on $F+$ PHP family

Conclusion \& Future Work

- Presented a new approach that can compile non-clausal formulae
- Can compile formulae with thousands of variables
- It's completely based on SAT technology
- Complements existing approaches
- Future work
- Applications of prime enumeration
\cdots SAT-Based Formula Simplification
-0 Preferred prime implicants/implicates
ooo Horn LUB

Thank You

