
Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Finding similar/dissimilar Solutions with ASP

Philipp Wanko

December 8, 2015

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Content

1 Problem definition

2 Clique approach

3 Iterative approach

4 asprin + Hclasp approach

5 Benchmarks

6 Conclusion

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Problem definition

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Motivation

subset of good diverse/similar solutions for decision-making

Design space exploration

Product configuration

Planning

Phylogeny reconstruction

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1
:- node(X).

1{cycle(X,Y) : edge(X,Y)}1
:- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y);

reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)

5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Hamiltonian cycle

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Distance

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ atoms of 2 solutions are 50% different, d(2, 3) = 50.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%

d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%

d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Example: Set distance

Set distance ∆ is maximum of pairwise distance d .
Given following set of solutions S :

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

d(1, 2) 50%
d(1, 3) 50%
d(2, 3) 100%

↪→ ∆(S) = 100

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Problem Definition

Given ASP program P and set distance measure ∆ : 2Sol(P) 7→ N:

n k-similar/dissimilar solutions

Find a set S of n solutions of P where ∆(S) ≤ k (resp. ∆(S) ≥ k)

n most similar/most dissimilar solutions

Find a set S of n solutions of P where ∆(S) is minimal (resp.
maximal ∆(S))

Other similarity problems: k-similar/dissimilar solution, maximal n
k-similar/dissimilar solutions, most similar/dissimilar solutions,
k-similar/dissimilar set

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Complexity

Problem Complexity

n k-similar/dissimilar solutions NP-complete
k-similar/dissimilar solution NP-complete

maximal n k-similar/dissimilar solutions FNP//log -complete
n most similar/dissimilar solutions FPNP -complete

similar/dissimilar solution FPNP -complete
k-similar/dissimilar set NP-complete

k-similar/dissimilar optimal solutions ΣP
2 -complete

↪→ challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Complexity

Problem Complexity

n k-similar/dissimilar solutions NP-complete
k-similar/dissimilar solution NP-complete

maximal n k-similar/dissimilar solutions FNP//log -complete
n most similar/dissimilar solutions FPNP -complete

similar/dissimilar solution FPNP -complete
k-similar/dissimilar set NP-complete

k-similar/dissimilar optimal solutions ΣP
2 -complete

↪→ challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Complexity

Problem Complexity

n k-similar/dissimilar solutions NP-complete
k-similar/dissimilar solution NP-complete

maximal n k-similar/dissimilar solutions FNP//log -complete
n most similar/dissimilar solutions FPNP -complete

similar/dissimilar solution FPNP -complete
k-similar/dissimilar set NP-complete

k-similar/dissimilar optimal solutions ΣP
2 -complete

↪→ challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Complexity

Problem Complexity

n k-similar/dissimilar solutions NP-complete
k-similar/dissimilar solution NP-complete

maximal n k-similar/dissimilar solutions FNP//log -complete
n most similar/dissimilar solutions FPNP -complete

similar/dissimilar solution FPNP -complete
k-similar/dissimilar set NP-complete

k-similar/dissimilar optimal solutions ΣP
2 -complete

↪→ challenging problems; need to find heuristics and
approximations to handle complexity or accept restrictions.

In practice mostly evolutionary/genetic problem specific
algorithms for multiobjective optimization.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Main inspiration

Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:
Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:

1 Offline method

2 Iterative method

3 Modifying solver branching heuristic

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Main inspiration

Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:
Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:

1 Offline method

2 Iterative method

3 Modifying solver branching heuristic

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Main inspiration

Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:
Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:

1 Offline method

2 Iterative method

3 Modifying solver branching heuristic

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Main inspiration

Ying Zhu and Miroslaw Truszczynski: On Optimal Solutions
of Answer Set Optimization Problems (2013)

Thomas Eiter, Esra Erdem, Halit Erdogan and Micheal Fink:
Finding Similar/Diverse Solutions in Answer Set Programming
(2011)

Three basic approaches are found in literature for ASP:

1 Offline method

2 Iterative method

3 Modifying solver branching heuristic

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Clique approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

