Finding similar/dissimilar Solutions with ASP

Philipp Wanko

December 8, 2015

Philipp Wanko Finding similar/dissimilar Solutions with ASP

- 4 同 2 4 日 2 4 日 2

э

Content

- 2 Clique approach
- 3 Iterative approach
- 4 asprin + Hclasp approach
- 5 Benchmarks

6 Conclusion

A P

- * E > * E >

Problem definition

Clique approach Iterative approach asprin + Hclasp approach Benchmarks Conclusion

Problem definition

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> <同> <同> < 同> < 同>

æ

- subset of good diverse/similar solutions for decision-making
- Design space exploration
- Product configuration
- Planning
- Phylogeny reconstruction

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

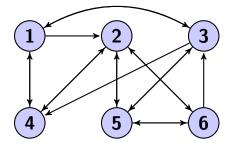
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1
:- node(X).
1{cycle(X,Y) : edge(X,Y)}1
:- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y);
reached(X).
```

```
% Test
```

```
:- node(Y), not reached(Y).
```



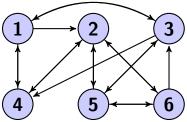
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```



(日) (同) (日) (日) (日)

э

O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

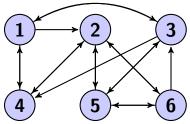
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```



(日) (同) (三) (三)

cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

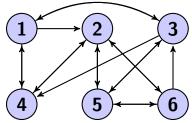
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```



(日) (同) (三) (三)

cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

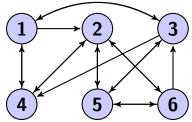
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```



(日) (同) (三) (三)

cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

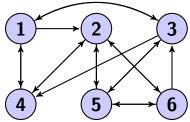
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```



・ロト ・同ト ・ヨト ・ヨト

cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)

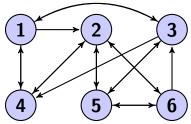
Example: Hamiltonian cycle

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

