
Writing Declarative Specifications for
Clauses
Martin Gebser1, Tomi Janhunen2, Roland Kaminski1,
Torsten Schaub1,3, Shahab Tasharrofi2

1) University of Potsdam, Germany
2) Aalto University, Finland
3) INRIA Rennes, France

JELIA’16, Larnaca, Cyprus, November 10, 2016

JELIA’16, November 10, 2016

2/19

Background: Boolean Satisfiability
Satisfiability (SAT) solvers provide an efficient implementation
of classical propositional logic.

I SAT solvers expect their input in the conjunctive normal
form (CNF), i.e., a conjunction of clauses l1 ∨ . . . ∨ lk .

I Clauses can be viewed as “machine code” for expressing
constraints and representing knowledge.

I Typically clauses are either

— generated using a procedural program or
— obtained when more complex formulas are translated.

I First-order formulas are prone to combinatorial effects:

¬edge(X ,Y) ∨ ¬edge(Y ,Z) ∨ ¬edge(Z ,X)∨
(X = Y) ∨ (X = Z) ∨ (Y = Z)

JELIA’16, November 10, 2016

3/19

Analogue: Assembly Languages
smodels:

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

movq %rdi, -24(%rbp)

movq %rsi, -32(%rbp)

movl $0, -4(%rbp)

movq -32(%rbp), %rdx

movq -24(%rbp), %rax

movq %rdx, %rsi

movq %rax, %rdi

call propagate

movq %rax, -24(%rbp)

movq -24(%rbp), %rax

movq %rax, %rdi

movl $0, %eax

call conflict

testl %eax, %eax

je .L2

movl $0, %eax

jmp .L3

.L2:

movq -24(%rbp), %rax

movq %rax, %rdi

movl $0, %eax

call complete

testl %eax, %eax

je .L4

movl $-1, %eax

jmp .L3

...

.L3:

leave

ret

JELIA’16, November 10, 2016

4/19

How to Generate Machine Code?

1. Assembly language

2. Assembly language + macros [tigcc.ticalc.org]

.macro sum from=0, to=5

.long \from

.if \to-\from

sum "(\from+1)",\to

.endif

.endm

7−→

.long 0

.long 1

.long 2

.long 3

.long 4

.long 5

3. High level language (C, C++, scala, ...) + compilation

How much can we control the actual output in each case?

tigcc.ticalc.org

JELIA’16, November 10, 2016

5/19

Our Approach
I A fully declarative approach where intended clauses are

given first-order specifications in analogy to ASP.
I In the implementation, we harness state-of-the-art ASP

grounders for instantiating terms variables in clauses.
I The benefits of our approach:

— Complex domain specifications supported
— Database operations available
— Uniform encodings enabled
— Elaboration tolerance

I WYSIWYG: black(X) ∨ gray(X) ∨ white(X)← node(X).

node(a). black(a)∨gray(a)∨white(a).
node(b). 7−→ black(b)∨gray(b)∨white(b).
node(c). black(c)∨gray(c)∨white(c).

JELIA’16, November 10, 2016

6/19

Outline

Clause Programs

Modeling Methodology and Applications

Implementation

Discussion and Conclusion

JELIA’16, November 10, 2016

7/19

Clause Programs: Syntax

I The signature P for predicate symbols is partitioned into
domain predicates Pd and varying predicates Pv.

I Domain rules in Pd are normal rules of the form

a← c1, . . . , cm, ∼d1, . . . , ∼dn.

I The syntax for clause rules is

a1 ∨ · · · ∨ ak ∨¬b1 ∨ · · · ∨ ¬bl ← c1, . . . , cm, ∼d1, . . . , ∼dn.

where the head (resp. body) is expressed in Pv (resp. Pd).

I For standard use cases, the domain part of a program
should be stratified to enable evaluation by the grounder.

JELIA’16, November 10, 2016

8/19

Example: Graph Coloring

Domain rules

node(X) ← edge(X ,Y).
node(Y) ← edge(X ,Y).