Model solutions as vertices of graph with distances as labels
of edges

search for cliques in graph

complete, correct

easy to implement, versatile

not efficient

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Current implementation

ASP problems can be normal logic programs or optimization
problems in asprin-format

solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions

full python script

distance function in python

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Algorithm

Data: Distance function d , Problem P, distance k , number
solutions n

Result: Set C of n solutions of P with ∆(S) ≤ k
S =getSolutions(P);
V ←Set of |S | vertices, each element unique solution of P;
E = {(v1, v2)|v1, v2 ∈ V , v1 6= v2, d(v1, v2) ≤ k};
C ← clique with n vertices in 〈V ,E 〉;
return C

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting solutions
S =getSolutions(P);

P either normal logic program in ASP or optimization problem
in asprin-format

S contains all answer sets of P

answer sets consist of shown atoms as gringo Fun-objects

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting solutions: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)
1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)
2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)
3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)
4 cycle(1,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,4) cycle(4,1)
5 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Calculating cliques
V ←Set of |S | vertices, each element unique solution of P;
E = {(v1, v2)|v1, v2 ∈ V , v1 6= v2, d(v1, v2) ≤ k};
C ← clique with n vertex in 〈V ,E〉;

first calculate pairwise distance between solutions

build edges between all solutions with distances as labels

add edges as instance to ASP clique program

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ 3/6 of atoms are different; edge(2,3,50) is added to instance

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting edges: Example

Distance function d in my example is percentage of different
atoms.

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

↪→ 3/6 of atoms are different; edge(2,3,50) is added to instance

Complete instance:

edge(0,1,83). edge(0,2,50). edge(0,3,83). edge(0,4,100).
edge(0,5,50). edge(1,2,66). edge(1,3,66). edge(1,4,83).
edge(1,5,100). edge(2,3,50). edge(2,4,50). edge(2,5,100).
edge(3,4,50). edge(3,5,83). edge(4,5,50).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting cliques: Example

#program clique_sim(n,k).

edge(X,Y,D):-edge(Y,X,D).

vert(X):-edge(X,_,_).

vert(Y):-edge(_,Y,_).

n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,

0{ cl_edge(X,Y):edge(X,Y,_)}0.

For k = 60 and n = 3:

cl vert(2), cl vert(3), cl vert(4)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting cliques: Example

#program clique_sim(n,k).

edge(X,Y,D):-edge(Y,X,D).

vert(X):-edge(X,_,_).

vert(Y):-edge(_,Y,_).

n{cl_vert(X):vert(X)}n.

cl_edge(X,Y):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y,D<=k.

:-cl_vert(X),cl_vert(Y),X<Y,

0{ cl_edge(X,Y):edge(X,Y,_)}0.

For k = 60 and n = 3:

cl vert(2), cl vert(3), cl vert(4)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

optimal cliques

only calculate subset of solutions

iterate calculated solutions starting with number of required
solutions

add heuristic to enumerate more likely candidates

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting optimal cliques: Example

#program clique_sim_opt(n).

...

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y.

...

#minimize { D@1 ,(cl_edge ,X,Y): cl_edge(X,Y,D)}.

Optimal k = 50 for n = 3 with same solution:

cl vert(2), cl vert(3), cl vert(4)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Getting optimal cliques: Example

#program clique_sim_opt(n).

...

cl_edge(X,Y,D):-cl_vert(X),cl_vert(Y),

edge(X,Y,D),X<Y.

...

#minimize { D@1 ,(cl_edge ,X,Y): cl_edge(X,Y,D)}.

