
Relational Interfaces and
Refinement Calculus for

Compositional System Reasoning

Viorel Preoteasa

Joint work with Stavros Tripakis and Iulia Dragomir

08.12.2015 1Computational Logic Day 2015

Overview

• Motivation

• General refinement

• Relational interfaces

• Refinement calculus for reactive systems

• Liveness properties

• Modeling Simulink Diagrams

08.12.2015 2Computational Logic Day 2015

Motivation

• Is the system correct?

• Can we replace a subsystem by another
subsystem, preserving the functionality?

• Compatibility. Is the composition of two
systems meaningful?

• Can we model liveness properties?

We are interested in reactive systems – systems that repeatedly
take some input from the environment and produce some
output

08.12.2015 3Computational Logic Day 2015

Refinement

Refinement (denoted 𝐴 ⊑ 𝐵):

• System 𝐴 is refined by system 𝐵 or

• Informally: 𝐵 can replace 𝐴 in any context

• Formally:

1. If 𝐴 satisfies a property 𝑃 then 𝐵 satisfies 𝑃

2. If 𝐴 ⊑ 𝐴’ and 𝐵 ⊑ 𝐵’ then 𝐴 𝐵 ⊑ 𝐴’ 𝐵’

𝐴 𝐵 denotes some composition of systems 𝐴 and
𝐵

08.12.2015 4Computational Logic Day 2015

Refinement

• Correctness:
– Specification ⊑ Implementation

• Substitutability:
– If we have 𝐵 ⊑ 𝐵′, then

– 𝐴 𝐵 𝐶 ⊑ 𝐴 𝐵’ 𝐶

– The system 𝐴 𝐵’ 𝐶 satisfies all properties satisfied by
𝐴 𝐵 𝐶

• (In)Compatibility:
– 𝐴 𝐵 = 𝐹𝑎𝑖𝑙 or 𝐴 𝐵 ⊑ 𝐹𝑎𝑖𝑙 where

– 𝐹𝑎𝑖𝑙 = while true do skip, or 𝐹𝑎𝑖𝑙 = unhandled exception,
or 𝐹𝑎𝑖𝑙 = assertion on input is false for every input

08.12.2015 5Computational Logic Day 2015

Interface theories

• Interface theories can express some of the properties
presented above, but not liveness
– Relational interface introduced by Tripakis et al, A Theory

of Synchronous Relational Interfaces, ACM TOPLAS, 2011
– Interface automata introduced by Alfaro et al, Interface

Automata, FSE, ACM, 2009

• On the other hand there are frameworks capable of
expressing liveness properties, but they cannot express
compatibility of systems.
– Focus framework, Broy et al, Specification and

development of interactive systems: focus on streams
interfaces and refienemt, Springer, 2001

08.12.2015 Computational Logic Day 2015 6

Relational Interfaces - Example

• Division component:

• Contract: 𝑦 ≠ 0 ∧ 𝑧 = 𝑥/𝑦

• The condition 𝑦 ≠ 0 introduces a
requirement on input 𝑦

• If input 𝑦 = 0, then 𝐷𝑖𝑣𝑖𝑑𝑒 fails (this is
different from 𝐹𝑎𝑖𝑙 = fails for all inputs).

𝐷𝑖𝑣𝑖𝑑𝑒
𝑥

𝑦
𝑧

08.12.2015 7Computational Logic Day 2015

Relational Interfaces – Composition

• Output of one component becomes the input of
the second component

• The requirement on 𝑦 is propagated to 𝑎 and 𝑏

• Choosing 𝑎 and 𝑏 properly we can ensure 𝑦 ≠ 0

• The composition fails if 𝑎 = −𝑏 (the composition
is not 𝐹𝑎𝑖𝑙)

𝑦 ≠ 0
𝑧 = 𝑥/𝑦

𝑥

𝑦
𝑧𝑦 = 𝑎 + 𝑏

𝑥 > 10
𝑎
𝑏

08.12.2015 8Computational Logic Day 2015

Relational Interfaces - Incompatibility

• The two systems are incompatible

• The component 𝑇𝑟𝑢𝑒 produces non-
deterministically values 𝑥 and 𝑦

• By controlling 𝑎 there is no possibility of ensuring
𝑦 ≠ 0

• The composition of these systems is 𝐹𝑎𝑖𝑙,
because the composition fails for every input.

𝑦 ≠ 0
𝑧 = 𝑥/𝑦

𝑥

𝑦
𝑧𝑇𝑟𝑢𝑒𝑎

08.12.2015 9Computational Logic Day 2015

Relational Interfaces – Limitations

• Relational interfaces cannot model liveness
properties

• Semantics of relational interfaces:

– prefix closed sets of finite input output traces

08.12.2015 10Computational Logic Day 2015

Reactive systems

• A reactive system is a machine that takes as
input an infinite sequence 𝑥0, 𝑥1, 𝑥2, … and it
outputs an infinite sequence 𝑦0, 𝑦1, 𝑦2, …

• Assume a system that counts and outputs how
many input values seen so far are true.

