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subset of good diverse/similar solutions for decision-making

Design space exploration

Product configuration

Planning

Phylogeny reconstruction
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Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1
:- node(X).

1{cycle(X,Y) : edge(X,Y)}1
:- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y);

reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
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reached(Y) :- cycle(X,Y); reached(X).
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:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
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Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ atoms of 2 solutions are 50% different, d(2, 3) = 50.
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Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100
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Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))
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Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))

Other similarity problems: k-similar/dissimilar solution, maximal n
k-similar/dissimilar solutions, most similar/dissimilar solutions,
k-similar/dissimilar set
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Complexity

Problem Complexity

n k-similar/dissimilar solutions NP-complete
k-similar/dissimilar solution NP-complete

maximal n k-similar/dissimilar solutions FNP//log -complete
n most similar/dissimilar solutions FPNP -complete

similar/dissimilar solution FPNP -complete
k-similar/dissimilar set NP-complete

k-similar/dissimilar optimal solutions ΣP
2 -complete

↪→ challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.
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Main inspiration

Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:
Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:

1 Offline method

2 Iterative method

3 Modifying solver branching heuristic
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Clique approach
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Overview

Model solutions as vertices of graph with distances as labels
of edges

search for cliques in graph

complete, correct

easy to implement, versatile

not efficient
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Current implementation

ASP problems can be normal logic programs or optimization
problems in asprin-format

solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions

full python script

distance function in python
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Algorithm

Data: Distance function d , Problem P, distance k , number
solutions n

Result: Set C of n solutions of P with ∆(S) ≤ k
S =getSolutions(P);
V ←Set of |S | vertices, each element unique solution of P;
E = {(v1, v2)|v1, v2 ∈ V , v1 6= v2, d(v1, v2) ≤ k};
C ← clique with n vertices in 〈V ,E 〉;
return C
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Getting solutions
S =getSolutions(P);

P either normal logic program in ASP or optimization problem
in asprin-format

S contains all answer sets of P

answer sets consist of shown atoms as gringo Fun-objects
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Getting solutions: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
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Calculating cliques
V ←Set of |S | vertices, each element unique solution of P;
E = {(v1, v2)|v1, v2 ∈ V , v1 6= v2, d(v1, v2) ≤ k};
C ← clique with n vertex in 〈V ,E〉;

first calculate pairwise distance between solutions

build edges between all solutions with distances as labels

add edges as instance to ASP clique program
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Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
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2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
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Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ 3/6 of atoms are different; edge(2,3,50) is added to instance
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Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ 3/6 of atoms are different; edge(2,3,50) is added to instance

Complete instance:

edge(0,1,83). edge(0,2,50). edge(0,3,83). edge(0,4,100).
edge(0,5,50). edge(1,2,66). edge(1,3,66). edge(1,4,83).
edge(1,5,100). edge(2,3,50). edge(2,4,50). edge(2,5,100).
edge(3,4,50). edge(3,5,83). edge(4,5,50).
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Getting cliques: Example

#program clique_sim(n,k).

edge(X,Y,D):-edge(Y,X,D).

vert(X):-edge(X,_,_).

vert(Y):-edge(_,Y,_).

n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,

0{ cl_edge(X,Y):edge(X,Y,_)}0.

For k = 60 and n = 3:

cl vert(2), cl vert(3), cl vert(4)
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Getting cliques: Example

#program clique_sim(n,k).

edge(X,Y,D):-edge(Y,X,D).

vert(X):-edge(X,_,_).

vert(Y):-edge(_,Y,_).

n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,

0{ cl_edge(X,Y):edge(X,Y,_)}0.

For k = 60 and n = 3:

cl vert(2), cl vert(3), cl vert(4)
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Improvements

optimal cliques

only calculate subset of solutions

iterate calculated solutions starting with number of required
solutions

add heuristic to enumerate more likely candidates
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Getting optimal cliques: Example

#program clique_sim_opt(n).

...

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y.

...

#minimize { D@1 ,(cl_edge ,X,Y): cl_edge(X,Y,D)}.

Optimal k = 50 for n = 3 with same solution:

cl vert(2), cl vert(3), cl vert(4)
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Getting optimal cliques: Example

#program clique_sim_opt(n).

