
Writing Declarative Specifications for Clauses ⋆

Martin Gebser1,2, Tomi Janhunen1, Roland Kaminski2, Torsten Schaub2,3⋆⋆, and

Shahab Tasharrofi1

1 Helsinki Institute for Information Technology HIIT, Aalto University, FINLAND
2 Institute for Informatics and Computational Science, University of Potsdam, GERMANY

3 INRIA Rennes, Bretagne Atlantique Research Centre, FRANCE

Abstract. Modern satisfiability (SAT) solvers provide an efficient implementa-

tion of classical propositional logic. Their input language, however, is based on

the conjunctive normal form (CNF) of propositional formulas. To use SAT solver

technology in practice, a user must create the input clauses in one way or another.

A typical approach is to write a procedural program that generates formulas on

the basis of some input data relevant for the problem domain and translates them

into CNF. In this paper, we propose a declarative approach where the intended

clauses are specified in terms of rules in analogy to answer set programming

(ASP). This allows the user to write first-order specifications for intended clauses

in a schematic way by exploiting term variables. We develop a formal framework

required to define the semantics of such specifications. Moreover, we provide

an implementation harnessing state-of-the-art ASP grounders to accomplish the

grounding step of clauses. As a result, we obtain a general-purpose clause-level

grounding approach for SAT solvers. Finally, we illustrate the capabilities of our

specification methodology in terms of combinatorial and application problems.

1 Introduction

Satisfiability (SAT) solvers [4] provide an efficient way to implement classical propo-

sitional logic. The conjunctive normal form (CNF) of formulas, which is based on dis-

junctions of literals also known as clauses, forms the standard input language supported

by solvers. However, writing clauses directly is not very practical from the modeling

perspective. This suggests the use of a more expressive language supporting the entire

range of logical connectives and allowing for (universally quantified) first-order vari-

ables to write formulas in a schematic way. E.g., the following formula aims to deny

occurrences of triangles in a directed graph represented by the edge/2 predicate:

edge(X,Y) ∧ edge(Y, Z) ∧ (X 6= Y) ∧ (X 6= Z) ∧ (Y 6= Z)→ ¬edge(Z,X). (1)

On the one hand, variables seem crucial to achieve the flexibility required in modeling

but, on the other hand, they lead to the problem of instantiating or grounding the vari-

ables when actual inference is performed. In the presence of facts edge(a, b), edge(b, c),
and edge(c, a), the essential step is to substitute the universally quantified variables X ,

⋆ This work was funded by AoF (251170), DFG (SCHA 550/8 and 550/9), as well as DAAD

and AoF (57071677/279121).
⋆⋆ Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

Y , and Z in (1) by the constants a, b, and c. While 33 = 27 different substitutions

are applicable, only one of them is useful for showing unsatisfiability. The theory of

grounding goes back to Herbrand’s seminal work, and it has been addressed in many

contexts, such as first-order model generation and theorem proving (see, e.g., [1, 21]) as

well as AI planning (cf. [14]). The substitution of variables by constants or more gen-

erally ground terms is subject to combinatorial explosion when the underlying domain

grows. To cut down the number of resulting ground instances, a variety of techniques

have been proposed, including clause splitting, structural constraints, and contraction

techniques to discard or simplify instances [24]. Also, by carefully analyzing variable

ranges, it is possible to reduce the number of clauses or formulas generated [21, 29].

The approach proposed in this paper also relies on domain information, but we sug-

gest to use declarative specifications based on closed world assumption (CWA) for con-

trolling domains. In case of (1), this means that there is no edge between any given pair

of nodes, thus falsifying the implication antecedent, unless specified otherwise. We pro-

vide an implementation harnessing state-of-the-art answer set programming (ASP) [6]

grounders for the computation of domains and variable instantiation, since they offer

built-in support for CWA and a rich rule-based language to express domain knowledge.

What remains is choosing the kind of formulas to ground. While free choice among

logical connectives seems desirable from the modeling perspective, translation into

CNF is necessary to use SAT solvers. The clausification of propositional (ground) for-

mulas often requires the introduction of new variables, e.g., using the Tseitin transfor-

mation, to avoid exponential blow-ups, and in some cases the auxiliary variables signif-

icantly affect solver performance [2, 3, 15]. The idea of this paper is to write declarative

specifications for clauses, thus enabling a user to define the input of a SAT solver di-

rectly. Following the traditional what you see is what you get principle, clauses in the

grounder output can be traced back to the schematic specification. The trade-off is that

the user has to decide about potential new variables in a formalization, but specifying

such variables at the schematic level also provides more direct access than an implicit

clause compilation. In fact, given the expressiveness of modeling languages supported

by off-the-shelf ASP grounders [12, 19], we expect that declarative specifications are

easier to develop and maintain than their procedural counterparts. For one, it is possible

to separate domain descriptions from logical axioms, which enables uniform encodings

that are independent of particular instance data [23]. For another, the level of abstraction

provided by first-order rules makes specifications highly elaboration tolerant [20].

