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Background: Boolean Satisfiability
Satisfiability (SAT) solvers provide an efficient implementation
of classical propositional logic.

I SAT solvers expect their input in the conjunctive normal
form (CNF), i.e., a conjunction of clauses l1 ∨ . . . ∨ lk .

I Clauses can be viewed as “machine code” for expressing
constraints and representing knowledge.

I Typically clauses are either

— generated using a procedural program or
— obtained when more complex formulas are translated.

I First-order formulas are prone to combinatorial effects:

¬edge(X ,Y ) ∨ ¬edge(Y ,Z ) ∨ ¬edge(Z ,X )∨
(X = Y ) ∨ (X = Z ) ∨ (Y = Z )
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Analogue: Assembly Languages
smodels:

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp

movq %rdi, -24(%rbp)

movq %rsi, -32(%rbp)

movl $0, -4(%rbp)

movq -32(%rbp), %rdx

movq -24(%rbp), %rax

movq %rdx, %rsi

movq %rax, %rdi

call propagate

movq %rax, -24(%rbp)

movq -24(%rbp), %rax

movq %rax, %rdi

movl $0, %eax

call conflict

testl %eax, %eax

je .L2

movl $0, %eax

jmp .L3

.L2:

movq -24(%rbp), %rax

movq %rax, %rdi

movl $0, %eax

call complete

testl %eax, %eax

je .L4

movl $-1, %eax

jmp .L3

...

.L3:

leave

ret
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How to Generate Machine Code?

1. Assembly language

2. Assembly language + macros [tigcc.ticalc.org]

.macro sum from=0, to=5

.long \from

.if \to-\from

sum "(\from+1)",\to

.endif

.endm

7−→

.long 0

.long 1

.long 2

.long 3

.long 4

.long 5

3. High level language (C, C++, scala, ...) + compilation

How much can we control the actual output in each case?

tigcc.ticalc.org
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Our Approach
I A fully declarative approach where intended clauses are

given first-order specifications in analogy to ASP.
I In the implementation, we harness state-of-the-art ASP

grounders for instantiating terms variables in clauses.
I The benefits of our approach:

— Complex domain specifications supported
— Database operations available
— Uniform encodings enabled
— Elaboration tolerance

I WYSIWYG: black(X ) ∨ gray(X ) ∨ white(X )← node(X ).

node(a). black(a)∨gray(a)∨white(a).
node(b). 7−→ black(b)∨gray(b)∨white(b).
node(c). black(c)∨gray(c)∨white(c).
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Clause Programs: Syntax

I The signature P for predicate symbols is partitioned into
domain predicates Pd and varying predicates Pv.

I Domain rules in Pd are normal rules of the form

a← c1, . . . , cm, ∼d1, . . . , ∼dn.

I The syntax for clause rules is

a1 ∨ · · · ∨ ak ∨¬b1 ∨ · · · ∨ ¬bl ← c1, . . . , cm, ∼d1, . . . , ∼dn.

where the head (resp. body) is expressed in Pv (resp. Pd).

I For standard use cases, the domain part of a program
should be stratified to enable evaluation by the grounder.
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Example: Graph Coloring

Domain rules

node(X ) ← edge(X ,Y ).
node(Y ) ← edge(X ,Y ).

Clause rules

black(X ) ∨ gray(X ) ∨ white(X ) ← node(X ).
¬black(X ) ∨ ¬black(Y ) ← edge(X ,Y ).
¬gray(X ) ∨ ¬gray(Y ) ← edge(X ,Y ).
¬white(X ) ∨ ¬white(Y ) ← edge(X ,Y ).

Uniform encoding that works for any graph instance!
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Clause Programs: Semantics

I The Herbrand universe Hu(P) and the Herbrand base
Hb(P) of a clause program P are defined as usual.

I The ground program Gnd(P) is the respective Herbrand
instantiation of P over the universe Hu(P).

I The domain reduct P I of P with respect to I contains the
positive rule a← c1, . . . , cm for every domain rule

a← c1, . . . , cm, ∼d1, . . . , ∼dn.

such that {d1, . . . ,dn} ∩ Id = ∅.

Definition
An Herbrand interpretation I ⊆ Hb(P) is a domain stable model
of P iff I |= Gnd(P) and Id is the least model of Gnd(P)I .
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Example: Continued
1. Suppose the following facts as instance information:

edge(a,b),edge(b, c),edge(c,a).
2. Additional domain atoms from node(X ;Y )← edge(X ,Y ):

node(a),node(b),node(c).

3. Clauses from black(X ) ∨ gray(X ) ∨ white(X )← node(X ):

black(a) ∨ gray(a) ∨ white(a),
black(b) ∨ gray(b) ∨ white(b),
black(c) ∨ gray(c) ∨ white(c).

4. Clauses from ¬black(X ) ∨ ¬black(Y )← edge(X ,Y ) etc:

¬black(a) ∨ ¬black(b),
¬black(b) ∨ ¬black(c),
¬black(c) ∨ ¬black(a),

¬gray(a) ∨ ¬gray(b),
¬gray(b) ∨ ¬gray(c),
¬gray(c) ∨ ¬gray(a),

¬white(a) ∨ ¬white(b),
¬white(b) ∨ ¬white(c),
¬white(c) ∨ ¬white(a).
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Encodings

In the paper, we illustrate the use of clause programs:

I Graph n-coloring
I n-Queens
I Full propositional logic
I Haplotype inference

Further sample encodings can found from our website:

I Structure learning for Markov networks
I Instruction scheduling
I SuDoku puzzles

http://research.ics.aalto.fi/software/sat/satgrnd/

http://research.ics.aalto.fi/software/sat/satgrnd/


JELIA’16, November 10, 2016

12/19

Graph n-Coloring

I The number of colors is parameterized by n.
I We may exploit many advanced features of the grounder:

— Range specifications
— Pooling (substantially revised in GRINGO v. 4)
— Conditional literals

I If need be, the lengths of clauses can vary dynamically
depending on the problem instance!

color(1 . . . n).

node(X ;Y ) ← edge(X ,Y ).∨
hascolor(X ,C) : color(C) ← node(X ).

