Relational Interfaces and Refinement Calculus for Compositional System Reasoning

Viorel Preoteasa

Joint work with Stavros Tripakis and Iulia Dragomir

Overview

- Motivation
- General refinement
- Relational interfaces
- Refinement calculus for reactive systems
- Liveness properties
- Modeling Simulink Diagrams

Motivation

- Is the system correct?
- Can we replace a subsystem by another subsystem, preserving the functionality?
- Compatibility. Is the composition of two systems meaningful?
- Can we model liveness properties?

We are interested in reactive systems – systems that repeatedly take some input from the environment and produce some output

Refinement

Refinement (denoted $A \sqsubseteq B$):

- System A is refined by system B or
- Informally: *B* can replace *A* in any context
- Formally:
 - 1. If A satisfies a property P then B satisfies P
 - 2. If $A \sqsubseteq A'$ and $B \sqsubseteq B'$ then $A \bullet B \sqsubseteq A' \bullet B'$
 - A B denotes some composition of systems A and B

Refinement

- Correctness:
 - Specification \sqsubseteq Implementation
- Substitutability:
 - If we have $B \sqsubseteq B'$, then
 - $-A \bullet B \bullet C \sqsubseteq A \bullet B' \bullet C$
 - The system A B' C satisfies all properties satisfied by
 A B C
- (In)Compatibility:
 - $-A \bullet B = Fail$ or $A \bullet B \subseteq Fail$ where
 - *Fail* = while true do skip, or *Fail* = unhandled exception, or *Fail* = assertion on input is false for every input

Interface theories

- Interface theories can express some of the properties presented above, but not liveness
 - Relational interface introduced by Tripakis et al, A Theory of Synchronous Relational Interfaces, ACM TOPLAS, 2011
 - Interface automata introduced by Alfaro et al, Interface Automata, FSE, ACM, 2009
- On the other hand there are frameworks capable of expressing liveness properties, but they cannot express compatibility of systems.
 - Focus framework, Broy et al, Specification and development of interactive systems: focus on streams interfaces and refienemt, Springer, 2001

Relational Interfaces - Example

• Division component:

$$\begin{array}{c} x \\ y \end{array} \longrightarrow Divide \end{array} \xrightarrow{} z$$

- Contract: $y \neq 0 \land z = x/y$
- The condition y ≠ 0 introduces a requirement on input y
- If input y = 0, then *Divide* fails (this is different from *Fail* = fails for all inputs).

Relational Interfaces – Composition

Output of one component becomes the input of the second component

$$a \xrightarrow{y = a + b}_{x > 10} \xrightarrow{x}_{y \neq 0} \xrightarrow{y \neq 0}_{z = x/y} \xrightarrow{z = x/y} z$$

- The requirement on y is propagated to a and b
- Choosing *a* and *b* properly we can ensure $y \neq 0$
- The composition fails if a = -b (the composition is not *Fail*)

Relational Interfaces - Incompatibility

• The two systems are incompatible

$$x \longrightarrow True \xrightarrow{x} y \neq 0$$
$$z = x/y \xrightarrow{x} z$$

- The component *True* produces nondeterministically values *x* and *y*
- By controlling *a* there is no possibility of ensuring $y \neq 0$
- The composition of these systems is *Fail*, because the composition fails for every input.

Relational Interfaces – Limitations

- Relational interfaces cannot model liveness properties
- Semantics of relational interfaces:
 - prefix closed sets of finite input output traces

Reactive systems

- A reactive system is a machine that takes as input an infinite sequence x₀, x₁, x₂, ... and it outputs an infinite sequence y₀, y₁, y₂, ...
- Assume a system that counts and outputs how many input values seen so far are true.
- Then
 - Input: 0,1,0,0,1,1,1,0,0, ...
 - Output: 0,1,1,1,2,3,4,4,4, ...

Our Goal

A compositional theory for reactive systems with both safety and liveness

$$A \quad \Box(x \ge 0) \xrightarrow{x} B \quad \Box \land (x = 1)$$

- A specifies that its output x is always greater or equal than zero
- *B* requires that its input is infinitely often equal to one.
- The output of *A* is connected to the input of *B*.
- In our framework: these components are incompatible
- We want to be able to use LTL formulas in specifications

Refinement Calculus for Reactive Systems

- Monotonic property transformers
 - Functions mapping sets of infinite output sequences into sets of output sequences
 - Property = set of infinite sequences
- A system A applied to a set of output sequences Q is the set of all input sequences that do not fail and produce an output sequence in Q.
- Based on Refinement Calculus introduced by Back, On the correctness of refinement in program development, 1978

Refinement Calculus for Reactive Systems

This semantics enables reasoning about all features that we mentioned at the beginning:

- Correctness
- Substitutability
- Compatibility
- And also liveness properties

Reactive systems – Operations

The operations on reactive systems are defined in the same way as for predicate transformers

• Sequential composition = function composition:

$$-(A \circ B)(Q) = A(B(Q))$$

- where Q is a set of infinite sequences.

• Refinement = point-wise subset:

 $-A \sqsubseteq B \Leftrightarrow (\forall Q : A(Q) \subseteq B(Q))$

• $Fail(Q) = \emptyset$

Simulink Example

- t = 0: x_0 ; $u_0 \coloneqq a$; $z_0 \coloneqq u_0 x_0$; $y_0 \coloneqq x_0/z_0$; $z_0 = u_0 x_0 \neq 0$
- t = 1: x_1 ; $u_1 \coloneqq y_0$; $z_1 \coloneqq u_1 x_1$; $y_1 \coloneqq x_1/z_1$; $z_1 = u_1 x_1 \neq 0$

Simulink Example

• The variable *u* after the delay is calculated by:

$$u_0 \coloneqq a; \quad u_{n+1} \coloneqq x_n/(un - xn)$$

• The output is given by:

 $z_n \coloneqq un - xn$

The input x_n must satisfy the following property:

 $(\forall n: u_n \neq xn)$

Simulink Example as Property Transformer

• Our tool produces the following property transformer

$$\{\forall u: (u_0 = a) \land \left(\forall n: u_{n+1} = \frac{x_n}{u_n - xn}\right) \Rightarrow (\forall n: un \neq xn)\}$$

$$\circ [z: \exists u: u = a \land \Box (u^1 = \frac{x}{u - x} \land z = u - x)]$$

Simulink Example as Property Transformer

• Using Linear Temporal Logic

$$\{\forall u: u = a \land \Box \left(u^1 = \frac{x}{u - x} \right) \Rightarrow \Box (u \neq x) \} \circ$$

$$[z:\exists u:u=a\land\Box(u^1=\frac{x}{u-x}\land z=u-x)]$$

Conclusions

- We can model a number of desired features
 - Correctness
 - Substitutability
 - Compatibility
 - Liveness properties
 - ... and many more
- We can use linear temporal logic to specify and reason about these systems
- We built a tool that translates Simulink models to property transformers.
- The results were formalized in Isabelle theorem prover