Optimal k = 50 for n = 3 with same solution:

cl vert(2), cl vert(3), cl vert(4)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Iterative approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

iteratively calculate solutions

one call to the solver adds a solutions satisfying distance
constraints

not complete, correct

easy to implement, only normal logic problems

more efficient

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Current implementation

ASP problems can be normal logic programs

solves n k-similar/dissimilar solutions and n most similar/most
dissimilar solutions given a initial solution

python script in logic program

distance definition in ASP

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Algorithm

Data:
Solve.lp (calculates solution s of P)

Distance.lp (calculates distances between set of solution S and s)

Constraint.lp (eliminates solution s with distance ∆(S ∪ {s}) > k)

number solutions n

Result: Set S of maximum n solutions of P with ∆(S) ≤ k
S = ∅;
for i = 1 to n do

s ← Solve S Solve.lp Distance.lp Constraint.lp;
if Unsat then

break;
end
S = S ∪ s;

end
return S

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Solve.lp: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6

Additional definition of atoms that constitute a solution:

#program solve.

_solution (0,cycle(X,Y)):-cycle(X,Y).

#show cycle /2.

Each step a new solution 0 is calculated.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Solve.lp: Example

% Generate

1{cycle(X,Y) : edge(X,Y)}1 :- node(X).

1{cycle(X,Y) : edge(X,Y)}1 :- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y); reached(X).

% Test

:- node(Y), not reached(Y).

1 2 3

4 5 6
Additional definition of atoms that constitute a solution:

#program solve.

_solution (0,cycle(X,Y)):-cycle(X,Y).

#show cycle /2.

Each step a new solution 0 is calculated.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S = S ∪ s):

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Distance.lp: Example

Following logic program saves solution and excludes it in the future
(S = S ∪ s):

#program savesol(m).

_solution(m,X) :- X = @getSols(m).

#program deletemodel(m).

:- _solution (0,X) : X = @getSols(m);

N #sum { 1,X: _solution (0,X) } N;

N = @solSize(m).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Distance.lp: Example

Following logic program is grounded in each step for each element
in S and calculates distance to s:

#program distance_prct(n,step).

_notsame12(step ,n,0,X):-_step(step); _solution(n,X);

not _solution(0, X).

_notsame21(step ,n,0,X):-_step(step); _solution(0,X);

not _solution(n, X).

_nratoms(step ,n,0,N,K):-_step(step);N={ _solution(n,X)};

K={ _notsame12(step ,n,0,A)}.

_nratoms(step ,0,n,N,K):-_step(step);N={ _solution (0,X)};

K={ _notsame21(step ,n,0,A)}.

_distance(step ,n,0,K):- _step(step); _nratoms(step ,n,0,N1 ,K1);

_nratoms(step ,0,n,N2,K2);

K=@calcPrct(N1,K1 ,N2,K2).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Constraint.lp: Example

Following logic program is grounded in each step for each element
in S to exclude s with ∆(S ∪ s) > k :

#program constraint_sim(step ,n,k).

:-_distance(step ,n,0,X); X > k; _step(step).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Constraint.lp: Example

Following logic program is grounded in each step for each element
in S to exclude s with ∆(S ∪ s) > k :

#program constraint_sim(step ,n,k).

:-_distance(step ,n,0,X); X > k; _step(step).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Result: Example

All parts together with k = 90 and n = 3 yield the following
results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4)
cycle(4,1) step(2) distance(2,1,0,83)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,66)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

use optimize statements to ensure least distance for next
candidate

no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist(K,step):-K = #max{X:_distance(step ,_,0,X)};

_step(step).

#minimize{K: _maxdist(K,step),_step(step)}.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

use optimize statements to ensure least distance for next
candidate

no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist(K,step):-K = #max{X:_distance(step ,_,0,X)};

_step(step).

#minimize{K: _maxdist(K,step),_step(step)}.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

use optimize statements to ensure least distance for next
candidate

no more need to specify k

Add following statement instead of Constraint.lp to the grounding
and save the last model:

#program opt_sim(step).

_maxdist(K,step):-K = #max{X:_distance(step ,_,0,X)};

_step(step).