The rest of this paper is organized as follows. The syntax and semantics of the clause

specification language is defined in Section 2. In Section 3, we illustrate the proposed

language on practical modeling scenarios. Section 4 presents a streamlined implemen-

tation, interfacing the state-of-the-art ASP grounder GRINGO [11] with SAT or MaxSAT

solvers. Finally, we discuss related work and conclude the paper in Section 5.

2 Clause Programs

We begin by presenting the syntax of clause programs and then concentrate on defining

their semantics. To specify clause programs in the first-order case with variables, we

define terms as expressions built from function symbols f , also called constants in case

2

of arity zero, or variable symbols X . The signature for predicate symbols, denoted

by P, splits into Pd and Pv, i.e., domain predicates being minimized and those allowed

to vary as typical in classical logic. A first-order atom p(t1, . . . , tn), or an atom for

short, consists of an n-ary predicate symbol p ∈ P and terms t1, . . . , tn listed as its

arguments. A literal is either an atom a or its negation ¬a.

A clause program P can have rules of two kinds: domain rules of the form (2), also

known as normal rules in ASP, as well as clause rules of the form (3):

a← c1, . . . , cm, ∼d1, . . . , ∼dn. (2)

a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl ← c1, . . . , cm, ∼d1, . . . , ∼dn. (3)

In the rules above, a, c1, . . . , cm, and d1, . . . , dn are domain atoms expressed in Pd, and

the symbol∼ stands for default negation. Domain rules (2) are used to specify appropri-

ate domain relations for variable instantiation. The atoms a1, . . . , ak and b1, . . . , bl in a

clause rule (3) are expressed in Pv. The head a1∨· · ·∨ak∨¬b1∨· · ·∨¬bl is a schema

for propositional clauses where ∨ and ¬ stand for classical disjunction and negation,

respectively. The body c1, . . . , cm, ∼d1, . . . , ∼dn essentially provides the conditions

for creating the head clause, which also includes determining variable assignments.

The semantics of clause programs is defined using Herbrand models as follows.

Given a clause program P , we define its Herbrand universe Hu(P) and Herbrand base

Hb(P) in the standard way. The base Hb(P) is partitioned into Hbd(P) and Hbv(P)
based on the signatures Pd and Pv, respectively. A (Herbrand) interpretation I of P is

written as a subset of Hb(P). Moreover, we distinguish its projections Id = I∩Hbd(P)
and Iv = I∩Hbv(P). Assuming that P is variable-free or ground, the body of (2) or (3)

is satisfied in I iff {c1, . . . , cm} ⊆ Id and {d1, . . . , dn} ∩ Id = ∅. The head of (2) is

satisfied in I iff a ∈ Id, while the head of (3) is satisfied in I iff {b1, . . . , bl} ⊆ Iv
implies {a1, . . . , ak} ∩ Iv 6= ∅. An interpretation I ⊆ Hb(P) is a model of P iff, for

every rule (2) or (3) of P , the satisfaction of the body in I implies the satisfaction of

the head in I . To enforce the minimal interpretation of domain predicates, we define the

domain reduct P I of P with respect to I to contain a rule a ← c1, . . . , cm for every

domain rule (2) of P such that {d1, . . . , dn}∩Id = ∅. The program P I is a Horn theory

and guaranteed to have a unique⊆-minimal model overHbd(P), the least model of P I .

Definition 1. Let P be a clause program and Gnd(P) the respective Herbrand instan-

tiation of P over Hu(P). An interpretation I ⊆ Hb(P) is a domain stable model of P

iff I is a model of Gnd(P) such that Id is the least model of Gnd(P)
I
.

While the abstract criteria for domain stable models are formulated in terms of

the full Herbrand instantiation Gnd(P), the actual goal is to generate small subsets of

Gnd(P) without affecting domain stable models. The intended way of applying Defini-

tion 1 in practice is to let an ASP grounder calculate Id, which also determines the rele-

vant clauses. After that, a SAT solver can be invoked to compute Iv such that I = Id∪Iv
is a model of Gnd(P). In order to use ASP grounders, we have to restrict variable oc-

currences in rules. A rule of the form (2) or (3) is called safe if all variables occurring in

the head also appear in the positive conditions c1, . . . , cm of the body, which thereafter

constrain their domains. Moreover, it is reasonable to assume that the domain part of a

clause program P has a total well-founded model (cf. [28]) that can be calculated by

3

an ASP grounder. We therefore require domain rules (2) of P to be stratified (cf. [26]),

which confines recursive dependencies of a predicate in Pd on itself to be purely based

on c1, . . . , cm in the positive body parts of rules. All clause programs considered in

the following are safe and their domain rules stratified. This means that rule bodies are

fully evaluated during grounding, and the heads of clause rules (3) provide the input of

a SAT solver, searching for (classical) models of the propositional clauses.

Example 1. Let us consider the following clause program for graph coloring:

node(X)← edge(X,Y). (4)

node(Y)← edge(X,Y). (5)

black(X) ∨ grey(X) ∨ white(X)← node(X). (6)

¬black(X) ∨ ¬black(Y)← edge(X,Y). (7)

¬grey(X) ∨ ¬grey(Y)← edge(X,Y). (8)

¬white(X) ∨ ¬white(Y)← edge(X,Y). (9)

The idea is that these rules are conjoined with facts representing an input graph. To this

end, let us use the three facts from the context of (1). Together with the domain rules (4)

and (5), such facts give rise to the following least model Id:

edge(a, b), edge(b, c), edge(c, a), node(a), node(b), and node(c).