...

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y.

...

#minimize { D@1 ,(cl_edge ,X,Y): cl_edge(X,Y,D)}.

Optimal k = 50 for n = 3 with same solution:

cl vert(2), cl vert(3), cl vert(4)
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Iterative approach
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Overview

iteratively calculate solutions

one call to the solver adds a solutions satisfying distance
constraints

not complete, correct

easy to implement, only normal logic problems

more efficient
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Current implementation

ASP problems can be normal logic programs

solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions given a initial solution

python script in logic program

distance definition in ASP
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Algorithm

Data:
Solve.lp (calculates solution s of P)

Distance.lp (calculates distances between set of solution S and s)

Constraint.lp (eliminates solution s with distance ∆(S ∪ {s}) > k)

number solutions n

Result: Set S of maximum n solutions of P with ∆(S) ≤ k
S = ∅;
for i = 1 to n do

s ← Solve S Solve.lp Distance.lp Constraint.lp;
if Unsat then

break;
end
S = S ∪ s;

end
return S
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Solve.lp: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6

Additional definition of atoms that constitute a solution:

#program solve.

_solution (0,cycle(X,Y)):-cycle(X,Y).

#show cycle /2.

Each step a new solution 0 is calculated.

Philipp Wanko Finding similar/dissimilar Solutions with ASP



Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Solve.lp: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
Additional definition of atoms that constitute a solution:

#program solve.

_solution (0,cycle(X,Y)):-cycle(X,Y).

#show cycle /2.

Each step a new solution 0 is calculated.
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Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S = S ∪ s):
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Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S = S ∪ s):

#program savesol(m).

_solution(m,X) :- X = @getSols(m).

#program deletemodel(m).

:- _solution (0,X) : X = @getSols(m);

N #sum { 1,X: _solution (0,X) } N;

N = @solSize(m).
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Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:
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Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:

#program distance_prct(n,step).

_notsame12(step ,n,0,X):-_step(step); _solution(n,X);

not _solution(0, X).

_notsame21(step ,n,0,X):-_step(step); _solution(0,X);

not _solution(n, X).

_nratoms(step ,n,0,N,K):-_step(step);N={ _solution(n,X)};

K={ _notsame12(step ,n,0,A)}.

_nratoms(step ,0,n,N,K):-_step(step);N={ _solution (0,X)};

K={ _notsame21(step ,n,0,A)}.

_distance(step ,n,0,K):- _step(step); _nratoms(step ,n,0,N1 ,K1);

_nratoms(step ,0,n,N2,K2);

K=@calcPrct(N1,K1 ,N2,K2).
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Constraint.lp: Example

Following logic program is grounded in each step for each element
in S to exclude s with ∆(S ∪ s) > k :

#program constraint_sim(step ,n,k).

:-_distance(step ,n,0,X); X > k; _step(step).
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Constraint.lp: Example

Following logic program is grounded in each step for each element
in S to exclude s with ∆(S ∪ s) > k :

#program constraint_sim(step ,n,k).

:-_distance(step ,n,0,X); X > k; _step(step).
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Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)
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3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)
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Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)
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Improvements

use optimize statements to ensure least distance for next
candidate

no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist(K,step):-K = #max{X:_distance(step ,_,0,X)};

_step(step).

#minimize{K: _maxdist(K,step),_step(step )}.
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Improvements

use optimize statements to ensure least distance for next
candidate

no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist(K,step):-K = #max{X:_distance(step ,_,0,X)};

_step(step).

#minimize{K: _maxdist(K,step),_step(step )}.
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Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.
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Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.
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Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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between 1 and 2 but not nearly optimal due to unfortunate start
candidate.
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asprin + Hclasp approach
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Overview

extend asprin preference framework with heuristic to enable
similarity

modify branching heuristic to find similar/dissimilar models
from previous solutions

no guarantees

easy to implement, directly aids in finding solutions

tampering with branching heuristics may decrease performance
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Current implementation

ASP problems can only be optimization problems in
asprin-format

approximates n most similar/most dissimilar solutions

python script in logic program

distance can only be expressed in heuristic-atoms
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Algorithm

same branch and bound algorithm of asprin

change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a ∈ H do Add atom heuristic( holds(a,0),true,s) ;

variable with highest value s is decided first and declared true,
if possible

CDCL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most
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Algorithm

same branch and bound algorithm of asprin

change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a ∈ H do Add atom heuristic( holds(a,0),true,s) ;

variable with highest value s is decided first and declared true,
if possible

CDCL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most
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Adding heuristic

If optimal solution is found, following logic program is added:

#program dosimilar(m).