¬hascolor(X ,C) ∨ ¬hascolor(Y ,C) ← edge(X ,Y ), color(C).
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More Complex Domains: Highlights
I Parameterization and non-trivial domains in n-Queens:

coord(1 . . . n).
dir(0,−1). dir(−1,0). dir(−1,−1). dir(−1,1).
target(X ,Y ,R,C)← coord(X ;Y ;X+R;Y+C),dir(R,C).

attack(X+R,Y+C,R,C) ∨ ¬attack(X ,Y ,R,C)←
target(X ,Y ,R,C), target(X−R,Y−C,R,C).

I Dynamic-length clauses for haplotype inference:

used(G2,E2)∨∨
same(G1,E1,G2,E2) :

(keep(G1), E1 = 0 . . . 1, (G1,E1) < (G2,E2))←
keep(G2), E2 = 0 . . . 1.
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Beyond Clauses: Full Propositional Logic

1. Domains of subsentences, compounds, and atoms:

sub(S)← sat(S).
sub(S1;S2)← sub(a(S1,S2)). co(a(S1,S2))← sub(a(S1,S2)).
sub(S1;S2)← sub(o(S1,S2)). co(o(S1,S2))← sub(o(S1,S2)).
sub(S)← sub(n(S)). co(n(S))← sub(n(S)).
true(S)← sat(S). at(S)← sub(S), ∼co(S).

2. Tseitin transformations (e.g., for a(S1,S2)):

true(a(S1,S2)) ∨ ¬true(S1) ∨ ¬true(S2)← co(a(S1,S2)).
¬true(a(S1,S2)) ∨ true(S1)← co(a(S1,S2)).
¬true(a(S1,S2)) ∨ true(S2)← co(a(S1,S2)).

3. Sentences to satisfy as instance information:

sat(o(n(a),b)). sat(o(n(b), c)). sat(o(n(c),a)).
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Implementation Strategy

I Clause programs can be directly grounded using the
state-of-the-art ASP grounder GRINGO (v. 2 onward).

I The output of GRINGO is a ground disjunctive logic program
Gnd(P) consisting of bodyless disjunctive rules

a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl .

where each ai and ¬bj is a classical literal over Hbv(P).

I The semantic connection of a and its negation ¬a can be
re-established by viewing such disjunctions as clauses.

I The classical models of Gnd(P) correspond to the domain
stable models of the clause program P.
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Tool Support

I An adapter called SATGRND can be used to transform the
output of GRINGO into DIMACS.

I If optimization statements are used, a (weighted partial)
MaxSAT instance will be produced in DIMACS format.

I Enhanced user experience enabled by symbolic names:

gringo myprog.lp | satgrnd \

| owbo-acycglucose -print-method=1 -verbosity=0

I The required tools are available for download at

GRINGO: potassco.org/
SATGRND and OWBO-ACYCGLUCOSE:

research.ics.aalto.fi/software/sat/download/

potassco.org/
research.ics.aalto.fi/software/sat/download/
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Haplotype Inference Re-Engineered

I The RPOLY system is a reference implementation of
haplotype inference [Graça et al., 2007] based on

— procedurally generated PB optimization instances and
— the use of MINISAT+ as the back-end PB solver.

I The performance improved 40× by remodeling the
problem with SATGRND and using CLASP as the PB solver.

RPOLY ⇒ ⇒-LB ⇔ ⇔-LB
t 182.3 3.3 3.5 4.7 5.5 C

LA
S

P

|
 | 466,933 47,262 52,420 57,789 67,178
|C| 36,299 28,318 28,454 49,054 49,192
t 133.6 1789.8 1402.7 2639.1 2467.4

M
IN

IS
AT+

|
 | 863,514 6,779,058 6,441,567 6,769,964 5,866,433
|C| 36,859 28,500 28,638 51,003 51,142
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Related Work

I Procedural approaches: Python interface of Microsoft’s Z3.

I Declarative approaches:
— Propositional schemata and PSGRND [East et al., 2006]
— Grounding first-order formulas [Aavani et al., 2011; Blockeel

et al., 2012; Jansen et al., 2014; Wittocx et al., 2010]
— IDP3 [Jansen et al., 2013]
— Datalog in planning domains [Helmert, 2009]
— Translating constraint models into CNF [Huang, 2008]

I Strengths combined by the GRINGO interface:
— Domains definable using rules
— Recursive domain definitions supported
— Domains not finitely bounded a priori
— General-purpose grounder
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Conclusion

I In this work, we suggest to write declarative first-order
specifications (with term variables) for clauses.

I Advantages of using an ASP grounder for instantiation:
I Exact clause-level control over the output
I All advanced features of the grounder available
I Uniform encodings enabled
I Elaboration tolerance

I The combination of GRINGO and SATGRND provides a
general-purpose grounder for SAT and MaxSAT.

I Other back-end formats are supported: SMT, MIP, PB.

I Further extensions to SATGRND are being developed:

— Support for acyclicity constraints
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