• Then

– Input: 0,1,0,0,1,1,1,0,0, …

– Output: 0,1,1,1,2,3,4,4,4, …

08.12.2015 11Computational Logic Day 2015

Our Goal

A compositional theory for reactive systems with
both safety and liveness

08.12.2015 12

𝑥
□(𝑥 ≥ 0)𝐴 □ ◊ (𝑥 = 1)𝐵

• 𝐴 specifies that its output 𝑥 is always greater or equal than
zero

• 𝐵 requires that its input is infinitely often equal to one.
• The output of 𝐴 is connected to the input of 𝐵.
• In our framework: these components are incompatible
• We want to be able to use LTL formulas in specifications

Computational Logic Day 2015

Refinement Calculus for Reactive
Systems

• Monotonic property transformers
– Functions mapping sets of infinite output sequences

into sets of output sequences

– Property = set of infinite sequences

• A system 𝐴 applied to a set of output sequences
𝑄 is the set of all input sequences that do not fail
and produce an output sequence in 𝑄.

• Based on Refinement Calculus introduced by
Back, On the correctness of refinement in
program development, 1978

08.12.2015 13Computational Logic Day 2015

Refinement Calculus for Reactive
Systems

This semantics enables reasoning about all
features that we mentioned at the beginning:

• Correctness

• Substitutability

• Compatibility

• And also liveness properties

08.12.2015 14Computational Logic Day 2015

Reactive systems – Operations

The operations on reactive systems are defined in
the same way as for predicate transformers

• Sequential composition = function composition:

– 𝐴 ∘ 𝐵 𝑄 = 𝐴 𝐵 𝑄

– where 𝑄 is a set of infinite sequences.

• Refinement = point-wise subset:

– 𝐴 ⊑ 𝐵 ⇔ (∀𝑄 ∶ 𝐴 𝑄 ⊆ 𝐵(𝑄))

• 𝐹𝑎𝑖𝑙(𝑄) = ∅

08.12.2015 15Computational Logic Day 2015

Simulink Example

08.12.2015 Computational Logic Day 2015 16

𝑧 ≠ 0
𝑦 ≔ 𝑥/𝑧

𝑥

𝑧

𝑦 Delay
𝑎

𝑧 ≔ 𝑢 − 𝑥

𝑥

𝑢

𝑧
𝑧

• 𝑡 = 0: 𝑥0; 𝑢0 ≔ 𝑎; 𝑧0 ≔ 𝑢0 − 𝑥0; 𝑦0 ≔ 𝑥0/𝑧0; 𝑧0 = 𝑢0 − 𝑥0 ≠ 0

• 𝑡 = 1: 𝑥1; 𝑢1 ≔ 𝑦0; 𝑧1 ≔ 𝑢1− 𝑥1; 𝑦1 ≔ 𝑥1/𝑧1; 𝑧1 = 𝑢1 − 𝑥1 ≠ 0

Simulink Example

• The variable 𝑢 after the delay is calculated by:

𝑢0 ≔ 𝑎; 𝑢𝑛 + 1 ≔ 𝑥𝑛/(𝑢𝑛 − 𝑥𝑛)

• The output is given by:

𝑧𝑛 ≔ 𝑢𝑛 − 𝑥𝑛

• The input 𝑥𝑛 must satisfy the following
property:

(∀𝑛 ∶ 𝑢𝑛 ≠ 𝑥𝑛)

08.12.2015 Computational Logic Day 2015 17

Simulink Example as Property
Transformer

• Our tool produces the following property
transformer

{∀𝑢: (𝑢0 = 𝑎) ∧ ∀𝑛 ∶ 𝑢𝑛 + 1 =
𝑥
𝑛

𝑢
𝑛
−𝑥𝑛

⇒ (∀𝑛 ∶ 𝑢𝑛 ≠ 𝑥𝑛)}

∘ [𝑧 ∶ ∃𝑢 ∶ 𝑢 = 𝑎 ∧ □ (𝑢1 =
𝑥

𝑢−𝑥
∧ 𝑧 = 𝑢 − 𝑥)]

08.12.2015 Computational Logic Day 2015 18

Simulink Example as Property
Transformer

• Using Linear Temporal Logic

{∀𝑢 ∶ 𝑢 = 𝑎 ∧ □ 𝑢1 = 𝑥

𝑢−𝑥
⇒ □(𝑢 ≠ 𝑥)} ∘

[𝑧 ∶ ∃𝑢 ∶ 𝑢 = 𝑎 ∧ □ (𝑢1 =
𝑥

𝑢 − 𝑥
∧ 𝑧 = 𝑢 − 𝑥)]

08.12.2015 Computational Logic Day 2015 19

Conclusions

• We can model a number of desired features
– Correctness
– Substitutability
– Compatibility
– Liveness properties
– … and many more

• We can use linear temporal logic to specify and reason
about these systems

• We built a tool that translates Simulink models to
property transformers.

• The results were formalized in Isabelle theorem prover

08.12.2015 20Computational Logic Day 2015

