Prime Compilation of Non-Clausal Formulae

Alessandro Previti¹, Alexey Ignatiev², Antonio Morgado², Joao Marques-Silva²

¹HIIT, Department of Computer Science, University of Helsinki

²IST/INESC-ID, Portugal

CL Day 2016

• Knowledge Compilation

[DM2002,CD1997]

- $\circ~$ Knowledge Compilation
- Formula Minimization

[DM2002,CD1997]

[Q1952,Q1959,M1956]

- Knowledge Compilation
- Formula Minimization
- Model-based diagnosis

[DM2002,CD1997]

[Q1952,Q1959,M1956]

[dK1992]

0	Knowledge Compilation	[DM2002,CD1997]
0	Formula Minimization	[Q1952,Q1959,M1956]
0	Model-based diagnosis	[dK1992]
0	Inductive generalization in model checking	[BM2007]
0	Modal logic	[B2009]

- A new approach that can compile non-clausal formulae
- Can compile formulae with thousands of variables
- It's completely based on SAT technology

A literal is a variable or its negation

• Clause: A disjunction of literals

 $(c \vee \neg a)$

Satisfied clause: at least one literal is true under the given assignment to variables

• Term: A conjunction of literals

$$(c \land \neg a)$$

Satisfied term: all of its literals are true under the given assignment to variables

• Clausal:

•• **CNF**: conjunction of clauses

$$(c \lor a) \land (c \lor \neg a)$$

•• **DNF**: disjunction of terms

 $(c \land a) \lor (c \land \neg a)$

- Non-clausal:
 - •• Non-CNF and Non-DNF
 - Propositional formulae: well-formed formulae built with standard connectives ¬, ∧, ∨

 $((c \land a) \lor (c \land \neg a)) \land d$

- A term I_n is called an **implicant** of F if $I_n \vDash F$.
 - An implicant I_n of F is called **prime** if any subset $I'_n \subsetneq I_n$ is <u>not</u> an implicant of F.

- A term I_n is called an **implicant** of F if $I_n \vDash F$.
 - An implicant I_n of F is called **prime** if any subset $I'_n \subsetneq I_n$ is <u>not</u> an implicant of F.
 - •••• A satisfying assignment (model) expressed as a conjunction of literals is an implicant (i.e if p = 1, s = 0, t = 1 is a satisfying assignment then $p \land \neg s \land t$ is an implicant)

- A term I_n is called an **implicant** of F if $I_n \vDash F$.
 - •• An implicant I_n of F is called **prime** if any subset $I'_n \subsetneq I_n$ is <u>not</u> an implicant of F.
 - •••• A satisfying assignment (model) expressed as a conjunction of literals is an implicant (i.e if p = 1, s = 0, t = 1 is a satisfying assignment then $p \land \neg s \land t$ is an implicant)
- A clause I_e is called an implicate of F if $F \vDash I_e$.
 - ∘ An implicate I_e of F is called **prime** if any subset $I'_e \subsetneq I_e$ is <u>not</u> an implicate of F.

Example Prime Implicants/Implicates

$$F = \begin{pmatrix} C_1 \\ p \lor s \end{pmatrix} \land \begin{pmatrix} r \lor t \lor \neg s \end{pmatrix} \land \begin{pmatrix} C_2 \\ r \lor \neg t \end{pmatrix}$$

$$F = (p \lor s) \land (r \lor t \lor \neg s) \land (r \lor \tau)$$

 \circ Implicate: $p \lor \stackrel{C_4}{r} \lor t \Rightarrow$ obtained by resolution of C_1 and C_2

$$F = (p \lor s) \land (r \lor t \lor \neg s) \land (r \lor \tau)$$

• Implicate: $p \lor r \lor t \Rightarrow$ obtained by resolution of C_1 and C_2 •• **Prime implicate**: $p \lor r \Rightarrow$ obtained by resolution of C_3 and C_4

$$F = (p \lor s) \land (r \lor t \lor \neg s) \land (r \lor \tau)$$

Implicate: p ∨ r ∨ t ⇒ obtained by resolution of C₁ and C₂
Prime implicate: p ∨ r ⇒ obtained by resolution of C₃ and C₄
Implicant: p ∧ ¬s ∧ r ∧ ¬t (p = 1, s = 0, r = 1, t = 0)

$$F = (\stackrel{C_1}{p \lor s}) \land (r \lor \stackrel{C_2}{t} \lor \neg s) \land (\stackrel{C_3}{r} \lor \neg t)$$

