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Translation-Based ASP

ASP can be implemented by translating ground programs into:
— Boolean Satisfiability (SAT)

[J., ECAI 2004; J. and Niemelä, MG-65 2010]
— Integer Difference Logic (IDL)

[Niemelä, AMAI 2008; J. et al., LPNMR 2009]
— Integer Programming (IP)

[Liu et al., KR 2012]
— Bit-Vector Logic (BV)

[Nguyen et al., INAP 2011; Extended in 2013]

— SAT modulo Acyclicity (ACYC-SAT)
[G. et al., ECAI 2014]
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Extensions to ASP

I There are existing SMT-style extensions of ASP:
I Constraint programming [G. et al., ICLP 2009]
I Difference logic [J. et al., GTTV 2011]
I Linear programming [Liu et al., INAP 2013]
I General SMT [Lee & Meng, IJCAI 2013]

I In this work, we propose ASP modulo Acyclicity
I as an extension to ASP and
I as a target formalism for translations of ASP.

I Functionality available in CLASP version 3.2.0 onward.
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Standard Logic Programs

I Logic programs consist of rules of the following forms:

a ← b1, . . . ,bn,not c1, . . . ,not cm.

{a} ← b1, . . . ,bn,not c1, . . . ,not cm.

a ← k ≤ [b1 = w1, . . . ,bn = wn,

not c1 = wn+1, . . . ,not cm = wn+m].

I A model is supported [Apt et al., 1988] iff M = TPM (M) and
stable [Gelfond and Lifschitz, ICLP 1988] iff M = LM(PM).

Example

a← b. a← c. b ← a. c ← not d . d ← not c.

=⇒ M1 = {a,b, c} and M2 = {a,b,d} are both supported,
and M1 is also stable.
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Acyclicity Extension

An acyclicity extension is a pair 〈V ,e〉 where
1. V is a set of vertices and
2. e : At(P)→ V × V is a partial injection that maps atoms of

a logic program P to edges.

An interpretation M ⊆ At(P) is a stable/supported model of P
subject to an acyclicity extension 〈V ,e〉, iff

1. M is a stable/supported model of P and
2. the graph 〈V ,e(M)〉 is acyclic, where

e(M) = {〈v ,u〉 ∈ V × V | a ∈ M,e(a) = 〈v ,u〉}.
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Hamiltonian Cycles in ASP

1 2
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1 { hc(X,Y) : edge(X,Y) } 1 :- node(X).
1 { hc(X,Y) : edge(X,Y) } 1 :- node(Y).

_edge(X,Y) :- hc(X,Y), X > 1, Y > 1.
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Example: Acyclicity Constraints

Let us consider a standard logic program

a← b. a← c. b ← a. c ← not d . d ← not c.
_edge(a,b)← a,not c. _edge(b,a)← b.

and extend it by 〈V ,e〉 where V = {a,b} and e is the mapping

_edge(a,b) 7→ 〈a,b〉, _edge(b,a) 7→ 〈b,a〉.

=⇒ M1 = {a,b, c,_edge(b,a)} is a stable and supported model;
M2 = {a,b,d ,_edge(a,b),_edge(b,a)} is neither.
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Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

18/23

Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

19/23

Translation from ASP to ACYC-ASP

I We define a translation TrACYC(P) that extends P by an
acyclicity extension and a set of rules.

I The stable models of P coincide with the stable/supported
models of TrACYC(P) modulo acyclicity.

I Well-support of answer sets can be addressed by
performing on TrACYC(P) one or both of

– unfounded set checking or
– acyclicity checking.



Computational Logic Day, December 8, 2015

20/23

Tool Support

gringo
lp2acyc

lp2sat acyc2solver clasp
[-g] [--diff] --enable-acyc

[--bv]
[--pb]
[--mip]

These tools are published under:

http://research.ics.aalto.fi/software/asp/lp2acyc/
http://potassco.sourceforge.net/projects/potassco/

http://research.ics.aalto.fi/software/asp/lp2acyc/
http://potassco.sourceforge.net/projects/potassco/
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Experiments: Decision Problems

Mode Cycle #60 Laby #20 Soko #30 Route #23
UFS 36.0 0 255.3 4 182.6 2 5.8 0
ACYC 373.6 37 261.0 6 350.7 10 134.5 4
BCYC 266.3 26 286.7 7 256.2 7 111.5 2
ACYC/UFS 209.4 18 279.2 4 174.6 3 11.4 0
BCYC/UFS 209.2 19 314.3 6 179.7 4 10.0 0
ACYC+ 118.0 7 366.7 7 336.7 10 137.2 4
BCYC+ 85.3 5 279.6 5 230.4 5 138.6 4
ACYC+/UFS 115.9 8 311.8 5 176.6 4 15.4 0
BCYC+/UFS 91.9 6 212.7 4 170.2 3 12.3 0

ACYC: Acyclicity checking UFS: Unfounded set checking
BCYC: ACYC with backward +: Extended translation

propagation
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Experiments: Optimization Problems

Mode Bayes #30 Markov #21 Sched #18
UFS 116.8 0 100.7 0 281.2 7
ACYC 66.3 0 120.3 1 320.9 8
BCYC 84.6 0 54.1 0 324.2 7
ACYC/UFS 103.1 1 170.2 3 348.2 9
BCYC/UFS 104.3 1 72.5 0 340.3 9
ACYC+ 106.2 1 61.5 0 340.9 9
BCYC+ 102.2 2 39.9 0 341.1 9
ACYC+/UFS 110.3 1 171.4 3 367.5 9
BCYC+/UFS 122.5 2 111.5 1 360.6 9

ACYC: Acyclicity checking UFS: Unfounded set checking
BCYC: ACYC with backward +: Extended translation

propagation
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Conclusion

I We propose ASP modulo Acyclicity
– to help in application areas involving DAGs, trees, etc., and
– to embed ASP into itself.

I Well-support of answer sets can be addressed by acyclicity
checking

I Implementation is built into the tools lp2acyc and clasp
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