The atoms in Id determine the domains of variables in (6)–(9), resulting in the clauses:

black(a) ∨ grey(a) ∨ white(a),
black(b) ∨ grey(b) ∨ white(b),
black(c) ∨ grey(c) ∨ white(c),

¬black(a) ∨ ¬black(b), ¬black(b) ∨ ¬black(c), ¬black(c) ∨ ¬black(a),
¬grey(a) ∨ ¬grey(b), ¬grey(b) ∨ ¬grey(c), ¬grey(c) ∨ ¬grey(a),
¬white(a) ∨ ¬white(b), ¬white(b) ∨ ¬white(c), ¬white(c) ∨ ¬white(a).

These clauses can be satisfied, e.g., by letting Iv = {black(a), grey(b),white(c)},
which gives rise to a domain stable model I = Id ∪ Iv. �

3 Modeling Methodology and Applications

We have above introduced the paradigm of clause programs in a simple setting where

the domain part is written in normal ASP-style rules. Using syntactic sugar available

in GRINGO, however, the compactness and flexibility of clause programs can be further

enhanced. We below illustrate the practice of clause programs on several use cases.

Graph Coloring. To begin with, we generalize the program in Example 1 to n colors:

color(1 . . . n). (10)

node(X ;Y)← edge(X,Y). (11)
∨

hascolor(X,C) : color(C)← node(X). (12)

¬hascolor(X,C) ∨ ¬hascolor(Y,C)← edge(X,Y), color(C). (13)

4

By setting the constant n to some integer, say 3, it defines a range of colors by (10):

color(1), color(2), and color(3). The separator “;” in the second domain rule (11) is

used to specify alternative terms for which the head atom is instantiated, so that (11)

amalgamates (4) and (5). Unlike (6), the clause rule (12), applying to each term X from

node(X), is parametrized by a conditional literal hascolor(X,C), where instances over

all terms C from color(C) are included in a disjunction. This enables the specification

of clauses whose length depends dynamically on a problem instance, such as the number

of colors in this case. Finally, the clause rule (13) generalizes (7)–(9).

Example 2. Based on the least model Id from Example 1, augmented with color(1),
color(2), and color(3), the clauses obtained from (12) and (13) are as follows:

hascolor(a, 1) ∨ hascolor(a, 2) ∨ hascolor(a, 3),
hascolor(b, 1) ∨ hascolor(b, 2) ∨ hascolor(b, 3),
hascolor(c, 1) ∨ hascolor(c, 2) ∨ hascolor(c, 3),

¬hascolor(a, 1) ∨ ¬hascolor(b, 1), ¬hascolor(b, 1) ∨ ¬hascolor(c, 1),
¬hascolor(a, 2) ∨ ¬hascolor(b, 2), ¬hascolor(b, 2) ∨ ¬hascolor(c, 2),
¬hascolor(a, 3) ∨ ¬hascolor(b, 3), ¬hascolor(b, 3) ∨ ¬hascolor(c, 3),
¬hascolor(c, 1) ∨ ¬hascolor(a, 1),
¬hascolor(c, 2) ∨ ¬hascolor(a, 2), ¬hascolor(c, 3) ∨ ¬hascolor(a, 3).

The clauses resemble those in Example 1, yet using the generic predicate hascolor/2,

including colors as arguments, rather than black/1, grey/1, and white/1. Accordingly,

an assignment of distinct colors to the three nodes at hand is expressed by a projection

like Iv = {hascolor(a, 1), hascolor(b, 2), hascolor(c, 3)}. �

n-Queens. The next clause program, encoding the well-knownn-queens problem, illus-

trates the use of built-in integer arithmetic supported by ASP grounders like GRINGO:

coord(1 . . . n). dir(0,−1). dir(−1, 0). dir(−1,−1). dir(−1, 1). (14)

target(X,Y,R,C)← coord(X ;Y ;X+R;Y+C), dir(R,C). (15)

attack(X+R, Y+C,R,C) ∨ ¬queen(X,Y)← target(X,Y,R,C). (16)

attack(X+R, Y+C,R,C) ∨ ¬attack(X,Y,R,C) (17)

← target(X,Y,R,C), target(X−R, Y−C,R,C).

¬attack(X+R, Y+C,R,C) ∨ queen(X,Y) ∨ (18)∨
attack(X,Y,R,C) : target(X−R, Y−C,R,C)← target(X,Y,R,C).

