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Abstract. In this paper, we view declarative problem solving from the perspec-
tive of answer set programming (ASP). The idea is to solve anygiven problem
by formalizing it as a logic program whose answer sets capture the solutions of
the problem. In practice such sets are computed using a special-purpose search
engine, viz. an answer set solver, and a ground program obtained by instantiating
term variables appearing in the rules of the program. Due to apotential blow-up
in the number of rules, the generation of the ground program can become a bur-
den. Since modular program development is gaining more attention in ASP, the
objective of this paper to apply modules in the constructionof ground logic pro-
grams. Our specific goal is to demonstrate that a tool that links together ground
program modules can be effective and highly useful when ground programs are
generated. In this paper, we provide a formal account of ground program mod-
ules and present a link editor,LPCAT, which is designed to be used withSMOD-
ELS-compatible grounders and answer set solvers. We study the efficiency of our
approach using a benchmark that yields millions of ground rules. Moreover, we
illustrate the potential of ground program modules in program transformations.

1 Introduction

In this paper, we view declarative problem solving from the standpoint of answer set
programming (ASP) [15, 16, 1] which emerged in the context oflogic programming in
the 90s. According to this paradigm, any problem of interestis formalized as a logic
program whoseanswer setscapture the solutions of the problem. Answer sets are com-
puted in practice using a dedicated search engine, viz.an answer set solver, and a
ground logic program obtained by instantiating term variables in the rules of the pro-
gram. Although moderngrounderssuch asLPARSE [20] andGRINGO [7] try to reduce
the number of resulting ground rules using partial evaluation techniques there is still
a potential blow-up in the number of rules—slowing down the computation of answer
sets. To address this downside, new reasoning techniques have been developed to cir-
cumvent grounding altogether [3]. Another strategy is to rearrange the computation of
answer sets as a stepwise process where ground rules are produced for one program
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slice at a time and the respective portion of an answer set is then computedincremen-
tally [5]. Many application domains suit to this strategy as they involve parameters (such
as plan length in AI planning [13]) that induce a natural slicing for problem instances.

On the other hand, modular program development is becoming increasingly impor-
tant in ASP. Due to the global nature of answer sets, however,it is non-trivial to find an
appropriate notion of program modules so that the semanticsof a logic program can be
directly based on the semantics of its component modules. The early approach based
on splitting sets[14] is inherently asymmetric: the composition of logic programs out
of modules is viewed as an ordered sequence of program unionsin the most general
setting. The same can be stated about the slicing technique [5] described above due to
interleaving grounding and the computation of (partial) answer sets. By contrast, the
aim of our work is a symmetric (order-independent) relationship of program modules
based on the theory of modules presented in [17] in the case ofSMODELS programs.
These results provide a basis for a systematic (de)composition of ground programs pro-
duced by grounders. The respective operations on groundSMODELS programs have
been implemented as tools calledMODLIST and LPCAT.1 The former can be used to
split a ground logic program into smallest possible units asdefined in [17]. The latter
is a link editor, or linker for short, in the sense of traditional compilation. The toolcan
be used, among other things, to combine modules produced byMODLIST back into a
single entity which is then ready to be processed by an answerset solver.

A specific objective of this paper is to study how a link editorlike LPCAT could be
exploited in the construction of ground programs in the firstplace. The idea is to pro-
duce the grounding of logic program in separate parts decided by the programmer and
then linked together usingLPCAT. The file format of theSMODELSsystem is used as the
intermediate representation of modules.2 Hence the approaches described in this paper
are applicable to anySMODELS-compatible grounders and solvers—not justLPARSE

and SMODELS. The other grounder mentioned above,GRINGO, meets this criterion.
There are also other answer set solvers such asCMODELS [8] and CLASP [6] that are
basicallySMODELS-compatible but involve language extensions. Some of them can be
translated back into primitives included in theSMODELS format.

The tools described in this paper are also applicable in far more versatile ways.
They were originally designed for verification purposes, i.e., the problem of deciding
whether two programs have exactly the same answer sets. One way to address such
a problem is to modularize the task by splitting the two programs under consideration
into small components and by checking the equivalence of components [18]. We foresee
yet another general strategy for performing modular transformations to programs. The
idea is (i) to split the program into its components, e.g., byinvoking MODLIST, (ii) to
transform each module in turn using transformation-specific tools, and (iii) to compose
the result withLPCAT. It is likely that such a strategy will at least save memory since
the input programs (modules) for the transforming program will be smaller. Our further

1 Both tools are available in theASPTOOLS collection athttp://www.tcs.hut.fi/
Software/asptools/.

2 The expected benefits and requirements of intermediate representation languages are discussed
in detail in [10]. A more recent and more general proposal, viz. answer set programming
intermediate language specification(ASPILS) can be found in [4].
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objective of this paper is to study the time efficiency of thisstrategy. To this end, a
natural requirement is that modularization should not bring about substantial overhead.

