
Answer Set Programming modulo Acyclicity
Jori Bomanson1, Martin Gebser1,2, Tomi Janhunen1

Benjamin Kaufmann2, and Torsten Schaub2,3

1) Aalto University, Finland
2) University of Potsdam, Germany
3) INRIA Rennes, France

Computational Logic Day, December 8, 2015



Computational Logic Day, December 8, 2015

2/23

Translation-Based ASP

ASP can be implemented by translating ground programs into:
— Boolean Satisfiability (SAT)

[J., ECAI 2004; J. and Niemelä, MG-65 2010]
— Integer Difference Logic (IDL)

[Niemelä, AMAI 2008; J. et al., LPNMR 2009]
— Integer Programming (IP)

[Liu et al., KR 2012]
— Bit-Vector Logic (BV)

[Nguyen et al., INAP 2011; Extended in 2013]

— SAT modulo Acyclicity (ACYC-SAT)
[G. et al., ECAI 2014]



Computational Logic Day, December 8, 2015

3/23

Translation-Based ASP

ASP can be implemented by translating ground programs into:
— Boolean Satisfiability (SAT)

[J., ECAI 2004; J. and Niemelä, MG-65 2010]
— Integer Difference Logic (IDL)

[Niemelä, AMAI 2008; J. et al., LPNMR 2009]
— Integer Programming (IP)

[Liu et al., KR 2012]
— Bit-Vector Logic (BV)

[Nguyen et al., INAP 2011; Extended in 2013]
— SAT modulo Acyclicity (ACYC-SAT)

[G. et al., ECAI 2014]



Computational Logic Day, December 8, 2015

4/23

Extensions to ASP

I There are existing SMT-style extensions of ASP:
I Constraint programming [G. et al., ICLP 2009]
I Difference logic [J. et al., GTTV 2011]
I Linear programming [Liu et al., INAP 2013]
I General SMT [Lee & Meng, IJCAI 2013]

I In this work, we propose ASP modulo Acyclicity
I as an extension to ASP and
I as a target formalism for translations of ASP.

I Functionality available in CLASP version 3.2.0 onward.



Computational Logic Day, December 8, 2015

5/23

Extensions to ASP

I There are existing SMT-style extensions of ASP:
I Constraint programming [G. et al., ICLP 2009]
I Difference logic [J. et al., GTTV 2011]
I Linear programming [Liu et al., INAP 2013]
I General SMT [Lee & Meng, IJCAI 2013]

I In this work, we propose ASP modulo Acyclicity
I as an extension to ASP and
I as a target formalism for translations of ASP.

I Functionality available in CLASP version 3.2.0 onward.



Computational Logic Day, December 8, 2015

6/23

Extensions to ASP

I There are existing SMT-style extensions of ASP:
I Constraint programming [G. et al., ICLP 2009]
I Difference logic [J. et al., GTTV 2011]
I Linear programming [Liu et al., INAP 2013]
I General SMT [Lee & Meng, IJCAI 2013]

I In this work, we propose ASP modulo Acyclicity
I as an extension to ASP and
I as a target formalism for translations of ASP.

I Functionality available in CLASP version 3.2.0 onward.



Computational Logic Day, December 8, 2015

7/23

Standard Logic Programs

I Logic programs consist of rules of the following forms:

a ← b1, . . . ,bn,not c1, . . . ,not cm.

{a} ← b1, . . . ,bn,not c1, . . . ,not cm.

a ← k ≤ [b1 = w1, . . . ,bn = wn,

not c1 = wn+1, . . . ,not cm = wn+m].

I A model is supported [Apt et al., 1988] iff M = TPM (M) and
stable [Gelfond and Lifschitz, ICLP 1988] iff M = LM(PM).

Example

a← b. a← c. b ← a. c ← not d . d ← not c.

=⇒ M1 = {a,b, c} and M2 = {a,b,d} are both supported,
and M1 is also stable.



Computational Logic Day, December 8, 2015

8/23

Standard Logic Programs

I Logic programs consist of rules of the following forms:

a ← b1, . . . ,bn,not c1, . . . ,not cm.

{a} ← b1, . . . ,bn,not c1, . . . ,not cm.

a ← k ≤ [b1 = w1, . . . ,bn = wn,

not c1 = wn+1, . . . ,not cm = wn+m].

I A model is supported [Apt et al., 1988] iff M = TPM (M) and
stable [Gelfond and Lifschitz, ICLP 1988] iff M = LM(PM).

Example

a← b. a← c. b ← a. c ← not d . d ← not c.

=⇒ M1 = {a,b, c} and M2 = {a,b,d} are both supported,
and M1 is also stable.



Computational Logic Day, December 8, 2015

9/23

Acyclicity Extension

An acyclicity extension is a pair 〈V ,e〉 where
1. V is a set of vertices and
2. e : At(P)→ V × V is a partial injection that maps atoms of

a logic program P to edges.

An interpretation M ⊆ At(P) is a stable/supported model of P
subject to an acyclicity extension 〈V ,e〉, iff

1. M is a stable/supported model of P and
2. the graph 〈V ,e(M)〉 is acyclic, where

e(M) = {〈v ,u〉 ∈ V × V | a ∈ M,e(a) = 〈v ,u〉}.



Computational Logic Day, December 8, 2015

10/23

Acyclicity Extension

An acyclicity extension is a pair 〈V ,e〉 where
1. V is a set of vertices and
2. e : At(P)→ V × V is a partial injection that maps atoms of

a logic program P to edges.

