

Aalto University
School of Science

Writing Declarative Specifications for Clauses

Martin Gebser¹, Tomi Janhunen², Roland Kaminski¹,
Torsten Schaub^{1,3}, Shahab Tasharrofi²

¹⁾ University of Potsdam, Germany

²⁾ Aalto University, Finland

³⁾ INRIA Rennes, France

JELIA'16, Larnaca, Cyprus, November 10, 2016

Background: Boolean Satisfiability

Satisfiability (SAT) solvers provide an efficient implementation of classical propositional logic.

- ▶ SAT solvers expect their input in the conjunctive normal form (CNF), i.e., a conjunction of clauses $I_1 \vee \dots \vee I_k$.
- ▶ Clauses can be viewed as “**machine code**” for expressing constraints and representing knowledge.
- ▶ Typically clauses are either
 - generated using a procedural program or
 - obtained when more complex formulas are translated.
- ▶ First-order formulas are prone to **combinatorial effects**:

$$\neg \text{edge}(X, Y) \vee \neg \text{edge}(Y, Z) \vee \neg \text{edge}(Z, X) \vee \\ (X = Y) \vee (X = Z) \vee (Y = Z)$$

Analogue: Assembly Languages

```
smodels:                                testl  %eax, %eax
                                             je     .L2
pushq  %rbp
                                             movl  $0, %eax
movq  %rsp, %rbp
                                             jmp   .L3
subq  $32, %rsp
                                             .L2:
movq  %rdi, -24(%rbp)
                                             movq  -24(%rbp), %rax
movq  %rsi, -32(%rbp)
                                             movq  %rax, %rdi
movl  $0, -4(%rbp)
                                             movl  $0, %eax
movq  -32(%rbp), %rdx
                                             call  complete
movq  -24(%rbp), %rax
                                             testl %eax, %eax
movq  %rdx, %rsi
                                             je     .L4
movq  %rax, %rdi
                                             movl  $-1, %eax
call  propagate
                                             jmp   .L3
movq  %rax, -24(%rbp)
                                             ...
movq  -24(%rbp), %rax
                                             .L3:
movq  %rax, %rdi
                                             leave
movl  $0, %eax
call  conflict
                                             ret
```

How to Generate Machine Code?

1. Assembly language
2. Assembly language + [macros](http://tigcc.ticalc.org) [tigcc.ticalc.org]

```
.macro sum from=0, to=5
    .long \from
    .if \to-\from
    sum    "(\from+1)",\to
    .endif
    .endm
```



```
.long 0
.long 1
.long 2
.long 3
.long 4
.long 5
```

3. High level language (C, C++, scala, ...) + [compilation](#)

How much can we control the actual output in each case?

Our Approach

- ▶ A **fully declarative** approach where intended clauses are given first-order specifications in analogy to ASP.
- ▶ In the implementation, we harness **state-of-the-art ASP grounders** for instantiating terms variables in clauses.
- ▶ The benefits of our approach:
 - Complex **domain specifications** supported
 - **Database operations** available
 - **Uniform encodings** enabled
 - **Elaboration** tolerance
- ▶ **WYSIWYG**: $\text{black}(X) \vee \text{gray}(X) \vee \text{white}(X) \leftarrow \text{node}(X)$.

$\text{node}(a).$	$\text{black}(a) \vee \text{gray}(a) \vee \text{white}(a).$
$\text{node}(b).$	$\text{black}(b) \vee \text{gray}(b) \vee \text{white}(b).$
$\text{node}(c).$	$\text{black}(c) \vee \text{gray}(c) \vee \text{white}(c).$

Outline

Clause Programs

Modeling Methodology and Applications

Implementation

Discussion and Conclusion

Clause Programs: Syntax

- ▶ The signature \mathcal{P} for predicate symbols is partitioned into domain predicates \mathcal{P}_d and varying predicates \mathcal{P}_v .
- ▶ Domain rules in \mathcal{P}_d are normal rules of the form

$$a \leftarrow c_1, \dots, c_m, \sim d_1, \dots, \sim d_n.$$

- ▶ The syntax for clause rules is

$$a_1 \vee \dots \vee a_k \vee \neg b_1 \vee \dots \vee \neg b_l \leftarrow c_1, \dots, c_m, \sim d_1, \dots, \sim d_n.$$

where the head (resp. body) is expressed in \mathcal{P}_v (resp. \mathcal{P}_d).

- ▶ For standard use cases, the domain part of a program should be **stratified** to enable evaluation by the grounder.

Example: Graph Coloring

Domain rules

```
node(X) ← edge(X, Y).  
node(Y) ← edge(X, Y).
```

Clause rules

```
black(X) ∨ gray(X) ∨ white(X) ← node(X).  
¬black(X) ∨ ¬black(Y) ← edge(X, Y).  
¬gray(X) ∨ ¬gray(Y) ← edge(X, Y).  
¬white(X) ∨ ¬white(Y) ← edge(X, Y).
```

Uniform encoding that works for any graph instance!

