Learning Moore Machines from Input-Output Traces

Georgios Giantamidis¹ and Stavros Tripakis^{1,2}

¹Aalto University, Finland ²UC Berkeley, USA

Motivation: learning models from black boxes

Many applications:

- Verify that a black-box component is safe to use
- Dynamic malware analysis

• ...

Learning FSMs from input-output traces

Background

- 2 Formal problem definition
- 3 Related work
- Identification in the limit
- 5 Our learning algorithms
- 6 Results

Background

- Formal problem definition
- 3 Related work
- 4 Identification in the limit
- 5 Our learning algorithms
- 6 Results
- Summary & future work

Moore machines

 $(I, O, Q, q_0, \delta, \lambda)$

- input alphabet, $I = \{a, b\}$
- output alphabet, $O = \{0, 1, 2\}$
- set of states, $Q=\{q_0,q_1,q_2,q_3\}$
- \bullet initial state, q_0
- transition function, $\delta:Q\times I\to Q$
- \bullet output function, $\lambda:Q\to O$

Moore machines

 $(I, O, Q, q_0, \delta, \lambda)$

- input alphabet, $I = \{a, b\}$
- output alphabet, $O = \{0, 1, 2\}$
- set of states, $Q=\{q_0,q_1,q_2,q_3\}$
- initial state, q_0
- transition function, $\delta:Q\times I\to Q$
- output function, $\lambda:Q\to O$

By definition, our machines are deterministic and complete.

Input-output traces

 $\begin{array}{l} aa\mapsto 020\\ baa\mapsto 0122\\ bba\mapsto 0122\\ abaa\mapsto 02220\\ abba\mapsto 02220\\ \end{array}$

Moore machine

Some $\ensuremath{\mathsf{I}}\xspace/\ensuremath{\mathsf{O}}\xspace$ traces generated by the machine

Consistency

 $\begin{array}{c} aa \mapsto 020 \\ baa \mapsto 0122 \\ bba \mapsto 0122 \\ abaa \mapsto 02220 \\ abba \mapsto 02220 \end{array}$

This machine is consistent with this set of traces.

Consistency

 $\begin{array}{c} aa \mapsto 020 \\ baa \mapsto 0122 \\ bba \mapsto 0122 \\ abaa \mapsto 02220 \\ abba \mapsto 02220 \end{array}$

This machine is inconsistent with this set of traces.

Background

2 Formal problem definition

- 3 Related work
- Identification in the limit
- 5 Our learning algorithms
- 6 Results

Summary & future work

A first attempt at problem definition

Given ...

- Input alphabet, I
- Output alphabet, O
- Set of IO-traces, S (the training set)

 \ldots find a Moore machine M such that:

- \bullet M is deterministic
- $\bullet \ M \ {\rm is \ complete}$
- $\bullet \ M$ is consistent with S

 $b \mapsto 01$ $aa \mapsto 020$ $ab \mapsto 022$

 $b \mapsto 01$

This is called the **prefix-tree machine**.

 $\begin{array}{l} b\mapsto 01\\ aa\mapsto 020\\ ab\mapsto 022 \end{array}$

This is called the **prefix-tree machine**. Not quite a solution: machine incomplete ...

 $b \mapsto 01$ $aa \mapsto 020$ $ab \mapsto 022$

... but easily completed with self-loops.

Problems with the trivial solution

(1) Poor generalization, due to trivial completion with self-loops

- The machine may be consistent with the training set ...
- ... but how accurate is it on a test set?

Problems with the trivial solution

(1) Poor generalization, due to trivial completion with self-loops

- The machine may be consistent with the training set ...
- ... but how accurate is it on a test set?

- (2) Large number of states in the learned machine
 - The prefix-tree machine does not merge states at all.

Revised problem definition

The LMoMIO problem (Learning Moore Machines Input-Output Traces):

Given ...

- \bullet Input alphabet, I
- Output alphabet, O
- Set of IO-traces, S (the training set)
- \dots find a Moore machine M such that:
 - \bullet M is deterministic
 - \bullet M is complete
 - $\bullet \ M$ is consistent with S
- ... and also:
 - M generalizes well (good accuracy on a-priori unknown test sets)
 - *M* is small (few states)
 - M is found quickly (good learning algorithm complexity)

How to measure "accuracy"?

We define three metrics: Strong, Medium, Weak

test trace	machine output	strong acc.	medium acc.	weak acc.
$abc\mapsto 1234$	1234	1	1	1
$abc\mapsto 1234$	4321	0	0	0
$abc\mapsto 1234$	1212	0	$\frac{1}{2}$	$\frac{1}{2}$
$abc\mapsto 1234$	3434	0	0	$\frac{1}{2}$
$abc \mapsto 1234$	1324	0	$\frac{1}{4}$	$\frac{1}{2}$

Background

Formal problem definition

3 Related work

Identification in the limit

5 Our learning algorithms

6 Results

Summary & future work

Related work

Background

- Formal problem definition
- 3 Related work

Identification in the limit

- 5 Our learning algorithms
- 6 Results

Summary & future work

Concept introduced in [Gold, 1967], in the context of formal language learning

- Learning is seen as an infinite process
- Training set keeps growing: $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots$
- Every input word is guaranteed to eventually appear in the training set
- For each S_i , the learner outputs machine M_i
- $\bullet\,$ Identification in the limit := learner outputs the right machine after some i

Concept introduced in [Gold, 1967], in the context of formal language learning

- Learning is seen as an infinite process
- Training set keeps growing: $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots$
- Every input word is guaranteed to eventually appear in the training set
- For each S_i , the learner outputs machine M_i
- $\bullet\,$ Identification in the limit := learner outputs the right machine after some i

A good passive learning algorithm must identify in the limit.