¬queen(X+R, Y+C) ∨ ¬attack(X+R, Y+C,R,C)← target(X,Y,R,C). (19)

queen(X, 1) ∨
∨

attack(X, 1, 0,−1) : target(X, 2, 0,−1)← coord(X). (20)

queen(1, Y) ∨
∨

attack(1, Y,−1, 0) : target(2, Y,−1, 0)← coord(Y). (21)

The facts in (14) provide row and column coordinates, ranging from 1 to some integer

value for n, as well as the differences between the coordinates of adjacent cells in

horizontal, vertical, and diagonal directions. Particular adjacent cells are indicated by

the domain rule (15), where an instance of target(X,Y,R,C) expresses that the cells

at coordinates (X,Y) and (X+R, Y+C) are adjacent. Given this, the clause rules

5

(16)–(18) specify conditions enforcing that attack(X+R, Y+C,R,C) is true iff some

cell with coordinates (X−k∗R, Y− k∗C) for k ≥ 0 hosts a queen, represented by a

corresponding instance of queen(X,Y). The clauses specified by (19) then forbid a

queen at (X+R, Y+C) if the cell is horizontally, vertically, or diagonally attacked.

Finally, the clause rules (20) and (21) express that any row or column must contain

some queen, which can be checked at the first row or column position, respectively.

Example 3. For n = 4, the least model Id includes the following atoms indicating

horizontal attacks along the first row, corresponding to substitutions that instantiate X ,

R, and C with 1, 0, and −1 in (15):

target(1, 2, 0,−1), target(1, 3, 0,−1), and target(1, 4, 0,−1).

These atoms induce nine instances of the clause rules (16)–(18), whose conjunction is

equivalent to the following formulas:

attack(1, 1, 0,−1)↔ queen(1, 2) ∨ attack(1, 2, 0,−1),
attack(1, 2, 0,−1)↔ queen(1, 3) ∨ attack(1, 3, 0,−1),
attack(1, 3, 0,−1)↔ queen(1, 4).

Respective clauses obtained from (19) exclude queens at horizontally attacked cells:

¬queen(1, 1) ∨ ¬attack(1, 1, 0,−1),
¬queen(1, 2) ∨ ¬attack(1, 2, 0,−1),
¬queen(1, 3) ∨ ¬attack(1, 3, 0,−1).

Note that corresponding formulas (defining instances of attack(X+R, Y+C,R,C))
and clauses forbid that queens attack one another along other rows, columns, or diago-

nals. Finally, clauses like queen(1, 1) ∨ attack(1, 1, 0,−1) from (20) and (21) require

some queen in each row and column, so that instances of queen(X,Y) in a projection Iv
provide solutions to the n-queens problem. In fact, the two solutions for n = 4 are char-

acterized by domain stable models including queen(1, 2), queen(2, 4), queen(3, 1), and

queen(4, 3) or queen(1, 3), queen(2, 1), queen(3, 4), and queen(4, 2), respectively. �

Markov Network Structure Learning. After considering combinatorial problems, we

now turn to encodings inspired by practical application scenarios. To begin with, the

Markov network structure learning problem in [7] is based on undirected (acyclic)

forests, and the following clause program implements the respective SAT encoding part,

described (in natural language) in [7]:

node(1 . . . n). (22)

level(0 . . . (n− 1)/2). (23)

pair(X,Y)← node(X ;Y), X < Y. (24)

maps(X,Y,X, Y)← pair(X,Y). (25)

maps(Y,X,X, Y)← pair(X,Y). (26)

del(X,L) ∨
∨

edge(X1, Y1, L) : maps(X,Y,X1, Y1) : Y 6= Z (27)

← node(X ;Z), level(L), X 6= Z.

¬del(X,L) ∨ ¬edge(X1, Y1, L) ∨ ¬edge(X2, Y2, L) (28)

← maps(X,Y,X1, Y1), maps(X,Z,X2, Y2), level(L), Y < Z.

6

1

2 3

4 5

Fig. 1. An undirected forest with n = 5 nodes

edge(X,Y, L) ∨ ¬edge(X,Y, L− 1) ∨ del(X,L− 1) ∨ del(Y, L− 1) (29)

← pair(X,Y), level(L), 0 < L.

¬edge(X,Y, L) ∨ edge(X,Y, L− 1)← pair(X,Y), level(L), 0 < L. (30)

¬edge(X,Y, L) ∨ ¬del(X1, L− 1)← maps(X1, Y1, X, Y), level(L), 0 < L. (31)

del(X, (n− 1)/2)← node(X). (32)

edge(X,Y) ∨ ¬edge(X,Y, 0)← pair(X,Y). (33)

¬edge(X,Y) ∨ edge(X,Y, 0)← pair(X,Y). (34)

The domain rules (22)–(26) provide the n nodes of a graph, ordered pairs of them

as edge candidates, ⌈n
2
⌉ levels for a fixpoint construction to check acyclicity, and in-

stances of maps(X,Y,X1, Y1) to access the ordered edge representation (X1, Y1) for

unordered distinct nodesX and Y . Intuitively, the clause rules (27) and (28) express that

a node X can be deleted at a level L iff it participates in at most one undeleted edge

at L. While non-deletion of a candidate pair (X,Y) at level 0 indicates that (X,Y)
contributes an edge, (X,Y) is undeleted at a greater level L iff (X,Y) as well as its

incident nodes X and Y are undeleted at L − 1, where the latter is specified by the

clause rules (29)–(31). The unit clauses posted by (32) require any node to be deleted at

the maximum level, thus enforcing acyclicity. Finally, the equivalences between ternary

edge(X,Y, 0) and binary edge(X,Y) instances asserted by (33) and (34) serve merely

for symbolic output representation.