Clause Programs: Semantics

- ▶ The **Herbrand universe** $\text{Hu}(P)$ and the **Herbrand base** $\text{Hb}(P)$ of a clause program P are defined as usual.
- ▶ The **ground program** $\text{Gnd}(P)$ is the respective Herbrand instantiation of P over the universe $\text{Hu}(P)$.
- ▶ The **domain reduct** P' of P with respect to I contains the positive rule $a \leftarrow c_1, \dots, c_m$ for every domain rule

$$a \leftarrow c_1, \dots, c_m, \sim d_1, \dots, \sim d_n.$$

such that $\{d_1, \dots, d_n\} \cap I_d = \emptyset$.

Definition

An Herbrand interpretation $I \subseteq \text{Hb}(P)$ is a **domain stable** model of P iff $I \models \text{Gnd}(P)$ and I_d is the least model of $\text{Gnd}(P)'$.

Example: Continued

1. Suppose the following facts as **instance information**:
 $\text{edge}(a, b), \text{edge}(b, c), \text{edge}(c, a).$
2. Additional domain atoms from $\text{node}(X; Y) \leftarrow \text{edge}(X, Y)$:
 $\text{node}(a), \text{node}(b), \text{node}(c).$
3. Clauses from $\text{black}(X) \vee \text{gray}(X) \vee \text{white}(X) \leftarrow \text{node}(X)$:
 $\text{black}(a) \vee \text{gray}(a) \vee \text{white}(a),$
 $\text{black}(b) \vee \text{gray}(b) \vee \text{white}(b),$
 $\text{black}(c) \vee \text{gray}(c) \vee \text{white}(c).$
4. Clauses from $\neg\text{black}(X) \vee \neg\text{black}(Y) \leftarrow \text{edge}(X, Y)$ etc:

$$\begin{array}{lll} \neg\text{black}(a) \vee \neg\text{black}(b), & \neg\text{gray}(a) \vee \neg\text{gray}(b), & \neg\text{white}(a) \vee \neg\text{white}(b), \\ \neg\text{black}(b) \vee \neg\text{black}(c), & \neg\text{gray}(b) \vee \neg\text{gray}(c), & \neg\text{white}(b) \vee \neg\text{white}(c), \\ \neg\text{black}(c) \vee \neg\text{black}(a), & \neg\text{gray}(c) \vee \neg\text{gray}(a), & \neg\text{white}(c) \vee \neg\text{white}(a). \end{array}$$

Encodings

In the paper, we illustrate the **use** of clause programs:

- ▶ Graph n -coloring
- ▶ n -Queens
- ▶ Full propositional logic
- ▶ Haplotype inference

Further **sample encodings** can be found from our website:

- ▶ Structure learning for Markov networks
- ▶ Instruction scheduling
- ▶ SuDoku puzzles

<http://research.ics.aalto.fi/software/sat/satgrnd/>

Graph n -Coloring

- ▶ The number of colors is parameterized by n .
- ▶ We may exploit many advanced features of the grounder:
 - Range specifications
 - Pooling (substantially revised in GRINGO v. 4)
 - Conditional literals
- ▶ If need be, the lengths of clauses can vary dynamically depending on the problem instance!

color($1 \dots n$).

node($X; Y$) \leftarrow edge(X, Y).

\bigvee hascolor(X, C) : color(C) \leftarrow node(X).

\neg hascolor(X, C) \vee \neg hascolor(Y, C) \leftarrow edge(X, Y), color(C).

More Complex Domains: Highlights

- ▶ Parameterization and non-trivial domains in n -Queens:

$\text{coord}(1 \dots n).$

$\text{dir}(0, -1).$ $\text{dir}(-1, 0).$ $\text{dir}(-1, -1).$ $\text{dir}(-1, 1).$

$\text{target}(X, Y, R, C) \leftarrow \text{coord}(X; Y; X+R; Y+C), \text{dir}(R, C).$

$\text{attack}(X+R, Y+C, R, C) \vee \neg \text{attack}(X, Y, R, C) \leftarrow$
 $\text{target}(X, Y, R, C), \text{target}(X-R, Y-C, R, C).$

- ▶ Dynamic-length clauses for haplotype inference:

$\text{used}(G_2, E_2) \vee$

$\vee \text{same}(G_1, E_1, G_2, E_2) :$

$(\text{keep}(G_1), E_1 = 0 \dots 1, (G_1, E_1) < (G_2, E_2)) \leftarrow$
 $\text{keep}(G_2), E_2 = 0 \dots 1.$

Beyond Clauses: Full Propositional Logic

1. Domains of subsentences, compounds, and atoms:

$\text{sub}(S) \leftarrow \text{sat}(S).$

$\text{sub}(S1; S2) \leftarrow \text{sub}(a(S1, S2)). \quad \text{co}(a(S1, S2)) \leftarrow \text{sub}(a(S1, S2)).$