```
% Test
```

```
:- node(Y), not reached(Y).
```



cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4)

Example: Distance

Distance function d in my example is percentage of different atoms.

(日) (同) (三) (三)

э

Example: Distance

Distance function d in my example is percentage of different atoms.

- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Example: Distance

Distance function d in my example is percentage of different atoms.

- Cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Example: Distance

Distance function d in my example is percentage of different atoms.

- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Source(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

 \hookrightarrow atoms of 2 solutions are 50% different, d(2,3) = 50.

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

- 4 同 2 4 日 2 4 日 2

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

- 4 回 ト 4 ヨト 4 ヨト

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Sycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- System (1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
 Distances:

d(1,2) 50%

- 4 同 6 4 日 6 4 日 6

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- System (1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
 Distances:

d(1,2) 50% d(1,3) 50%

- 4 同 2 4 日 2 4 日 2

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- System (1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
 Distances:

 $\begin{array}{c} d(1,2) & 50\% \\ d(1,3) & 50\% \\ d(2,3) & 100\% \end{array}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: Set distance

Set distance Δ is maximum of pairwise distance *d*. Given following set of solutions *S*:

- Cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
 Distances:

d(1,2) 50% d(1,3) 50% d(2,3) 100% $\hookrightarrow \Delta(S) = 100$

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem Definition

Given ASP program *P* and set distance measure $\Delta : 2^{Sol(P)} \mapsto \mathbb{N}$:

(日) (同) (三) (三)

э

Problem Definition

Given ASP program *P* and set distance measure $\Delta : 2^{Sol(P)} \mapsto \mathbb{N}$:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where $\Delta(S) \leq k$ (resp. $\Delta(S) \geq k$)

Problem Definition

Given ASP program *P* and set distance measure $\Delta : 2^{Sol(P)} \mapsto \mathbb{N}$:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where $\Delta(S) \leq k$ (resp. $\Delta(S) \geq k$)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where $\Delta(S)$ is minimal (resp. maximal $\Delta(S)$)

Problem Definition

Given ASP program *P* and set distance measure $\Delta : 2^{Sol(P)} \mapsto \mathbb{N}$:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where $\Delta(S) \leq k$ (resp. $\Delta(S) \geq k$)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where $\Delta(S)$ is minimal (resp. maximal $\Delta(S)$)

Other similarity problems: *k*-similar/dissimilar solution, maximal *n k*-similar/dissimilar solutions, most similar/dissimilar solutions, *k*-similar/dissimilar set

<ロト <部 > < 注 > < 注 >

Complexity

Problem	Complexity
<i>n k</i> -similar/dissimilar solutions	NP-complete
k-similar/dissimilar solution	NP-complete
maximal <i>n k</i> -similar/dissimilar solutions	<i>FNP//log</i> -complete
<i>n</i> most similar/dissimilar solutions	FP ^{NP} -complete
similar/dissimilar solution	<i>FP^{NP}</i> -complete
<i>k</i> -similar/dissimilar set	NP-complete
k-similar/dissimilar optimal solutions	Σ_2^P -complete

<ロ> <同> <同> < 同> < 同>

æ

Complexity

Problem	Complexity
<i>n k-similar/dissimilar solutions</i>	NP-complete
k-similar/dissimilar solution	NP-complete
maximal <i>n k</i> -similar/dissimilar solutions	<i>FNP//log</i> -complete
n most similar/dissimilar solutions	FP ^{NP} -complete
similar/dissimilar solution	<i>FP^{NP}</i> -complete
<i>k</i> -similar/dissimilar set	NP-complete
k-similar/dissimilar optimal solutions	Σ_2^P -complete

<ロ> <同> <同> < 同> < 同>

æ

Complexity

Problem	Complexity
<i>n k-similar/dissimilar solutions</i>	NP-complete
k-similar/dissimilar solution	NP-complete
maximal <i>n k</i> -similar/dissimilar solutions	<i>FNP//log</i> -complete
n most similar/dissimilar solutions	FP ^{NP} -complete
similar/dissimilar solution	<i>FP^{NP}</i> -complete
<i>k</i> -similar/dissimilar set	NP-complete
k-similar/dissimilar optimal solutions	Σ_2^P -complete

 → challenging problems; need to find heuristics and approximations to handle complexity or accept restrictions.

Complexity

Problem	Complexity
<i>n k-similar/dissimilar solutions</i>	NP-complete
k-similar/dissimilar solution	NP-complete
maximal <i>n k</i> -similar/dissimilar solutions	<i>FNP//log</i> -complete
n most similar/dissimilar solutions	FP ^{NP} -complete
similar/dissimilar solution	<i>FP^{NP}</i> -complete
<i>k</i> -similar/dissimilar set	NP-complete
k-similar/dissimilar optimal solutions	Σ_2^P -complete

- → challenging problems; need to find heuristics and approximations to handle complexity or accept restrictions.
- In practice mostly evolutionary/genetic problem specific algorithms for multiobjective optimization.

< ロ > < 同 > < 回 > < 回 >

Main inspiration

• Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions of Answer Set Optimization Problems (2013)

Main inspiration

- Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions of Answer Set Optimization Problems (2013)
- Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink: Finding Similar/Diverse Solutions in Answer Set Programming (2011)

- 4 同 2 4 日 2 4 日 2

Main inspiration

- Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions of Answer Set Optimization Problems (2013)
- Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink: Finding Similar/Diverse Solutions in Answer Set Programming (2011)

Three basic approaches are found in literature for ASP:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Main inspiration

- Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions of Answer Set Optimization Problems (2013)
- Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink: Finding Similar/Diverse Solutions in Answer Set Programming (2011)
- Three basic approaches are found in literature for ASP:
 - Offline method
 - Iterative method
 - Modifying solver branching heuristic

| 4 同 1 4 三 1 4 三 1

Clique approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> (日) (日) (日) (日) (日)

æ

- Model solutions as vertices of graph with distances as labels of edges
- search for cliques in graph
- complete, correct
- easy to implement, versatile
- not efficient

- 4 同 ト 4 ヨ ト 4 ヨ ト

Current implementation

- ASP problems can be normal logic programs or optimization problems in *asprin*-format
- solves *n k*-similar/dissimilar solutions and *n* most similar/most dissimilar solutions
- full python script
- distance function in python

同 ト イ ヨ ト イ ヨ ト

Data: Distance function *d*, Problem *P*, distance *k*, number solutions *n*

Result: Set *C* of *n* solutions of *P* with $\Delta(S) \leq k$

$$S = getSolutions(P);$$

 $V \leftarrow \text{Set of } |S|$ vertices, each element unique solution of P;

$$E = \{ (v_1, v_2) | v_1, v_2 \in V, v_1 \neq v_2, d(v_1, v_2) \leq k \};$$

 $C \leftarrow$ clique with *n* vertices in $\langle V, E \rangle$; return *C*

(日) (同) (三) (三)

-

Getting solutions S = getSolutions(P);

- *P* either normal logic program in ASP or optimization problem in asprin-format
- S contains all answer sets of P
- answer sets consist of shown atoms as gringo Fun-objects

- 4 同 2 4 日 2 4 日 2

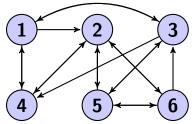
Getting solutions: Example

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