Characteristic samples

To prove identification in the limit, we use the notion of the **Characteristic Sample** [C. de la Higuera, 2010]:

- Concept existing for DFAs (deterministic finite automata) we adapt it to Moore machines
- Intuition: set of IO-traces that "covers" the machine (covers all states, all transitions)
- For a minimal Moore machine $M=(I,O,Q,q_0,\delta,\lambda),$ there exists a CS of total length $O(|Q|^4|I|)$

Characteristic samples

To prove identification in the limit, we use the notion of the **Characteristic Sample** [C. de la Higuera, 2010]:

- Concept existing for DFAs (deterministic finite automata) we adapt it to Moore machines
- Intuition: set of IO-traces that "covers" the machine (covers all states, all transitions)
- For a minimal Moore machine $M=(I,O,Q,q_0,\delta,\lambda),$ there exists a CS of total length $O(|Q|^4|I|)$

Charateristic Sample Requirement (CSR):

- A learning algorithm satisfies CSR if it satisfies the following: If the training set S is a characteristic sample of a minimal machine M, then the algorithm learns from S a machine isomorphic to M.
- CSR can be shown to imply identification in the limit

Background

- Formal problem definition
- 3 Related work
- Identification in the limit
- 5 Our learning algorithms
 - Results

Summary & future work

- PTAP Prefix Tree Acceptor Product
- PRPNI Product RPNI
- MooreMI Moore Machine Inference

PTAP - Prefix Tree Acceptor Product

This is the trivial solution we discussed earlier:

 $b \mapsto 01$ $aa \mapsto 020$ $ab \mapsto 022$

Drawbacks:

- Large number of states in learned machine
- Poor generalization / accuracy

PRPNI - Product RPNI

Observations:

- A DFA is a special case of a Moore machine with binary output (accept/reject)
- A Moore machine can be encoded as a product of $\lceil \log_2 |O| \rceil$ DFAs

Based on these observations, PRPNI works as follows:

- Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
- Learns several DFAs that encode the learned Moore machine
- Computes product of the learned DFAs and completes it

Drawbacks:

• DFAs are learned separately, therefore do not have same state-transition structure \implies state explosion during product computation

PRPNI - Product RPNI

Observations:

- A DFA is a special case of a Moore machine with binary output (accept/reject)
- A Moore machine can be encoded as a product of $\lceil \log_2 |O| \rceil$ DFAs

Based on these observations, PRPNI works as follows:

- Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
- Learns several DFAs that encode the learned Moore machine
- Computes product of the learned DFAs and completes it

Drawbacks:

- DFAs are learned separately, therefore do not have same state-transition structure \implies state explosion during product computation
- Invalid output codes

Invalid output codes

Output alphabet: $O = \{0, 1, 2\}$

Binary encoding of $O: f = \{0 \mapsto 00, 1 \mapsto 01, 2 \mapsto 10\}$

Invalid output code: 11 does not correspond to any output symbol

- Modified RPNI, tailored to Moore machine learning
- Like PRPNI, learns several DFAs that encode the learned Moore machine
- Unlike PRPNI, learned DFAs maintain same state-transition structure
- Therefore, no state explosion during product computation
- No invalid output codes either

Background

- Formal problem definition
- 3 Related work
- 4 Identification in the limit
- 5 Our learning algorithms

6 Results

7 Summary & future work

Results

Theorem 1

All three algorithms return Moore machines consistent with the IO-traces received as input.

Theorem 2

The MooreMI algorithm satisfies the characteristic sample requirement and identifies in the limit.

Experimental evaluation result:

MooreMI is better not just in theory, but also in practice

Background

- Formal problem definition
- 3 Related work
- 4 Identification in the limit
- 5 Our learning algorithms
- Results

Summary & future work

- Learning deterministic, complete Moore machines from input-output traces
- Characteristic sample for Moore machines
- Three algorithms to solve the problem
- MooreMI algorithm identifies in the limit

Future work

- Extend to Mealy machines
- Learning symbolic machines
- Learning from traces and formal requirements (e.g. LTL formulas)
- Industrial case studies

Future work

- Extend to Mealy machines
- Learning symbolic machines
- Learning from traces and formal requirements (e.g. LTL formulas)
- Industrial case studies

Thank you! Questions?

References

- E. M. Gold. Language identification in the limit. Information and Control, 10(5):447-474, 1967.
- A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput., 21(6):592-597, June 1972.
- E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37(3):302-320, 1978.
- D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87-106, 1987.
- J. Oncina and P. Garcia. Identifying regular languages in polynomial time. In Advances in Structural and Syntactic Pattern Recognition, pages 99-108, 1992.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. CUP, 2010.