• Implicate: $p \lor r \lor t \Rightarrow$ obtained by resolution of C_1 and C_2 •• **Prime implicate**: $p \lor r \Rightarrow$ obtained by resolution of C_3 and C_4

• Implicant: $p \land \neg s \land r \land \neg t \ (p = 1, s = 0, r = 1, t = 0)$

•• **Prime implicant**: $p \wedge r$ (p = 1, r = 1)

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = \neg a \land b \land c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = \neg a \land b \land c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = b \land c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = b \land c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e \land \neg f$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e$$

• CNF formulae:

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e$$

- Propositional formulae:
 - 1. Shannon expansion: Worst-case exponential grow of the formula

• CNF formulae:

•• Polynomial time procedure

$$F = (\neg a \lor b \lor c) \land (a \lor d) \land (\neg d \lor e \lor f)$$

$$I_n = c \land d \land e$$

- **Propositional** formulae:
 - 1. Shannon expansion: Worst-case exponential grow of the formula

OR

- 1. Convert F to F_{CNF} using a **Tseitin encoding**
- 2. Reduce an implicant I_n using the following procedure:

```
input : Formula F_{CNF}, I_n and Var(F)
output: Prime Implicant in I_n
1 foreach I \in I_n and var(I) \in Var(F) do
2 |I'_n = I_n \setminus \{I\}
3 if I'_n \land \neg F unsat then
4 |I_n = I'_n
5 else
6 | continue
7 return I_n
8 end
```

 Iterated consensus or resolution 	[Q1952,Q1959,T1967]
 Unionist product 	[C1996]
 Based on dual rail encoding 	[P1999,J2014]
• Semantic resolution	[S1970]
• SE-trees	[R1994]
 BDD-based (i.e ZRes) 	[SD2001]

0	Iterated consensus or resolution	[Q1952,Q1959,T1967]
0	Unionist product	[C1996]
0	Based on dual rail encoding	[P1999,J2014]
0	Semantic resolution	[S1970]
0	SE-trees	[R1994]
0	BDD-based (i.e ZRes)	[SD2001]

They all assume the formula in CNF (DNF) or they are limited to formulae with few variables

• Minimal Hitting Set (MHS):

Given a collection Γ of sets, a hitting set H for Γ is a set such that $\forall S \in \Gamma, H \cap S \neq \emptyset$.

•• A hitting set H is *minimal* if none of its subsets is a hitting set.

• Minimal Hitting Set (MHS):

Given a collection Γ of sets, a hitting set H for Γ is a set such that $\forall S \in \Gamma, H \cap S \neq \emptyset$.

 $\circ\circ$ A hitting set *H* is *minimal* if none of its subsets is a hitting set.

• Example Minimal Hitting Set:

$$\Gamma = \begin{bmatrix} \{a, b, c\} \\ \{b, d\} \\ \{e\} \end{bmatrix}$$

 $H_1 = \{b, e\}, H_2 = \{a, d, e\}, H_3 = \{c, d, e\}.$ Note that instead $\{a, b, e\}$ is <u>not</u> a Minimal Hitting Set. Prime Implicants and Implicates are related by a hitting set duality
 Pl_n(F): set of all prime implicants of *F Pl_e(F)*: set of all prime implicates of *F*

A term (clause) *I* is a prime implicant (implicate) of *F* if and only if *I* is a minimal hitting set of $PI_e(F)$ ($PI_n(F)$)

This remains true for any subset of $PI_e(F)(PI_n(F))$ that is equivalent to F (cover)

MHS on subsets of $PI_e(F)(PI_n(F))$

- Suppose ${\it Pl}_e^{'}(F) \subset {\it Pl}_e(F)$ and ${\it Pl}_e^{'}(F)$ not equivalent to F
 - •• A MHS p of $Pl'_{e}(F)$ does not necessarily corresponds to a prime implicant

A term p is a prime implicant of F if

- 1. p is a MHS of $PI_{e}^{'}(F)$
- 2. $p \land \neg F$ is unsatisfiable
- When sets are represented as clauses with positive literals, minimal models correspond to MHS
 - •• A minimal model is a model containing a minimal number of variables assigned to true