```
% Test
```

```
:- node(Y), not reached(Y).
```



cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Calculating cliques

 $V \leftarrow \text{Set of } |S| \text{ vertices, each element unique solution of } P;$ $E = \{(v_1, v_2) | v_1, v_2 \in V, v_1 \neq v_2, d(v_1, v_2) \leq k\};$ $C \leftarrow \text{clique with } n \text{ vertex in } \langle V, E \rangle;$

- first calculate pairwise distance between solutions
- build edges between all solutions with distances as labels
- add edges as instance to ASP clique program

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Getting edges: Example

Distance function d in my example is percentage of different atoms.

(日) (同) (三) (三)

Getting edges: Example

Distance function d in my example is percentage of different atoms.

- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

(日) (同) (三) (三)

Getting edges: Example

Distance function d in my example is percentage of different atoms.

- Cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

(日) (同) (三) (三)

Getting edges: Example

Distance function d in my example is percentage of different atoms.

- cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
- \hookrightarrow 3/6 of atoms are different; edge(2,3,50) is added to instance

Getting edges: Example

Distance function d in my example is percentage of different atoms.

- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

 \hookrightarrow 3/6 of atoms are different; edge(2,3,50) is added to instance

Complete instance:

・ロト ・同ト ・ヨト ・ヨト

Getting cliques: Example

- * E > * E >

Getting cliques: Example

```
#program clique_sim(n,k).
edge(X,Y,D):-edge(Y,X,D).
vert(X):-edge(X, _, _).
vert(Y):-edge(,Y,).
n{cl vert(X):vert(X)}n.
cl_edge(X,Y):-cl_vert(X),cl_vert(Y),
                 edge(X,Y,D),X < Y,D < = k.
:-cl vert(X).cl vert(Y).X<Y.
        0\{cl_edge(X,Y):edge(X,Y,_)\}0.
For k = 60 and n = 3:
```

```
cl_vert(2), cl_vert(3), cl_vert(4)
```

.

Improvements

- optimal cliques
- only calculate subset of solutions
- iterate calculated solutions starting with number of required solutions
- add heuristic to enumerate more likely candidates

- 4 同 ト 4 ヨ ト 4 ヨ ト

Getting optimal cliques: Example

```
#program clique_sim_opt(n).
```

. . .

. . .

```
cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),
edge(X,Y,D),X<Y.</pre>
```

#minimize { D@1,(cl_edge,X,Y): cl_edge(X,Y,D)}.

(日) (同) (三) (三)

Getting optimal cliques: Example

```
#program clique_sim_opt(n).
```

. . .

. . .