Example 4. Figure 1 displays an undirected graph with n = 5 nodes, so that the levels

0, 1, and 2 are available for verifying acyclicity. The undeleted edges at level 0, those

shown in Figure 1, are reflected by true instances of edge(X,Y, 0), i.e., edge(1, 2, 0),
edge(1, 3, 0), edge(3, 4, 0), and edge(3, 5, 0). Observe that the nodes 2, 4, and 5 have

just one incident edge each, and the following clauses from (27), whose contained in-

stances of edge(X,Y, 0) are false, assert their deletion at level 0:

del(2, 0) ∨ edge(2, 3, 0) ∨ edge(2, 4, 0) ∨ edge(2, 5, 0),
del(4, 0) ∨ edge(1, 4, 0) ∨ edge(2, 4, 0) ∨ edge(4, 5, 0),
del(5, 0) ∨ edge(1, 5, 0) ∨ edge(2, 5, 0) ∨ edge(4, 5, 0).

On the other hand, the nodes 1 and 3 cannot be deleted at level 0, as expressed by

instances of (28) such that edge(X,Y, 0) holds for literals of the form ¬edge(X,Y, 0):

¬del(1, 0) ∨ ¬edge(1, 2, 0) ∨ ¬edge(1, 3, 0),
¬del(3, 0) ∨ ¬edge(1, 3, 0) ∨ ¬edge(3, 4, 0),
¬del(3, 0) ∨ ¬edge(1, 3, 0) ∨ ¬edge(3, 5, 0),
¬del(3, 0) ∨ ¬edge(3, 4, 0) ∨ ¬edge(3, 5, 0).

Note that either of the three clauses including¬del(3, 0) is sufficient to falsify del(3, 0).
However, the deletion of the nodes 2, 4, and 5, indicated by del(2, 0), del(4, 0), del(5, 0),

7

leads to deletion of (further) edges at level 1 via corresponding clauses from (31):

¬edge(1, 2, 1) ∨ ¬del(2, 0), ¬edge(3, 4, 1) ∨ ¬del(4, 0), ¬edge(3, 5, 1) ∨ ¬del(5, 0).

Since false instances of edge(X,Y, 0) are propagated to level 1 by clauses from (30),

e.g., ¬edge(1, 4, 1)∨ edge(1, 4, 0), the only atom of the form edge(X,Y, 1) that holds,

asserted by the instance edge(1, 3, 1)∨ ¬edge(1, 3, 0)∨ del(1, 0)∨ del(3, 0) of (29), is

edge(1, 3, 1). Nevertheless, the nodes 1 and 3 are in turn deleted at level 1 in view of

the following clauses from (27):

del(1, 1) ∨ edge(1, 2, 1) ∨ edge(1, 4, 1) ∨ edge(1, 5, 1),
del(3, 1) ∨ edge(2, 3, 1) ∨ edge(3, 4, 1) ∨ edge(3, 5, 1).

Given that instances of (30) carry once deleted edges forward to greater levels, in view

of (27), also deleted nodes are propagated on. As a consequence, del(1, 2), del(2, 2),
del(3, 2), del(4, 2), and del(5, 2) hold, as required by (32) for the maximum level 2. That

is, the undirected forest in Figure 1 passes the acyclicity check, whereas any node X
involved in a cycle could never be deleted and would yield a contradiction with (32). �

Instruction Scheduling. As a second application problem, we consider instruction sche-

duling [27] as performed by compilers. The input can be viewed as a directed acyclic

graph with weighted edges, representing dependencies between instructions along with

latencies. The task consists of mapping instructions to execution slots such that the dis-

tances between dependent instructions’ slots respect latencies and the execution finishes

as early as possible. In order to represent this problem in propositional logic, the num-

ber of execution slots must be finite, and the following domain rules can be used for

extracting bounds:

lower(I1, 1)← instruction(I1). (35)

lower(I2, L+G)← lower(I1, L), gap(I1, I2, G). (36)

reach(I1, I2)← gap(I1, I2, G). (37)

reach(I1, I3)← gap(I1, I2, G), reach(I2, I3). (38)

total(T)← T = |{I : instruction(I)}|. (39)

indep(I, T−D)← instruction(I), total(T),
D = |{I1 : reach(I1, I)}|+ |{I2 : reach(I, I2)}|.

(40)

upper(I1, D)← indep(I1, D). (41)

upper(I2, U+G+D− 1)← upper(I1, U), gap(I1, I2, G), indep(I2, D). (42)

range(I, L, U)← instruction(I), L = max{M : lower(I,M)},
U = max{N : upper(I,N)}.