$\circ\,$ An approach completely based on SAT technology

- An approach completely based on SAT technology
- Exploits the existing duality between prime implicants and prime implicates in order to find new prime implicants/implicates

- An approach completely based on SAT technology
- Exploits the existing duality between prime implicants and prime implicates in order to find new prime implicants/implicates
- Complements existing approaches (i.e ZRes)

H formula

• We use a CNF formula H to keep track of the already computed prime implicants/implicates

H formula

• We use a CNF formula H to keep track of the already computed prime implicants/implicates

When H is unsatisfiable either all the $PI_n(F)$ or all the $PI_e(F)$ have been computed

- Prime implicants/implicates can be more than 2ⁿ
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

 $H = (b \lor \neg c \lor \neg d) \land (\neg a \lor \neg b \lor \neg d) \land (b \lor c) \land d \land (a \lor \neg b)$

$PI_n(F)$	$PI_e(F)$		
$\neg b \wedge c \wedge d$	$b \lor c$		
$a \wedge c \wedge d$	d		
$a \wedge b \wedge d$	a∨c		
	$a \lor \neg b$		

- $\circ~$ Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

$$H = (b \lor \neg c \lor \neg d) \land (\neg a \lor \neg b \lor \neg d) \land (b \lor c) \land d \land (a \lor \neg b)$$

$$(b \lor \neg c)$$

$PI_n(F)$	$PI_e(F)$		
$\neg b \wedge c \wedge d$	$b \lor c$		
$a \wedge c \wedge d$	d		
$a \wedge b \wedge d$	$a \lor c$		
	$a \lor \neg b$		

- Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

$$H = (b \lor \neg c \lor \neg d) \land (\neg a \lor \neg b \lor \neg d) \land (b \lor c) \land d \land (a \lor \neg b)$$

$$(b \lor \neg c) \quad (\neg a \lor \neg b)$$

$PI_n(F)$	$PI_e(F)$
$\neg b \wedge c \wedge d$	$b \lor c$
$a \wedge c \wedge d$	d
$a \wedge b \wedge d$	$a \lor c$
	$a \lor \neg b$

- Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

$$H = (b \lor \neg c \lor \neg d) \land (\neg a \lor \neg b \lor \neg d) \land (b \lor c) \land d \land (a \lor \neg b)$$

$$(b \lor \neg c) \quad (\neg a \lor \neg b)$$

$$\neg b$$

$PI_n(F)$	$PI_e(F)$	
$\neg b \wedge c \wedge d$	$b \lor c$	
$a \wedge c \wedge d$	d	
$a \wedge b \wedge d$	a∨c	
	$a \lor \neg b$	

- Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

- Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

- Prime implicants/implicates can be more than 2^n
- Example without dual rail encoding:

$$F = d \land (a \lor \neg b \lor \neg d) \land (c \lor b)$$

• For each variable v in var(F) create two variables x_v and $x_{\neg v}$:

1.
$$(x_v = 1 \text{ and } x_{\neg v} = 0) \Rightarrow v = 1$$

2. $(x_v = 0 \text{ and } x_{\neg v} = 1) \Rightarrow v = 0$
3. $(x_v = 0 \text{ and } x_{\neg v} = 0) \Rightarrow v \text{ is a don't care}$
4. $(x_v = 1 \text{ and } x_{\neg v} = 1) \Rightarrow \text{ forbidden}$

In order to achieve the requirement of point 4 add the clause $\{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$

Algorithm primer-b

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F 1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ 2 while true do $(st, A^H) \leftarrow MinModel(H)$ 3 4 | if not st then return $5 \qquad A^F \leftarrow Map(A^H)$ $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 6 # $F \models \neg M^{\neg F}$; i.e. $\neg M^{\neg F}$ is an implicate if st then 7 $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 ReportImplicate(I_e) 9 $b \leftarrow \{x_l \mid l \in I_e\}$ 10 # $A^F \models F$: i.e. A^F is an implicant else 11 $I_n \leftarrow A^F$ 12 ReportImplicant (I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 $H \leftarrow H \cup \{b\}$ 15 16 end