$\text{sub}(S1; S2) \leftarrow \text{sub}(o(S1, S2)). \quad \text{co}(o(S1, S2)) \leftarrow \text{sub}(o(S1, S2)).$

$\text{sub}(S) \leftarrow \text{sub}(n(S)).$

$\text{co}(n(S)) \leftarrow \text{sub}(n(S)).$

$\text{true}(S) \leftarrow \text{sat}(S).$

$\text{at}(S) \leftarrow \text{sub}(S), \sim \text{co}(S).$

2. Tseitin transformations (e.g., for $a(S1, S2)$):

$\text{true}(a(S1, S2)) \vee \neg \text{true}(S1) \vee \neg \text{true}(S2) \leftarrow \text{co}(a(S1, S2)).$

$\neg \text{true}(a(S1, S2)) \vee \text{true}(S1) \leftarrow \text{co}(a(S1, S2)).$

$\neg \text{true}(a(S1, S2)) \vee \text{true}(S2) \leftarrow \text{co}(a(S1, S2)).$

3. Sentences to satisfy as instance information:

$\text{sat}(o(n(a), b)). \quad \text{sat}(o(n(b), c)). \quad \text{sat}(o(n(c), a)).$

Implementation Strategy

- ▶ Clause programs can be directly grounded using [the state-of-the-art](#) ASP grounder GRINGO (v. 2 onward).
- ▶ The output of GRINGO is a ground disjunctive logic program $\text{Gnd}(P)$ consisting of [bodyless disjunctive rules](#)

$$a_1 \vee \cdots \vee a_k \vee \neg b_1 \vee \cdots \vee \neg b_l.$$

where each a_i and $\neg b_j$ is a classical literal over $\text{Hb}_v(P)$.

- ▶ The [semantic connection](#) of a and its negation $\neg a$ can be re-established by viewing such disjunctions as clauses.
- ▶ The [classical models](#) of $\text{Gnd}(P)$ correspond to the [domain stable models](#) of the clause program P .

Tool Support

- ▶ An **adapter** called SATGRND can be used to transform the output of GRINGO into DIMACS.
- ▶ If **optimization** statements are used, a (weighted partial) **MaxSAT** instance will be produced in DIMACS format.
- ▶ Enhanced **user experience** enabled by symbolic names:

```
gringo myprog.lp | satgrnd \
| owbo-acycglucose -print-method=1 -verbosity=0
```

- ▶ The required tools are available for **download** at
GRINGO: potassco.org/
SATGRND and OWBO-ACYCGLUCOSE:
research.ics.aalto.fi/software/sat/download/

Haplotype Inference Re-Engineered

- ▶ The RPOLY system is a **reference implementation** of haplotype inference [Graça et al., 2007] based on
 - procedurally generated PB optimization instances and
 - the use of MINISAT+ as the back-end PB solver.
- ▶ The **performance improved** $40\times$ by remodeling the problem with SATGRND and using CLASP as the PB solver.

	RPOLY	\Rightarrow	\Rightarrow -LB	\Leftrightarrow	\Leftrightarrow -LB	
t	182.3	3.3	3.5	4.7	5.5	CLASP
$ \Rightarrow $	466,933	47,262	52,420	57,789	67,178	
$ C $	36,299	28,318	28,454	49,054	49,192	
t	133.6	1789.8	1402.7	2639.1	2467.4	MINISAT+
$ \Rightarrow $	863,514	6,779,058	6,441,567	6,769,964	5,866,433	
$ C $	36,859	28,500	28,638	51,003	51,142	

Related Work

- ▶ **Procedural** approaches: Python interface of Microsoft's Z3.
- ▶ **Declarative** approaches:
 - Propositional schemata and PSGRND [East et al., 2006]
 - Grounding first-order formulas [Aavani et al., 2011; Blokquel et al., 2012; Jansen et al., 2014; Wittocx et al., 2010]
 - IDP3 [Jansen et al., 2013]
 - Datalog in planning domains [Helmert, 2009]
 - Translating constraint models into CNF [Huang, 2008]
- ▶ **Strengths** combined by the GRINGO interface:
 - Domains definable using rules
 - Recursive domain definitions supported
 - Domains not finitely bounded a priori
 - General-purpose grounder

Conclusion

- ▶ In this work, we suggest to write **declarative first-order specifications** (with term variables) for clauses.
- ▶ **Advantages** of using an ASP grounder for instantiation:
 - ▶ Exact clause-level control over the output
 - ▶ All advanced features of the grounder available
 - ▶ Uniform encodings enabled
 - ▶ Elaboration tolerance
- ▶ The combination of GRINGO and SATGRND provides a **general-purpose** grounder for SAT and MaxSAT.
- ▶ Other **back-end formats** are supported: SMT, MIP, PB.
- ▶ Further **extensions** to SATGRND are being developed:
 - Support for acyclicity constraints