(43)

Omitting the details, let us highlight that the domain rules (35)–(43) feature again

integer arithmetic but also aggregation operations provided by GRINGO, that is, term

counting in (39) and (40) as well as maximum term calculation in (43). Moreover, the

rules (36), (38), and (42) are recursive, in the sense that the head atom of one instance

may in turn be used as a positive body element in another rule instance. Given that the

arithmetic expressions in (36) and (42) can produce new terms, there are no a priori

restrictions on ground terms. In fact, the finiteness of instantiations relies on acyclic

8

a b

3 3

c d

1 3

e

Fig. 2. A directed acyclic graph representing instruction dependencies and latencies

graphs given as inputs, while ASP grounders supporting arithmetic (as well as uninter-

preted functions) are fully capable of dealing with semi-decidable problems (cf. [11]).

Example 5. The directed acyclic graph in Figure 2 is represented by facts as follows:

instruction(a; b; c; d; e), gap(a, c, 3), gap(b, c, 3), gap(c, e, 1), and gap(d, e, 3).

The domain rule (35) provides the trivial lower bound 1 for each of the instructions a,

b, c, d, and e. In view of the dependencies of c on a and b along with the latencies 3,

(36) further yields lower(c, 4), and the dependencies of e on c and d allow for de-

riving lower(e, 2), lower(e, 4), and lower(e, 5). The effective lower bounds for exe-

cuting instructions, in (43) extracted from maximum values M in atoms of the form

lower(I,M), are 1 for the instructions a, b, and d, 4 for c, and 5 for e. For each instruc-

tion I , the domain rules (37)–(40) determine the number of independent instructions

that neither reach I nor are reached from I , also counting I itself in order to guarantee

positive values. In fact, indep(e, 1) indicates that e has dependencies to all other instruc-

tions, indep(c, 2) reflects that c is independent of d, indep(a, 3) and indep(b, 3) further

take the mutual independency of a and b into account, and indep(d, 4) expresses that e
is the only instruction depending on d. The numbers of independent instructions, whose

execution can be freely interleaved, are taken as trivial upper bounds in (41). Such up-

per bounds are further propagated by the domain rule (42), where latencies as well as

independent instructions are considered to make sure that some slot remains for the

execution of a dependent instruction. In this way, upper(c, 7), upper(e, 3), upper(e, 7),
and upper(e, 8) are derived as additional atoms of the form upper(I,N). The maximum

value N for an instruction I is in (43) taken as the effective upper bound for the exe-

cution of I . As a consequence, the interval [1, 3] is determined as range for executing a
and b, [4, 7] for c, [1, 4] for d, and [5, 8] for e. �

Given the execution ranges determined by means of the domain rules (35)–(43), the

following encoding part expresses optimal instruction scheduling in terms of MaxSAT:

range(I, L . . . U)← range(I, L, U). (44)

opt(L+1 . . . U)← L = max{M : range(I,M,N)},
U = max{N : range(I,M,N)}.

(45)

later(I1, I2, G, L2 +1 . . . U1 +G)← gap(I1, I2, G), range(I1, L1, U1),
range(I2, L2, U2).

(46)

block(I1, I2, S+1)← range(I1; I2, S), range(I2, S+1), I1 6= I2,
∼reach(I1, I2), ∼reach(I2, I1).

(47)

9

value(I, S) ∨
∨
¬delay(I, S) : range(I, S− 1) ∨∨

delay(I, S+1) : range(I, S+1)← range(I, S).
(48)

¬value(I, S) ∨ delay(I, S)← range(I, S;S− 1). (49)

¬value(I, S) ∨ ¬delay(I, S+1)← range(I, S;S+1). (50)

delay(I2, S) ∨ ¬delay(I1, S−G)← later(I1, I2, G, S). (51)

delay(I2, S) ∨ ¬value(I1, S− 1) ∨∨
¬delay(I2, S− 1) : range(I2, S− 2)← block(I1, I2, S).

(52)

¬delay(I2, S) ∨
∨
delay(I1, S−G) : later(I1, I2, G, S) ∨∨
value(I1, S− 1) : block(I1, I2, S)← range(I2, S;S− 1).

(53)

¬delay(I2, S) ∨
∨
delay(I1, S−G) : later(I1, I2, G, S) ∨

delay(I2, S− 1)← range(I2, S;S− 2).
(54)

penalty(S) ∨ ¬delay(I, S)← range(I, S), opt(S). (55)

¬penalty(S) ∨
∨

delay(I, S) : range(I, S)← opt(S). (56)

minimize |{S : penalty(S)}|. (57)

The additional domain rules (44)–(47) define auxiliary predicates utilized in the clause

rules below. In particular, (44) and (45) provide potential execution slots for instructions

as well as slots lying beyond the lower bound of any instruction. Only the latter are

subject to minimization because the execution of all instructions cannot be finished

before. More importantly, (46) and (47) indicate instructions I1 whose execution can be

responsible for delaying I2, in the sense that I2 may have to be scheduled later than its

lower bound. On the one hand, such instructions I1 include those that I2 depends on, so

that the execution slots of I1 and I2 must be separated by at least the latency G included

in atoms of the form later(I1, I2, G, S), where S refers to a next such slot for I2. On

the other hand, the execution of an independent task I1 at a slot S may delay I2 to the

next slot, as expressed by atoms of the form block(I1, I2, S+1). For an instruction I2
with an associated interval [L,U] of potential execution slots, the clause rules (51)–

(54) investigate possible delays to establish that instances of delay(I2, S) are true iff I2
cannot be executed before S ∈ (L,U], i.e., other tasks rule all slots in [L, S) out. Given

this, actual execution slots are extracted by means of the clause rules (48)–(50) and

indicated by instances of value(I, S) in a domain stable model. Finally, schedules are

optimized by penalizing atoms of the form penalty(S), which in view of (55) and (56)

signal that some instruction is executed at S or a later slot. Note that the minimize
statement in (57) weighs instances of penalty(S), whose complements correspond to

soft unit clauses, equally by 1, while arbitrary integer weights can be used in general.