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
               I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
            b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ 2 while true do $(st, A^H) \leftarrow MinModel(H)$ 3 if not st then return 4 $A^F \leftarrow Map(A^H)$ 5 $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 6 7 if st then $B = \{ (\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F) \}$ $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 ReportImplicate(I_e) 9 $b \leftarrow \{x_l \mid l \in I_e\}$ 10 else 11 $I_n \leftarrow A^F$ 12 ReportImplicant(I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 15 $H \leftarrow H \cup \{b\}$ 16 end

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
    while true do
 2
           (st, A^H) \leftarrow MinModel(H)
 3
         if not st then return
 4
       A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                 I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                 ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
                I_n \leftarrow A^F
12
                 ReportImplicant(I_n)
13
             b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ 2 while true do $(st, A^H) \leftarrow MinModel(H)$ 3 if not st then return 4 $A^F \leftarrow Map(A^H)$ 5 6 $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 7 if st then $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 9 ReportImplicate(I_e) $b \leftarrow \{x_l \mid l \in I_e\}$ 10 else 11 $I_n \leftarrow A^F$ 12 ReportImplicant (I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 15 $H \leftarrow H \cup \{b\}$ 16 end

 $H = B \land (x_b \lor x_c) \land x_d \land (x_a \lor x_c) \land (x_a \lor x_{\neg b})$ $x_a x_{\neg a} x_b x_{\neg b} x_c x_{\neg c} x_d x_{\neg d}$ $A^H = 10 \quad 00 \quad 10 \quad 10$

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ while true do 2 $(st, A^H) \leftarrow MinModel(H)$ 3 if not st then return 4 $A^F \leftarrow Map(A^H)$ 5 $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 6 7 if st then $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 ReportImplicate(I_e) 9 $b \leftarrow \{x_l \mid l \in I_e\}$ 10 else 11 $I_n \leftarrow A^F$ 12 ReportImplicant (I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 15 $H \leftarrow H \cup \{b\}$ 16 end

If unsatisfiable then all the prime implicants have been computed!!

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ while true do 2 $(st, A^H) \leftarrow MinModel(H)$ 3 if not st then return 4 $A^F \leftarrow Map(A^H)$ 5 6 $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 7 if st then $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 9 ReportImplicate(I_e) $b \leftarrow \{x_l \mid l \in I_e\}$ 10 else 11 $I_n \leftarrow A^F$ 12 ReportImplicant (I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 15 $H \leftarrow H \cup \{b\}$ 16 end

Assignment to test: $a \wedge c \wedge d$

```
input : Formula F
    output: PI_n(F) and prime implicate cover
                of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in \operatorname{var}(F)\}
    while true do
 2
           (st, A^H) \leftarrow MinModel(H)
 3
          if not st then return
 4
       A^F \leftarrow Map(A^H)
 5
         (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
          if st then
                                                                        (st, M^{\neg F}) \leftarrow SAT(a \wedge c \wedge d \wedge \neg F)
                 I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                 ReportImplicate(I_e)
 9
                 b \leftarrow \{x_l \mid l \in I_e\}
10
          else
11
                 I_n \leftarrow A^F
12
                 ReportImplicant(I_n)
13
              b \leftarrow \{\neg x_l \mid l \in I_n\}
14
15
          H \leftarrow H \cup \{b\}
16 end
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
    while true do
 2
          (st, A^H) \leftarrow MinModel(H)
 3
         if not st then return
 4
       A^F \leftarrow Map(A^H)
 5
         (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                                                                      a \wedge c \wedge d \wedge \neg F unsatisfiable
                 I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                 ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
                I_n \leftarrow A^F
12
                 ReportImplicant(I_n)
13
              b \leftarrow \{\neg x_l \mid l \in I_n\}
14
15
         H \leftarrow H \cup \{b\}
16 end
```

input : Formula F **output**: $PI_n(F)$ and prime implicate cover of F1 $H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}$ 2 while true do $(st, A^H) \leftarrow MinModel(H)$ 3 if not st then return 4 $A^F \leftarrow Map(A^H)$ 5 $(st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)$ 6 7 if st then $I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)$ 8 ReportImplicate(I_e) 9 $b \leftarrow \{x_l \mid l \in I_e\}$ 10 else 11 $I_n \leftarrow A^F$ 12 ReportImplicant(I_n) 13 $b \leftarrow \{\neg x_l \mid l \in I_n\}$ 14 15 $H \leftarrow H \cup \{b\}$ 16 end