#minimize{K: _maxdist(K,step),_step(step)}.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements: Example

Same example now without k and n = 3 yield the following results:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3)
cycle(3,1) step(2) distance(2,1,0,50)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4)
cycle(4,1) step(3) distance(3,1,0,83) distance(3,2,0,83)

Slight improvement in quality to k = 83 and better distance
between 1 and 2 but not nearly optimal due to unfortunate start
candidate.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

asprin + Hclasp approach

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

extend asprin preference framework with heuristic to enable
similarity

modify branching heuristic to find similar/dissimilar models
from previous solutions

no guarantees

easy to implement, directly aids in finding solutions

tampering with branching heuristics may decrease performance

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Current implementation

ASP problems can only be optimization problems in
asprin-format

approximates n most similar/most dissimilar solutions

python script in logic program

distance can only be expressed in heuristic-atoms

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Algorithm

same branch and bound algorithm of asprin

change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a ∈ H do Add atom heuristic(holds(a,0),true,s) ;

variable with highest value s is decided first and declared true,
if possible

CDCL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Algorithm

same branch and bound algorithm of asprin

change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a ∈ H do Add atom heuristic(holds(a,0),true,s) ;

variable with highest value s is decided first and declared true,
if possible

CDCL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Algorithm

same branch and bound algorithm of asprin

change branching heuristic with hclasp when optimal solution
is found:

Data: Set H of atoms of optmimal solution, step s
foreach a ∈ H do Add atom heuristic(holds(a,0),true,s) ;

variable with highest value s is decided first and declared true,
if possible

CDCL-algorithm tries to pick same atoms from past optimal
solutions, regarding newer solutions the most

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic

If optimal solution is found, following logic program is added:

#program dosimilar(m).

_heuristic(_holds(X,0),true ,m) :- X=@getHolds ().

#show _holds /2.

#show _heuristic /3.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic

If optimal solution is found, following logic program is added:

#program dosimilar(m).

_heuristic(_holds(X,0),true ,m) :- X=@getHolds ().

#show _holds /2.

#show _heuristic /3.

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

% Generate

1{ cycle(X,Y) : edge(X,Y) }1

:- node(X).

1{ cycle(X,Y) : edge(X,Y) }1

:- node(Y).

% Define

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y);

reached(X).

% Test

:- node(Y), not reached(Y).

%optimize

#preference(c1,less(weight)){

V::cycle(X,Y) : cost(1,X,Y,V)

}.

#preference(c2,less(weight)){

V::cycle(X,Y) : cost(2,X,Y,V)

}.

#preference(c3,less(weight)){

V::cycle(X,Y) : cost(3,X,Y,V)

}.

#preference(all ,pareto){

name(c1); name(c2); name(c3)

}.

#optimize(all).

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

Same example with 3 random cost function at the edges. Pareto
optimal answers are:

0 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

1 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,2) cycle(2,6) cycle(6,3) cycle(3,5) cycle(5,4) cycle(4,1)

4 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:
heuristic(holds(for(cycle(6,3)),0),true,2)
heuristic(holds(for(cycle(5,6)),0),true,2)
heuristic(holds(for(cycle(1,4)),0),true,2)
heuristic(holds(for(cycle(2,5)),0),true,2)
heuristic(holds(for(cycle(4,2)),0),true,2)
heuristic(holds(for(cycle(3,1)),0),true,2)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:
heuristic(holds(for(cycle(6,3)),0),true,2)
heuristic(holds(for(cycle(5,6)),0),true,2)
heuristic(holds(for(cycle(1,4)),0),true,2)
heuristic(holds(for(cycle(2,5)),0),true,2)
heuristic(holds(for(cycle(4,2)),0),true,2)
heuristic(holds(for(cycle(3,1)),0),true,2)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

cycle/2 is in preference declaration which leads to rule:
holds(for(cycle(X,Y)),0):-cycle(X,Y).