Example 6. For the instructions displayed in Figure 2, there are two optimal schedules

such that a and b are executed at slots 1 and 2 in either order, d is executed at slot 3, c at

slot 5, and eventually e at slot 6. The corresponding domain stable models thus agree on

the atoms value(d, 3), value(c, 5), and value(e, 6). In view of the execution ranges given

in Example 5, the atoms delay(d, 2), delay(d, 3), delay(c, 5), delay(e, 6), and penalty(6)
hold in addition, among which the latter is subject to minimization. Note that the ex-

ecution of d is delayed by the instructions a and b occupying the first two slots, while

10

dependencies of c on a and b or of e on c and d, respectively, are responsible for de-

laying the execution of c and e beyond their (imperfect) lower bounds. The two opti-

mal domain stable models differ as follows: one includes value(a, 1), value(b, 2), and

delay(b, 2), while the other contains value(b, 1), value(a, 2), and delay(a, 2). In fact,

the topology in Figure 2 shows that a and b are symmetric and can be freely permuted.

In order to cut redundant solutions obtained by swapping the slots of a and b, the pre-

sented encoding could be augmented with domain rules identifying such symmetries

along with clause rules implementing lexicographic symmetry breaking (cf. [22]). �

In summary, the above use cases illustrate how clause programs can be harnessed to

model non-trivial combinatorial as well as application problems in a uniform fashion.

The presented encodings exploit built-in integer arithmetic, aggregation operations, and

the closed world assumption of ASP in concise first-order specifications of schematic

clauses. In particular, fixpoint constructions enable deriving (implicit) domains of vari-

ables from instance data, thus reducing the need for involved procedural computations.

4 Implementation

To implement the grounding of clause programs, we utilize the state-of-the-art ASP

grounder GRINGO [11]. This is feasible because GRINGO (from version 2 on) supports

classical literals and disjunctive rule heads as in (3). By hiding and hence omitting the

domain part of a clause program P , the ground program Gnd(P) is essentially a set of

ground disjunctions a1∨· · ·∨ak∨¬b1∨· · ·∨¬bl. For GRINGO, the semantics ofGnd(P)
is based on consistent sets of classical literals, also known as answer sets [13], which

can be viewed as minimal hitting sets for the disjunctions in Gnd(P). For the purposes

of this work, however, we re-establish the semantic connection between an atom a and

its classical negation¬a by transforming disjunctions into a set Cl(Gnd(P)) of clauses

in DIMACS format, serving as input of SAT solvers. This step is implemented by a tool

called SATGRND (v. 1.21), which passes the symbolic names of atoms on as comments

in its output. The transformation preserves classical models and satisfiability, so that

satisfying assignments of Cl(Gnd(P)) correspond to domain stable models of P .4

Beyond this basic transformation, SATGRND can be used to extract graph informa-

tion from symbolic atom names, as exploited in the SAT modulo graphs approach [9,

10]. Both in plain SAT and SAT modulo graphs, models may be subject to optimiza-

tion, expressible by minimize statements in the input language of GRINGO, in which

case SATGRND generates (weighted partial) MaxSAT problems in DIMACS format.

Moreover, SATGRND permits the computation of classical models for (disjunctive) logic

programs in general and is provided along with sample encodings for the use cases in

the previous section.5

4 Classical models can also be expressed within ASP, e.g., in terms of choice rules and integrity

constraints [25].
5 http://research.ics.aalto.fi/software/asp/satgrnd/

11

5 Discussion of Related Work and Conclusion

In this paper, we promote declarative domain specifications in contrast with procedu-

ral ones that are typical when solvers are interfaced with a programming library (see,

e.g., the Python interface of Microsoft’s Z3). Naturally, other declarative approaches

exist. In the context of pseudo-Boolean solvers, the system PSGRND [8] can be used

to ground clauses and their extensions. The domain information, however, is given by

type declarations for predicates, and it is not possible to define types in terms of others.

The first-order approaches of [1, 5, 17, 29] also aim to restrict variable domains recur-

sively over the structure of first-order formulas, where the CWA is limited to predicates

that are defined (inductively) in terms of those allowed to vary. The same can be stated

about the methods proposed for effectively propositional logic [21, 24], although do-

main constraints are imposed. The IDP3 system [18] exploits PROLOG-style rules to

express domain information, but it processes them through query answering rather than

bottom-up evaluation. In [14], the grounding problem is addressed in the context of

planning domain definition language (PDDL) descriptions over finite domains. While

this approach explores a Datalog representation and grounding techniques similar to

ASP, it is specialized to planning tasks. The interface provided by GRINGO is more

general, in particular, given that domains need not be finitely bounded a priori. Last but

not least, note that traditional constraint models can also be translated into CNF (see,

e.g., [15]), yet expressing recursive domain specifications remains difficult.