Clause rules

black(X) ∨ gray(X) ∨ white(X) ← node(X).
¬black(X) ∨ ¬black(Y) ← edge(X ,Y).
¬gray(X) ∨ ¬gray(Y) ← edge(X ,Y).
¬white(X) ∨ ¬white(Y) ← edge(X ,Y).

Uniform encoding that works for any graph instance!

JELIA’16, November 10, 2016

9/19

Clause Programs: Semantics

I The Herbrand universe Hu(P) and the Herbrand base
Hb(P) of a clause program P are defined as usual.

I The ground program Gnd(P) is the respective Herbrand
instantiation of P over the universe Hu(P).

I The domain reduct P I of P with respect to I contains the
positive rule a← c1, . . . , cm for every domain rule

a← c1, . . . , cm, ∼d1, . . . , ∼dn.

such that {d1, . . . ,dn} ∩ Id = ∅.

Definition
An Herbrand interpretation I ⊆ Hb(P) is a domain stable model
of P iff I |= Gnd(P) and Id is the least model of Gnd(P)I .

JELIA’16, November 10, 2016

10/19

Example: Continued
1. Suppose the following facts as instance information:

edge(a,b),edge(b, c),edge(c,a).
2. Additional domain atoms from node(X ;Y)← edge(X ,Y):

node(a),node(b),node(c).

3. Clauses from black(X) ∨ gray(X) ∨ white(X)← node(X):

black(a) ∨ gray(a) ∨ white(a),
black(b) ∨ gray(b) ∨ white(b),
black(c) ∨ gray(c) ∨ white(c).

4. Clauses from ¬black(X) ∨ ¬black(Y)← edge(X ,Y) etc:

¬black(a) ∨ ¬black(b),
¬black(b) ∨ ¬black(c),
¬black(c) ∨ ¬black(a),

¬gray(a) ∨ ¬gray(b),
¬gray(b) ∨ ¬gray(c),
¬gray(c) ∨ ¬gray(a),

¬white(a) ∨ ¬white(b),
¬white(b) ∨ ¬white(c),
¬white(c) ∨ ¬white(a).

JELIA’16, November 10, 2016

11/19

Encodings

In the paper, we illustrate the use of clause programs:

I Graph n-coloring
I n-Queens
I Full propositional logic
I Haplotype inference

Further sample encodings can found from our website:

I Structure learning for Markov networks
I Instruction scheduling
I SuDoku puzzles

http://research.ics.aalto.fi/software/sat/satgrnd/

http://research.ics.aalto.fi/software/sat/satgrnd/

JELIA’16, November 10, 2016

12/19

Graph n-Coloring

I The number of colors is parameterized by n.
I We may exploit many advanced features of the grounder:

— Range specifications
— Pooling (substantially revised in GRINGO v. 4)
— Conditional literals

I If need be, the lengths of clauses can vary dynamically
depending on the problem instance!

color(1 . . . n).

node(X ;Y) ← edge(X ,Y).∨
hascolor(X ,C) : color(C) ← node(X).

¬hascolor(X ,C) ∨ ¬hascolor(Y ,C) ← edge(X ,Y), color(C).

JELIA’16, November 10, 2016

13/19

More Complex Domains: Highlights
I Parameterization and non-trivial domains in n-Queens:

coord(1 . . . n).
dir(0,−1). dir(−1,0). dir(−1,−1). dir(−1,1).
target(X ,Y ,R,C)← coord(X ;Y ;X+R;Y+C),dir(R,C).

attack(X+R,Y+C,R,C) ∨ ¬attack(X ,Y ,R,C)←
target(X ,Y ,R,C), target(X−R,Y−C,R,C).

I Dynamic-length clauses for haplotype inference:

used(G2,E2)∨∨
same(G1,E1,G2,E2) :

(keep(G1), E1 = 0 . . . 1, (G1,E1) < (G2,E2))←
keep(G2), E2 = 0 . . . 1.

JELIA’16, November 10, 2016

14/19

Beyond Clauses: Full Propositional Logic

1. Domains of subsentences, compounds, and atoms:

sub(S)← sat(S).
sub(S1;S2)← sub(a(S1,S2)). co(a(S1,S2))← sub(a(S1,S2)).
sub(S1;S2)← sub(o(S1,S2)). co(o(S1,S2))← sub(o(S1,S2)).
sub(S)← sub(n(S)). co(n(S))← sub(n(S)).
true(S)← sat(S). at(S)← sub(S), ∼co(S).

