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Overview

• Motivation

• General refinement

• Relational interfaces

• Refinement calculus for reactive systems

• Liveness properties

• Modeling Simulink Diagrams
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Motivation

• Is the system correct?

• Can we replace a subsystem by another 
subsystem, preserving the functionality?

• Compatibility. Is the composition of two 
systems meaningful?

• Can we model liveness properties?

We are interested in reactive systems – systems that repeatedly 
take some input from the environment and produce some 
output
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Refinement

Refinement (denoted 𝐴 ⊑ 𝐵):

• System 𝐴 is refined by system 𝐵 or

• Informally: 𝐵 can replace 𝐴 in any context

• Formally:

1. If 𝐴 satisfies a property 𝑃 then 𝐵 satisfies 𝑃

2. If 𝐴 ⊑ 𝐴’ and 𝐵 ⊑ 𝐵’ then 𝐴  𝐵 ⊑ 𝐴’  𝐵’

𝐴  𝐵 denotes some composition of systems 𝐴 and 
𝐵
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Refinement

• Correctness:
– Specification ⊑ Implementation

• Substitutability:
– If we have 𝐵 ⊑ 𝐵′, then

– 𝐴  𝐵  𝐶 ⊑ 𝐴  𝐵’  𝐶

– The system 𝐴  𝐵’  𝐶 satisfies all properties satisfied by 
𝐴  𝐵  𝐶

• (In)Compatibility:
– 𝐴  𝐵 = 𝐹𝑎𝑖𝑙 or 𝐴  𝐵 ⊑ 𝐹𝑎𝑖𝑙 where

– 𝐹𝑎𝑖𝑙 = while true do skip, or 𝐹𝑎𝑖𝑙 = unhandled exception, 
or 𝐹𝑎𝑖𝑙 = assertion on input is false for every input

08.12.2015 5Computational Logic Day 2015



Interface theories

• Interface theories can express some of the properties 
presented above, but not liveness
– Relational interface introduced by Tripakis et al, A Theory 

of Synchronous Relational Interfaces, ACM TOPLAS, 2011 
– Interface automata introduced by Alfaro et al, Interface 

Automata, FSE, ACM, 2009

• On the other hand there are frameworks capable of 
expressing liveness properties, but they cannot express 
compatibility of systems.
– Focus framework, Broy et al, Specification and 

development of interactive systems: focus on streams 
interfaces and refienemt, Springer, 2001 
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Relational Interfaces - Example

• Division component:

• Contract: 𝑦 ≠ 0 ∧ 𝑧 = 𝑥/𝑦

• The condition 𝑦 ≠ 0 introduces a 
requirement on input 𝑦

• If input 𝑦 = 0, then 𝐷𝑖𝑣𝑖𝑑𝑒 fails (this is 
different from 𝐹𝑎𝑖𝑙 = fails for all inputs).

𝐷𝑖𝑣𝑖𝑑𝑒
𝑥

𝑦
𝑧
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Relational Interfaces – Composition

• Output of one component becomes the input of 
the second component

• The requirement on 𝑦 is propagated to 𝑎 and 𝑏

• Choosing 𝑎 and 𝑏 properly we can ensure 𝑦 ≠ 0

• The composition fails if 𝑎 = −𝑏 (the composition 
is not 𝐹𝑎𝑖𝑙)

𝑦 ≠ 0
𝑧 = 𝑥/𝑦

𝑥

𝑦
𝑧𝑦 = 𝑎 + 𝑏

𝑥 > 10
𝑎
𝑏
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Relational Interfaces - Incompatibility

• The two systems are incompatible

• The component 𝑇𝑟𝑢𝑒 produces non-
deterministically values 𝑥 and 𝑦

• By controlling 𝑎 there is no possibility of ensuring 
𝑦 ≠ 0

• The composition of these systems is 𝐹𝑎𝑖𝑙, 
because the composition fails for every input.

𝑦 ≠ 0
𝑧 = 𝑥/𝑦

𝑥

𝑦
𝑧𝑇𝑟𝑢𝑒𝑎
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Relational Interfaces – Limitations

• Relational interfaces cannot model liveness 
properties

• Semantics of relational interfaces: 

– prefix closed sets of finite input output traces
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Reactive systems

• A reactive system is a machine that takes as 
input an infinite sequence 𝑥0, 𝑥1, 𝑥2, … and it 
outputs an infinite sequence 𝑦0, 𝑦1, 𝑦2, …

• Assume a system that counts and outputs how 
many input values seen so far are true. 