Optimal solution in step 2:
cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

Adds heuristic:
heuristic(holds(for(cycle(6,3)),0),true,2)
heuristic(holds(for(cycle(5,6)),0),true,2)
heuristic(holds(for(cycle(1,4)),0),true,2)
heuristic(holds(for(cycle(2,5)),0),true,2)
heuristic(holds(for(cycle(4,2)),0),true,2)
heuristic(holds(for(cycle(3,1)),0),true,2)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers without heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,4) cycle(4,2) cycle(2,6) cycle(6,5) cycle(5,3) cycle(3,1)

3 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

Distances:

1,2 50%

1,3 50%

2,3 100%

↪→ k = 100 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Adding heuristic: Example

First three answers with heuristic:

1 cycle(1,4) cycle(4,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,1)

2 cycle(1,2) cycle(2,5) cycle(5,6) cycle(6,3) cycle(3,4) cycle(4,1)

3 cycle(1,3) cycle(3,5) cycle(5,6) cycle(6,2) cycle(2,4) cycle(4,1)

Distances:

1,2 50%

1,3 83%

2,3 66%

↪→ k = 83 and n = 3

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

heuristic modifying atoms regarding all previous solution

dynamic heuristic

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Benchmarks

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

Clique:

Calculating all solutions:
finds globally optimal clique
nlp and optimization
inefficient

Calculating solutions iterative:
no optimal clique
nlp and optimization
more efficient

Iterative:

no globally optimal solutions
not guaranteed to find solution
only nlp
fast

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

Clique:
Calculating all solutions:

finds globally optimal clique
nlp and optimization
inefficient

Calculating solutions iterative:
no optimal clique
nlp and optimization
more efficient

Iterative:

no globally optimal solutions
not guaranteed to find solution
only nlp
fast

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

Clique:
Calculating all solutions:

finds globally optimal clique
nlp and optimization
inefficient

Calculating solutions iterative:
no optimal clique
nlp and optimization
more efficient

Iterative:

no globally optimal solutions
not guaranteed to find solution
only nlp
fast

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

Clique:
Calculating all solutions:

finds globally optimal clique
nlp and optimization
inefficient

Calculating solutions iterative:
no optimal clique
nlp and optimization
more efficient

Iterative:

no globally optimal solutions
not guaranteed to find solution
only nlp
fast

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Overview

asprin+hclasp:

approximation of optimal solutions

no hard cutoff

only optimization

fast

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Setup

all benchmarks were run on Zuse with 2 cores exclusively

tried to find dissimilar solutions

Optimization problems (6000 sek timeout, 20 Gb memout):

Design space exploration
Benchmark suite from asprin-paper with Pareto preference
statements

Normal problems (2000 sek timeout, 20 Gb memout):

Hamilton cycle suite
Benchmark suite from asprin-paper without preference
statements

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Results

n = 3
k = 60
Clique

n = 3
k = 60
Clique(iter)

n = 3
k = 60
Iter

Class #ins time(s) time(s) time(s)
DSE 500 2779.55(453) 2832.50(455)
asprin-paper-opt 133 2713.82(58) 1298.26(26)
Hamilton 474 1986.96(470) 1322.72(275) 1193.70(280)
asprin-paper-nlp 133 1911.83

(127)
1576.63(92) 880.17(52)

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Results

n = 3
opt
Clique

n = 3
opt
Iter

n = 3
opt
heur

Class #ins time(s) dist time(s) dist time(s) dist
DSE 500 2777.67

(453)
986 2723.18

(447)
1043

asprin-paper-
opt

133 2722.65
(58)

425 361.03
(4)

4769

Hamilton 474 1995.78
(473)

63 1223.83
(289)

201

asprin-paper-
nlp

133 1912.03
(127)

159 1130.57
(73)

579

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Conclusion

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Conclusion

iterative approach much better performance for normal logic
programs

with tweaks, clique approach is useful in small examples and
for getting a baseline

heuristic approach promising for multiobjective optimization
problems

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Improvements

chose different starting solutions parallel for iterative
approaches

generate different subsets of solutions parallel for clique
approach

improve performance of getting a solution:

decrease iterations for asprin with hclasp
improve finding similar solutions with clique(iterative) and
iterative approach with hclasp

Philipp Wanko Finding similar/dissimilar Solutions with ASP

Problem definition
Clique approach

Iterative approach
asprin + Hclasp approach

Benchmarks
Conclusion

Conclusion

Thank you! Questions?

Philipp Wanko Finding similar/dissimilar Solutions with ASP

	Problem definition
	Clique approach
	Iterative approach
	asprin + Hclasp approach
	Benchmarks
	Conclusion