2. Tseitin transformations (e.g., for a(S1,S2)):

true(a(S1,S2)) ∨ ¬true(S1) ∨ ¬true(S2)← co(a(S1,S2)).
¬true(a(S1,S2)) ∨ true(S1)← co(a(S1,S2)).
¬true(a(S1,S2)) ∨ true(S2)← co(a(S1,S2)).

3. Sentences to satisfy as instance information:

sat(o(n(a),b)). sat(o(n(b), c)). sat(o(n(c),a)).

JELIA’16, November 10, 2016

15/19

Implementation Strategy

I Clause programs can be directly grounded using the
state-of-the-art ASP grounder GRINGO (v. 2 onward).

I The output of GRINGO is a ground disjunctive logic program
Gnd(P) consisting of bodyless disjunctive rules

a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl .

where each ai and ¬bj is a classical literal over Hbv(P).

I The semantic connection of a and its negation ¬a can be
re-established by viewing such disjunctions as clauses.

I The classical models of Gnd(P) correspond to the domain
stable models of the clause program P.

JELIA’16, November 10, 2016

16/19

Tool Support

I An adapter called SATGRND can be used to transform the
output of GRINGO into DIMACS.

I If optimization statements are used, a (weighted partial)
MaxSAT instance will be produced in DIMACS format.

I Enhanced user experience enabled by symbolic names:

gringo myprog.lp | satgrnd \

| owbo-acycglucose -print-method=1 -verbosity=0

I The required tools are available for download at

GRINGO: potassco.org/
SATGRND and OWBO-ACYCGLUCOSE:

research.ics.aalto.fi/software/sat/download/

potassco.org/
research.ics.aalto.fi/software/sat/download/

JELIA’16, November 10, 2016

17/19

Haplotype Inference Re-Engineered

I The RPOLY system is a reference implementation of
haplotype inference [Graça et al., 2007] based on

— procedurally generated PB optimization instances and
— the use of MINISAT+ as the back-end PB solver.

I The performance improved 40× by remodeling the
problem with SATGRND and using CLASP as the PB solver.

RPOLY ⇒ ⇒-LB ⇔ ⇔-LB
t 182.3 3.3 3.5 4.7 5.5 C

LA
S

P

|
 | 466,933 47,262 52,420 57,789 67,178
|C| 36,299 28,318 28,454 49,054 49,192
t 133.6 1789.8 1402.7 2639.1 2467.4

M
IN

IS
AT+

|
 | 863,514 6,779,058 6,441,567 6,769,964 5,866,433
|C| 36,859 28,500 28,638 51,003 51,142

JELIA’16, November 10, 2016

18/19

Related Work

I Procedural approaches: Python interface of Microsoft’s Z3.

I Declarative approaches:
— Propositional schemata and PSGRND [East et al., 2006]
— Grounding first-order formulas [Aavani et al., 2011; Blockeel

et al., 2012; Jansen et al., 2014; Wittocx et al., 2010]
— IDP3 [Jansen et al., 2013]
— Datalog in planning domains [Helmert, 2009]
— Translating constraint models into CNF [Huang, 2008]

I Strengths combined by the GRINGO interface:
— Domains definable using rules
— Recursive domain definitions supported
— Domains not finitely bounded a priori
— General-purpose grounder

JELIA’16, November 10, 2016

19/19

Conclusion

I In this work, we suggest to write declarative first-order
specifications (with term variables) for clauses.

I Advantages of using an ASP grounder for instantiation:
I Exact clause-level control over the output
I All advanced features of the grounder available
I Uniform encodings enabled
I Elaboration tolerance

I The combination of GRINGO and SATGRND provides a
general-purpose grounder for SAT and MaxSAT.

I Other back-end formats are supported: SMT, MIP, PB.

I Further extensions to SATGRND are being developed:

— Support for acyclicity constraints

	Clause Programs
	Modeling Methodology and Applications
	Implementation
	Discussion and Conclusion