```
#minimize { D@1,(cl_edge,X,Y): cl_edge(X,Y,D)}.
```

Optimal k = 50 for n = 3 with same solution: cl_vert(2), cl_vert(3), cl_vert(4)

イロト イポト イヨト イヨト

Iterative approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> (日) (日) (日) (日) (日)

æ

- iteratively calculate solutions
- one call to the solver adds a solutions satisfying distance constraints
- not complete, correct
- easy to implement, only normal logic problems
- more efficient

- 4 同 2 4 日 2 4 日 2

Current implementation

- ASP problems can be normal logic programs
- solves *n k*-similar/dissimilar solutions and *n* most similar/most dissimilar solutions given a initial solution
- python script in logic program
- distance definition in ASP

同 ト イ ヨ ト イ ヨ ト

Algorithm

Data:

- Solve.lp (calculates solution s of P)
- Distance.lp (calculates distances between set of solution S and s)
- Constraint.lp (eliminates solution s with distance $\Delta(S \cup \{s\}) > k)$
- number solutions n

```
Result: Set S of maximum n solutions of P with \Delta(S) \le k

S = \emptyset;

for i = 1 to n do

s \leftarrow Solve S Solve.lp Distance.lp Constraint.lp;

if Unsat then

| break;

end

S = S \cup s;

end

return S
```

(日) (同) (三) (三)

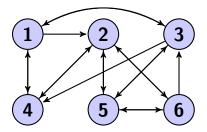
Solve.lp: Example

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```

% Test

```
:- node(Y), not reached(Y).
```

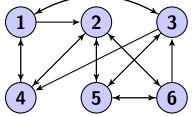


(a)

Solve.lp: Example

```
% Generate
1{cycle(X,Y) : edge(X,Y)}1 :- node(X).
1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).
```

```
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y); reached(X).
```



(日) (同) (三) (三)

э

% Test

```
:- node(Y), not reached(Y).
```

Additional definition of atoms that constitute a solution:

```
#program solve.
_solution(0,cycle(X,Y)):-cycle(X,Y).
#show cycle/2.
```

Each step a new solution 0 is calculated.

Distance.lp: Example

Following logic program saves solution and excludes it in the future $(S = S \cup s)$:

(日) (同) (三) (三)

Distance.lp: Example

Following logic program saves solution and excludes it in the future $(S = S \cup s)$:

```
#program savesol(m).
_solution(m,X) :- X = @getSols(m).
#program deletemodel(m).
:- _solution(0,X) : X = @getSols(m);
   N #sum { 1,X: _solution(0,X) } N;
   N = @solSize(m).
```

・ロト ・得ト ・ヨト ・ヨト

Distance.lp: Example

Following logic program is grounded in each step for each element in S and calculates distance to s:

- 4 同 2 4 日 2 4 日 2

Distance.lp: Example

Following logic program is grounded in each step for each element in S and calculates distance to s:

- 4 同 6 4 日 6 4 日 6

Constraint.lp: Example

Following logic program is grounded in each step for each element in S to exclude s with $\Delta(S \cup s) > k$:

- 4 同 2 4 日 2 4 日 2

Constraint.lp: Example

Following logic program is grounded in each step for each element in S to exclude s with $\Delta(S \cup s) > k$:

#program constraint_sim(step,n,k).
:-_distance(step,n,0,X); X > k; _step(step).

- 4 同 6 4 日 6 4 日 6

Result: Example

All parts together with k = 90 and n = 3 yield the following results:

(日) (同) (三) (三)

Result: Example

All parts together with k = 90 and n = 3 yield the following results:

Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

(日) (同) (三) (三)

Result: Example

All parts together with k = 90 and n = 3 yield the following results:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1) _step(2) _distance(2,1,0,83)

- 4 同 2 4 日 2 4 日 2

Result: Example

All parts together with k = 90 and n = 3 yield the following results:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1) _step(2) _distance(2,1,0,83)
- cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,66)

・ロト ・同ト ・ヨト ・ヨト

Improvements

- use optimize statements to ensure least distance for next candidate
- no more need to specify k

(日) (同) (三) (三)

Improvements

- use optimize statements to ensure least distance for next candidate
- no more need to specify k

Add following statement instead of Constraint.lp to the grounding and save the last model:

Improvements

- use optimize statements to ensure least distance for next candidate
- no more need to specify k

Add following statement instead of Constraint.lp to the grounding and save the last model:

・ロト ・同ト ・ヨト ・ヨト

Improvements: Example

Same example now without k and n = 3 yield the following results:

< 日 > < 同 > < 三 > < 三 >

Improvements: Example

Same example now without k and n = 3 yield the following results:

• cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

< 日 > < 同 > < 三 > < 三 >

Improvements: Example

Same example now without k and n = 3 yield the following results:

- Sycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1) _step(2) _distance(2,1,0,50)

Improvements: Example

Same example now without k and n = 3 yield the following results:

- Sycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1) _step(2) _distance(2,1,0,50)
- cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,83)

Improvements: Example

Same example now without k and n = 3 yield the following results:

- Sycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1) _step(2) _distance(2,1,0,50)
- cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1) _step(3) _distance(3,1,0,83) _distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance between 1 and 2 but not nearly optimal due to unfortunate start candidate.

・ロト ・同ト ・ヨト ・ヨト

asprin + Hclasp approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> <同> <同> < 同> < 同>

æ

- extend *asprin* preference framework with heuristic to enable similarity
- modify branching heuristic to find similar/dissimilar models from previous solutions
- no guarantees
- easy to implement, directly aids in finding solutions
- tampering with branching heuristics may decrease performance

Current implementation

- ASP problems can only be optimization problems in *asprin*-format
- approximates *n* most similar/most dissimilar solutions
- python script in logic program
- distance can only be expressed in _heuristic-atoms

- same branch and bound algorithm of asprin
- change branching heuristic with *hclasp* when optimal solution is found:

(日) (同) (三) (三)

э

- same branch and bound algorithm of asprin
- change branching heuristic with *hclasp* when optimal solution is found:

Data: Set *H* of atoms of optiminal solution, step *s* foreach $a \in H$ do Add atom _heuristic(_holds(a,0),true,s);

(日) (同) (三) (三)

- same branch and bound algorithm of asprin
- change branching heuristic with *hclasp* when optimal solution is found:

Data: Set *H* of atoms of optiminal solution, step *s* foreach $a \in H$ do Add atom _heuristic(_holds(a,0),true,s);

- variable with highest value *s* is decided first and declared true, if possible
- *CDCL*-algorithm tries to pick same atoms from past optimal solutions, regarding newer solutions the most

(日) (同) (三) (三)

Adding heuristic

If optimal solution is found, following logic program is added:

(日) (同) (三) (三)

Adding heuristic

If optimal solution is found, following logic program is added:

```
#program dosimilar(m).
_heuristic(_holds(X,0),true,m) :- X=@getHolds().
```

#show _holds/2.
#show _heuristic/3.

イロト イポト イヨト イヨト

Adding heuristic: Example

```
% Generate
1{ cycle(X,Y) : edge(X,Y) }1
:- node(X).
1{ cycle(X,Y) : edge(X,Y) }1
:- node(Y).
% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y);
```

```
% Test
```

reached(X).

```
:- node(Y), not reached(Y).
```

```
%optimize
#preference(c1,less(weight)){
    V::cycle(X,Y) : cost(1,X,Y,V)
}.
#preference(c2,less(weight)){
    V::cycle(X,Y) : cost(2,X,Y,V)
}.
#preference(c3,less(weight)){
    V::cycle(X,Y) : cost(3,X,Y,V)
}.
```