 $\begin{array}{c|c} \text{input} : \text{Formula } F_{CNF}, \ I_e \ \text{and} \ Var(F) \\ \text{output:} \ \text{Prime Implicate in } I_e \\ 1 \ \text{foreach } I \in I_e \ \text{and} \ var(I) \in Var(F) \ \text{do} \\ 2 \ | \ I'_e = I_e \setminus \{I\} \\ 3 \ | \ \text{if } I'_e \wedge F \ unsat \ \text{then} \\ 4 \ | \ I_e = I'_e \\ 5 \ \text{else} \\ 6 \ | \ \text{continue} \\ 7 \ \text{return } I_e \\ 8 \ \text{end} \end{array}$

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                 I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
               I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
            b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
               I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
            b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_I \mid I \in I_e\}
10
         else
11
               I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
          b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
         if not st then return
 4
       A^F \leftarrow Map(A^H)
 5
       (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                 I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                 ReportImplicate(I_e)
 9
                b \leftarrow \{x_I \mid I \in I_e\}
10
         else
11
                I_n \leftarrow A^F
                 ReportImplicant(I_n)
13
              b \leftarrow \{\neg x_l \mid l \in I_n\}
14
15
         H \leftarrow H \cup \{b\}
16 end
```

 $I_n \leftarrow a \wedge c \wedge d$

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_I \mid I \in I_e\}
10
         else
11
               I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
            b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
         if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_l \mid l \in I_e\}
10
         else
11
                I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
              b \leftarrow \{\neg x_l \mid l \in I_n\}
14
15
         H \leftarrow H \cup \{b\}
16 end
```

```
b \leftarrow (\neg x_a \lor \neg x_c \lor \neg x_d)
```

```
input : Formula F
    output: PI_n(F) and prime implicate cover
               of F
 1 H \leftarrow \{(\neg x_v \lor \neg x_{\neg v}) \mid v \in var(F)\}
 2 while true do
          (st, A^H) \leftarrow MinModel(H)
 3
      if not st then return
 4
      A^F \leftarrow Map(A^H)
 5
      (st, M^{\neg F}) \leftarrow SAT(A^F \land \neg F)
 6
 7
         if st then
                I_e \leftarrow \text{ReduceImplicate}(M^{\neg F}, F)
 8
                ReportImplicate(I_e)
 9
                b \leftarrow \{x_I \mid I \in I_e\}
10
         else
11
                I_n \leftarrow A^F
12
                ReportImplicant(I_n)
13
             b \leftarrow \{\neg x_l \mid l \in I_n\}
14
         H \leftarrow H \cup \{b\}
15
16 end
```

Example using dual rail encoding and minimal models

$$H = B \land (\neg x_{\neg b} \lor \neg x_c \lor \neg x_d) \land (\neg x_a \lor \neg x_b \lor \neg x_d) \land (x_b \lor x_c) \land x_d \land (x_a \lor x_c) \land (x_a \lor x_{\neg b})$$

$$(x_{a} x_{\neg a}) (x_{b} x_{\neg b}) (x_{c} x_{\neg c}) (x_{d} x_{\neg d})$$

$$A^{H} = 10 \quad 00 \quad 10 \quad 10$$

$$\downarrow \downarrow$$

$$A^{F} = 1 \quad D \quad 1 \quad 1$$

$$(a) \quad (b) \quad (c) \quad (d)$$

 $a \wedge c \wedge d$ is the last remaining prime implicant and is returned as a model!

Results

	QG6	Geffe gen.	F+PHP	F+GT	Total
ZRes-tison	0	0	11	0	11
primer-a (PIn)	53	596	30	26	705
primer-a (<i>Pl_e</i>)	28	588	30	27	673
primer-b (<i>PI_n</i>)	64	595	30	30	719
primer-b (<i>PI_e</i>)	30	577	30	27	664

- $\circ~$ Presented a new approach that can compile ${\bf non-clausal~formulae}$
- Can compile formulae with thousands of variables
- It's completely based on SAT technology
- Complements existing approaches

Future work

Applications of prime enumeration
 SAT-Based Formula Simplification [IPM15]
 Preferred prime implicants/implicates
 Horn LUB [MPM15]

Thank You