• Then

– Input:     0,1,0,0,1,1,1,0,0, …

– Output:  0,1,1,1,2,3,4,4,4, …
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Our Goal

A compositional theory for reactive systems with 
both safety and liveness
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𝑥
□(𝑥 ≥ 0)𝐴 □ ◊ (𝑥 = 1)𝐵

• 𝐴 specifies that its output 𝑥 is always greater or equal than 
zero

• 𝐵 requires that its input is infinitely often equal to one. 
• The output of 𝐴 is connected to the input of 𝐵.
• In our framework: these components are incompatible
• We want to be able to use LTL formulas in specifications
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Refinement Calculus for Reactive 
Systems

• Monotonic property transformers
– Functions mapping sets of infinite output sequences 

into sets of output sequences

– Property = set of infinite sequences

• A system 𝐴 applied to a set of output sequences 
𝑄 is the set of all input sequences that do not fail 
and produce an output sequence in 𝑄.

• Based on Refinement Calculus introduced by 
Back, On the correctness of refinement in 
program development, 1978 
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Refinement Calculus for Reactive 
Systems

This semantics enables reasoning about all 
features that we mentioned at the beginning: 

• Correctness

• Substitutability

• Compatibility

• And also liveness properties
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Reactive systems – Operations

The operations on reactive systems are defined in 
the same way as for predicate transformers

• Sequential composition = function composition:

– 𝐴 ∘ 𝐵 𝑄 = 𝐴 𝐵 𝑄

– where 𝑄 is a set of infinite sequences. 

• Refinement = point-wise subset:

– 𝐴 ⊑ 𝐵 ⇔ (∀𝑄 ∶ 𝐴 𝑄 ⊆ 𝐵(𝑄))

• 𝐹𝑎𝑖𝑙(𝑄) = ∅
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Simulink Example
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𝑧 ≠ 0
𝑦 ≔ 𝑥/𝑧

𝑥

𝑧

𝑦 Delay 
𝑎

𝑧 ≔ 𝑢 − 𝑥

𝑥

𝑢

𝑧
𝑧

• 𝑡 = 0: 𝑥0; 𝑢0 ≔ 𝑎; 𝑧0 ≔ 𝑢0 − 𝑥0; 𝑦0 ≔ 𝑥0/𝑧0; 𝑧0 = 𝑢0 − 𝑥0 ≠ 0

• 𝑡 = 1: 𝑥1; 𝑢1 ≔ 𝑦0; 𝑧1 ≔ 𝑢1− 𝑥1; 𝑦1 ≔ 𝑥1/𝑧1; 𝑧1 = 𝑢1 − 𝑥1 ≠ 0



Simulink Example

• The variable 𝑢 after the delay is calculated by:

𝑢0 ≔ 𝑎; 𝑢𝑛 + 1 ≔ 𝑥𝑛/(𝑢𝑛 − 𝑥𝑛)

• The output is given by:

𝑧𝑛 ≔ 𝑢𝑛 − 𝑥𝑛

• The input 𝑥𝑛 must satisfy the following 
property:

(∀𝑛 ∶ 𝑢𝑛 ≠ 𝑥𝑛)
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Simulink Example as Property 
Transformer

• Our tool produces the following property 
transformer

{∀𝑢: (𝑢0 = 𝑎) ∧ ∀𝑛 ∶ 𝑢𝑛 + 1 =
𝑥
𝑛

𝑢
𝑛
−𝑥𝑛

⇒ (∀𝑛 ∶ 𝑢𝑛 ≠ 𝑥𝑛)}

∘ [𝑧 ∶ ∃𝑢 ∶ 𝑢 = 𝑎 ∧ □ (𝑢1 =
𝑥

𝑢−𝑥
∧ 𝑧 = 𝑢 − 𝑥)]
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Simulink Example as Property 
Transformer

• Using Linear Temporal Logic

{∀𝑢 ∶ 𝑢 = 𝑎 ∧ □ 𝑢1 = 𝑥

𝑢−𝑥
⇒ □(𝑢 ≠ 𝑥)} ∘

[𝑧 ∶ ∃𝑢 ∶ 𝑢 = 𝑎 ∧ □ (𝑢1 =
𝑥

𝑢 − 𝑥
∧ 𝑧 = 𝑢 − 𝑥)]
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Conclusions

• We can model a number of desired features
– Correctness
– Substitutability
– Compatibility
– Liveness properties
– … and many more

• We can use linear temporal logic to specify and reason 
about these systems

• We built a tool that translates Simulink models to 
property transformers.

• The results were formalized in Isabelle theorem prover

08.12.2015 20Computational Logic Day 2015