In conclusion, we suggest to utilize ASP grounders for instantiating first-order clau-

ses involving term variables. This provides us with means to control the resulting propo-

sitional clauses in a declarative way and to avoid the implicit introduction of new

Boolean variables, which is practically necessary otherwise, e.g., when translating logic

programs into SAT [16]. The combination of GRINGO and SATGRND forms a general-

purpose grounding tool not confined to a particular application domain. Due to the

highly versatile and eventually Turing-complete input language of GRINGO, complex

domain specifications can be written to support fine-grained instantiation of term vari-

ables. The uniform rule-based syntax makes specifications highly elaboration tolerant

and independent of particular instance data. We expect that the grounding methodology

introduced in this paper can be highly useful for SAT application developers in order to

devise compact encodings directly at clause level.

References

1. A. Aavani, X. Wu, E. Ternovska, and D. Mitchell. Grounding formulas with complex terms.

In Proceedings of Canadian AI’11, pages 13–25. Springer, 2011.

2. R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell. Cardinality networks:

A theoretical and empirical study. Constraints, 16(2):195–221, 2011.

3. G. Audemard, G. Katsirelos, and L. Simon. A restriction of extended resolution for clause

learning SAT solvers. In Proceedings of AAAI’10, pages 15–20. AAAI Press, 2010.

4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.

5. H. Blockeel, B. Bogaerts, M. Bruynooghe, B. De Cat, S. De Pooter, M. Denecker, A. Labarre,

J. Ramon, and S. Verwer. Modeling machine learning and data mining problems with FO(.).

In Technical Communications of ICLP’12, pages 14–25. Schloss Dagstuhl, 2012.

12

6. G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communi-

cations of the ACM, 54(12):92–103, 2011.

7. J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pensar. Learning chordal Markov

networks by constraint satisfaction. In Proceedings of NIPS’13, pages 1349–1357. NIPS

Foundation, 2013.

8. D. East, M. Iakhiaev, A. Mikitiuk, and M. Truszczyński. Tools for modeling and solving

search problems. AI Communications, 19(4):301–312, 2006.

9. M. Gebser, T. Janhunen, and J. Rintanen. Answer set programming as SAT modulo acyclic-

ity. In Proceedings of ECAI’14, pages 351–356. IOS Press, 2014.

10. M. Gebser, T. Janhunen, and J. Rintanen. SAT modulo graphs: Acyclicity. In Proceedings

of JELIA’14, pages 137–151. Springer, 2014.

11. M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In Proceed-

ings of LPNMR’11, pages 345–351. Springer, 2011.

12. M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele. On the input language of

ASP grounder gringo. In Proceedings of LPNMR’09, pages 502–508. Springer, 2011.

13. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

New Generation Computing, 9(3-4):365–386, 1991.

14. M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial

Intelligence, 173(5-6):503–535, 2009.

15. J. Huang. Universal Booleanization of constraint models. In Proceedings of CP’08, pages

144–158. Springer, 2008.

16. T. Janhunen. Some (in)translatability results for normal logic programs and propositional

theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

17. J. Jansen, I. Dasseville, J. Devriendt, and G. Janssens. Experimental evaluation of a state-of-

the-art grounder. In Proceedings of PPDP’14, pages 249–258. ACM Press, 2014.

18. J. Jansen, A. Jorissen, and G. Janssens. Compiling input* FO(.) inductive definitions into

tabled Prolog rules for IDP3. Theory and Practice of Logic Programming, 13(4-5):691–704,

2013.

19. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV

system for knowledge representation and reasoning. ACM Transactions on Computational

Logic, 7(3):499–562, 2006.

20. J. McCarthy. Elaboration tolerance, 2003. http://www-formal.stanford.edu/

jmc/elaboration.ps.

21. J. Navarro-Pérez and A. Voronkov. Proof systems for effectively propositional logic. In

Proceedings of IJCAR’08, pages 426–440. Springer, 2008.

22. K. Sakallah. Symmetry and satisfiability. In Biere et al. [4], chapter 10, pages 289–338.

23. J. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer

and System Sciences, 51:64–86, 1995.

24. S. Schulz. A comparison of different techniques for grounding near-propositional CNF for-

mulae. In Proceedings of FLAIRS’02, pages 72–76. AAAI Press, 2002.

25. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-

mantics. Artificial Intelligence, 138(1-2):181–234, 2002.

26. J. Ullman. Principles of Database and Knowledge-Base Systems. CS Press, 1988.

27. P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue processors

with arbitrary latencies. In Proceedings of CP’01, pages 625–639. Springer, 2001.

28. A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic pro-

grams. Journal of the ACM, 38(3):620–650, 1991.

29. J. Wittocx, M. Mariën, and M. Denecker. Grounding FO and FO(ID) with bounds. Journal

of Artificial Intelligence Research, 38:223–269, 2010.

13