An interpretation M ⊆ At(P) is a stable/supported model of P
subject to an acyclicity extension 〈V ,e〉, iff

1. M is a stable/supported model of P and
2. the graph 〈V ,e(M)〉 is acyclic, where

e(M) = {〈v ,u〉 ∈ V × V | a ∈ M,e(a) = 〈v ,u〉}.



Computational Logic Day, December 8, 2015

11/23

Hamiltonian Cycles in ASP

1 2

3

4

5

6

1 { hc(X,Y) : edge(X,Y) } 1 :- node(X).
1 { hc(X,Y) : edge(X,Y) } 1 :- node(Y).

_edge(X,Y) :- hc(X,Y), X > 1, Y > 1.



Computational Logic Day, December 8, 2015

12/23

Hamiltonian Cycles in ASP

1 2

3

4

5

6

1 { hc(X,Y) : edge(X,Y) } 1 :- node(X).

1 { hc(X,Y) : edge(X,Y) } 1 :- node(Y).

_edge(X,Y) :- hc(X,Y), X > 1, Y > 1.



Computational Logic Day, December 8, 2015

13/23

Hamiltonian Cycles in ASP

1 2

3

4

5

6

1 { hc(X,Y) : edge(X,Y) } 1 :- node(X).
1 { hc(X,Y) : edge(X,Y) } 1 :- node(Y).

_edge(X,Y) :- hc(X,Y), X > 1, Y > 1.



Computational Logic Day, December 8, 2015

14/23

Hamiltonian Cycles in ASP

1 2

3

4

5

6

1 { hc(X,Y) : edge(X,Y) } 1 :- node(X).
1 { hc(X,Y) : edge(X,Y) } 1 :- node(Y).

_edge(X,Y) :- hc(X,Y), X > 1, Y > 1.



Computational Logic Day, December 8, 2015

15/23

Example: Acyclicity Constraints

Let us consider a standard logic program

a← b. a← c. b ← a. c ← not d . d ← not c.
_edge(a,b)← a,not c. _edge(b,a)← b.

and extend it by 〈V ,e〉 where V = {a,b} and e is the mapping

_edge(a,b) 7→ 〈a,b〉, _edge(b,a) 7→ 〈b,a〉.

=⇒ M1 = {a,b, c,_edge(b,a)} is a stable and supported model;
M2 = {a,b,d ,_edge(a,b),_edge(b,a)} is neither.



Computational Logic Day, December 8, 2015

16/23

Example: Acyclicity Constraints

Let us consider a standard logic program

a← b. a← c. b ← a. c ← not d . d ← not c.
_edge(a,b)← a,not c. _edge(b,a)← b.

and extend it by 〈V ,e〉 where V = {a,b} and e is the mapping

_edge(a,b) 7→ 〈a,b〉, _edge(b,a) 7→ 〈b,a〉.

=⇒ M1 = {a,b, c,_edge(b,a)} is a stable and supported model;
M2 = {a,b,d ,_edge(a,b),_edge(b,a)} is neither.



Computational Logic Day, December 8, 2015

17/23

Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

18/23

Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

19/23

Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

20/23

Tool Support

gringo
lp2acyc

lp2sat acyc2solver clasp
[-g] [--diff] --enable-acyc

[--bv]
[--pb]
[--mip]

These tools are published under:

http://research.ics.aalto.fi/software/asp/lp2acyc/
http://potassco.sourceforge.net/projects/potassco/

http://research.ics.aalto.fi/software/asp/lp2acyc/
http://potassco.sourceforge.net/projects/potassco/


Computational Logic Day, December 8, 2015

21/23

Experiments: Decision Problems

Mode Cycle #60 Laby #20 Soko #30 Route #23
UFS 36.0 0 255.3 4 182.6 2 5.8 0
ACYC 373.6 37 261.0 6 350.7 10 134.5 4
BCYC 266.3 26 286.7 7 256.2 7 111.5 2
ACYC/UFS 209.4 18 279.2 4 174.6 3 11.4 0
BCYC/UFS 209.2 19 314.3 6 179.7 4 10.0 0
ACYC+ 118.0 7 366.7 7 336.7 10 137.2 4
BCYC+ 85.3 5 279.6 5 230.4 5 138.6 4
ACYC+/UFS 115.9 8 311.8 5 176.6 4 15.4 0
BCYC+/UFS 91.9 6 212.7 4 170.2 3 12.3 0

ACYC: Acyclicity checking UFS: Unfounded set checking
BCYC: ACYC with backward +: Extended translation

propagation



Computational Logic Day, December 8, 2015

22/23

Experiments: Optimization Problems

Mode Bayes #30 Markov #21 Sched #18
UFS 116.8 0 100.7 0 281.2 7
ACYC 66.3 0 120.3 1 320.9 8
BCYC 84.6 0 54.1 0 324.2 7
ACYC/UFS 103.1 1 170.2 3 348.2 9
BCYC/UFS 104.3 1 72.5 0 340.3 9
ACYC+ 106.2 1 61.5 0 340.9 9
BCYC+ 102.2 2 39.9 0 341.1 9
ACYC+/UFS 110.3 1 171.4 3 367.5 9
BCYC+/UFS 122.5 2 111.5 1 360.6 9

ACYC: Acyclicity checking UFS: Unfounded set checking
BCYC: ACYC with backward +: Extended translation

propagation



Computational Logic Day, December 8, 2015

23/23

Conclusion

I We propose ASP modulo Acyclicity
– to help in application areas involving DAGs, trees, etc., and
– to embed ASP into itself.

I Well-support of answer sets can be addressed by acyclicity
checking

I Implementation is built into the tools lp2acyc and clasp


	Acyclicity Extension
	Translations
	Experiments
	Conclusion