```
#preference(all,pareto){
   name(c1); name(c2); name(c3)
}.
```

э

```
#optimize(all).
```

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

イロト イポト イヨト イヨト

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

- O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

- O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

- 4 回 ト 4 ヨト 4 ヨト

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

- O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto optimal answers are:

- O cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- S cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
- Sycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

< ロ > < 同 > < 回 > < 回 >

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule: _holds(for(cycle(X,Y)),0):-cycle(X,Y).

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule: _holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2: cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule: _holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:

cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:

_heuristic(_holds(for(cycle(6,3)),0),true,2)
_heuristic(_holds(for(cycle(5,6)),0),true,2)
_heuristic(_holds(for(cycle(1,4)),0),true,2)
_heuristic(_holds(for(cycle(2,5)),0),true,2)
_heuristic(_holds(for(cycle(4,2)),0),true,2)
_heuristic(_holds(for(cycle(3,1)),0),true,2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Adding heuristic: Example

First three answers without heuristic:

Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Solution cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 50%

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 50%
- 2,3 100%

Adding heuristic: Example

First three answers without heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)
- Sycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 50%
- 2,3 100%
- $\hookrightarrow k = 100$ and n = 3

Adding heuristic: Example

First three answers with heuristic:

Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

・ 同 ト ・ ヨ ト ・ ヨ ト

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 83%

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 83%
- 2,3 66%

Adding heuristic: Example

First three answers with heuristic:

- Q cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
- Q cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
- Sycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

- 1,2 50%
- 1,3 83%
- 2,3 66%
- $\hookrightarrow k = 83$ and n = 3

Improvements

- heuristic modifying atoms regarding all previous solution
- dynamic heuristic

(日) (同) (三) (三)

Benchmarks

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> <同> <同> < 同> < 同>

Overview

Clique:

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> <同> <同> < 同> < 同>

Overview

Clique:

- Calculating all solutions:
 - finds globally optimal clique
 - nlp and optimization
 - inefficient

- 4 同 2 4 日 2 4 日 2

Overview

Clique:

- Calculating all solutions:
 - finds globally optimal clique
 - nlp and optimization
 - inefficient
- Calculating solutions iterative:
 - no optimal clique
 - nlp and optimization
 - more efficient

- **→** → **→**

Overview

Clique:

- Calculating all solutions:
 - finds globally optimal clique
 - nlp and optimization
 - inefficient
- Calculating solutions iterative:
 - no optimal clique
 - nlp and optimization
 - more efficient

Iterative:

- no globally optimal solutions
- not guaranteed to find solution
- only nlp
- fast

- **→** → **→**

asprin+hclasp:

- approximation of optimal solutions
- no hard cutoff
- only optimization
- fast

э

- 4 同 6 4 日 6 4 日 6

- all benchmarks were run on Zuse with 2 cores exclusively
- tried to find dissimilar solutions
- Optimization problems (6000 sek timeout, 20 Gb memout):
 - Design space exploration
 - Benchmark suite from *asprin*-paper with Pareto preference statements
- Normal problems (2000 sek timeout, 20 Gb memout):
 - Hamilton cycle suite
 - Benchmark suite from *asprin*-paper without preference statements

Results

		<i>n</i> = 3	<i>n</i> = 3	<i>n</i> = 3
		k = 60	k = 60	<i>k</i> = 60
		Clique	Clique(iter)	lter
Class	#ins	time(s)	time(s)	time(s)
DSE	500	2779.55(453)	2832.50(455)	
asprin-paper-opt	133	2713.82(58)	1298.26(26)	
Hamilton	474	1986.96(470)	1322.72 (275)	1193.70(280)
asprin-paper-nlp	133	1911.83	1576.63(92)	880.17(52)
		(127)		

Results

		<i>n</i> = 3		<i>n</i> = 3		<i>n</i> = 3	
		opt		opt		opt	
		Clique		lter		heur	
Class	#ins	time(s)	dist	time(s)	dist	time(s)	dist
DSE	500	2777.67	986			2723.18	1043
		(453)				(447)	
asprin-paper-	133	2722.65	425			361.03	4769
opt		(58)				(4)	
Hamilton	474	1995.78	63	1223.83	201		
		(473)		(289)			
asprin-paper-	133	1912.03	159	1130.57	579		
nlp		(127)		(73)			

Conclusion

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> <同> <同> < 同> < 同>

- iterative approach much better performance for normal logic programs
- with tweaks, clique approach is useful in small examples and for getting a baseline
- heuristic approach promising for multiobjective optimization problems

(日) (同) (三) (三)

Improvements

- chose different starting solutions parallel for iterative approaches
- generate different subsets of solutions parallel for clique approach
- improve performance of getting a solution:
 - decrease iterations for asprin with hclasp
 - improve finding similar solutions with clique(iterative) and iterative approach with *hclasp*

- 4 同 2 4 日 2 4 日 2

Thank you! Questions?

Philipp Wanko Finding similar/dissimilar Solutions with ASP

<ロ> (日) (日) (日) (日) (日)