_heuristic(_holds(X,0),true ,m) :- X=@getHolds ().

#show _holds /2.

#show _heuristic /3.
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Adding heuristic

If optimal solution is found, following logic program is added:

#program dosimilar(m).

_heuristic(_holds(X,0),true ,m) :- X=@getHolds ().

#show _holds /2.

#show _heuristic /3.
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Adding heuristic: Example

% Generate

1{ cycle(X,Y) : edge(X,Y) }1

:- node(X).

1{ cycle(X,Y) : edge(X,Y) }1

:- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y);

reached(X).

% Test

:- node(Y), not reached(Y).

%optimize

#preference(c1,less(weight )){

V::cycle(X,Y) : cost(1,X,Y,V)

}.

#preference(c2,less(weight )){

V::cycle(X,Y) : cost(2,X,Y,V)

}.

#preference(c3,less(weight )){

V::cycle(X,Y) : cost(3,X,Y,V)

}.

#preference(all ,pareto ){

name(c1); name(c2); name(c3)

}.

#optimize(all).
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Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
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Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:
heuristic( holds(for(cycle(6,3)),0),true,2)
heuristic( holds(for(cycle(5,6)),0),true,2)
heuristic( holds(for(cycle(1,4)),0),true,2)
heuristic( holds(for(cycle(2,5)),0),true,2)
heuristic( holds(for(cycle(4,2)),0),true,2)
heuristic( holds(for(cycle(3,1)),0),true,2)
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Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3
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Improvements

heuristic modifying atoms regarding all previous solution

dynamic heuristic
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Overview

Clique:

Calculating all solutions:
finds globally optimal clique
nlp and optimization
inefficient

Calculating solutions iterative:
no optimal clique
nlp and optimization
more efficient

Iterative:

no globally optimal solutions
not guaranteed to find solution
only nlp
fast
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Overview

asprin+hclasp:

approximation of optimal solutions

no hard cutoff

only optimization

fast
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Setup

all benchmarks were run on Zuse with 2 cores exclusively

tried to find dissimilar solutions

Optimization problems (6000 sek timeout, 20 Gb memout):

Design space exploration
Benchmark suite from asprin-paper with Pareto preference
statements

Normal problems (2000 sek timeout, 20 Gb memout):

Hamilton cycle suite
Benchmark suite from asprin-paper without preference
statements
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Results

n = 3
k = 60
Clique

n = 3
k = 60
Clique(iter)

n = 3
k = 60
Iter

Class #ins time(s) time(s) time(s)
DSE 500 2779.55(453) 2832.50(455)
asprin-paper-opt 133 2713.82(58) 1298.26(26)
Hamilton 474 1986.96(470) 1322.72(275) 1193.70(280)
asprin-paper-nlp 133 1911.83

(127)
1576.63(92) 880.17(52)
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Results

n = 3
opt
Clique

n = 3
opt
Iter

n = 3
opt
heur

Class #ins time(s) dist time(s) dist time(s) dist
DSE 500 2777.67

(453)
986 2723.18

(447)
1043

asprin-paper-
opt

133 2722.65
(58)

425 361.03
(4)

4769

Hamilton 474 1995.78
(473)

63 1223.83
(289)

201

asprin-paper-
nlp

133 1912.03
(127)

159 1130.57
(73)

579
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Conclusion

iterative approach much better performance for normal logic
programs

with tweaks, clique approach is useful in small examples and
for getting a baseline

heuristic approach promising for multiobjective optimization
problems
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Improvements

chose different starting solutions parallel for iterative
approaches

generate different subsets of solutions parallel for clique
approach

improve performance of getting a solution:

decrease iterations for asprin with hclasp
improve finding similar solutions with clique(iterative) and
iterative approach with hclasp
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Conclusion

Thank you! Questions?
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