The rest of this paper is organized as follows. In Section 2, we provide a brief
account ofSMODELSprograms and, in particular, their modularity properties.The aim
is to establish a theoretical background for the tools introduced in the sequel. This
takes place in Section 3 where some technical aspects of program (de)composition are
discussed. The goal of Section 4 is to present two encodings of the benchmark problem
used in this paper, namely then-queens problem. The first is a basic encoding as an
SMODELSprogramQsm

n . The second is a modular one which is obtained by identifying
a sliceQmod

n,k for each parameter value1 ≤ k ≤ n. The resulting ground program can
be computed as ajoin Qmod

n,1 ⊔ . . . ⊔Qmod
n,n by linking the component programsQmod

n,1 ,
. . . , andQmod

n,n together usingLPCAT. The outcome is equivalent withQsm
n but may

differ syntactically due to new atoms introduced by grounders. Section 5 is devoted to
the performance analysis of contemporary grounders whenQn is produced directly or
when it is grounded slice-by-slice and linked together using LPCAT. The results indicate
systematic savings as regards time. In certain cases, substantial memory savings can be
achieved using the modular approach. In Section 6, we present a strategy for performing
modular program transformations usingLPCAT. Section 7 concludes the paper.

2 Theoretical Background for Program Modules

In this section, we review the syntax and semantics ofSMODELS programs [19] and
present the notion of program modules from [17] which are both central for the design
of LPCAT. Moreover, we recall the basic modularity properties of answer sets [17] which
provide the foundation for modular (de)composition ofSMODELSprograms.

Any SMODELS-compatible grounder is supposed to produce a ground program in
an intermediate representation, i.e., the file format originally introduced in the context
theSMODELSsystem. The format is based on a numerical encoding of four rule types:

a← b1, . . . , bn,∼c1, . . . ,∼cm (1)

{a1, . . . , ah} ← b1, . . . , bn,∼c1, . . . ,∼cm (2)

a← l ≤ {b1, . . . , bn,∼c1, . . . ,∼cm} (3)

a← w ≤ {b1 = wb1 , . . . , bn = wbn
,∼c1 = wc1

, . . . ,∼cm = wcm
} (4)

Rules of the forms above are assumed to be ground already. Hencea, ai’s, bj ’s, andck ’s
are ground atoms.Basic rulesof the form (1) arenormal rulesinvolving default nega-
tion (denoted by “∼”). The intuition is that theheada is supposed to be true whenever
thebodyof the rule is satisfied, i.e., when allbj ’s are true and none ofck ’s is true by any
other rules in the program. The head{a1, . . . , ah} of achoice rule(2) denotes a specific
choice to be made when the body of the rule is satisfied: any ofai’s can be true. The
body of acardinality rule(3) is satisfied when the number of satisfied literals is at least l.
More generally, the body of aweight rule(4) is satisfied if the sum of weights (denoted
by wbj

’s andwck
’s above) associated with satisfied literals is at leastw. Using short-

handsA, B, andC for the sets of atoms involved in (1)–(4) and∼C = {∼c | c ∈ C}
for any setC of atoms, we obtain abbreviations such as{A} ← B,∼C for a choice
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rule (2). Likewise, a shorthanda ← w ≤ {B = WB ,∼C = WC} denotes a weight
rule (4) with the respective sets of weightsWB andWC from (4).

An SMODELSprogramP is defined as a finite set of ground rules of the forms (1)–
(4). Given such a programP , the set of atoms occurring in its rules, i.e., the signature
of P , is denoted byAt(P ). We encapsulateSMODELS programs in the way proposed
in [17]. An SMODELSprogram moduleΠ is a quadruple〈P, I, O, H〉 where

1. P is anSMODELSprogram,
2. I, O, andH are pairwise disjoint sets of input, output, and hidden atoms;
3. At(P ) ⊆ At(Π) whereAt(Π) is defined asI ∪O ∪H ; and
4. Hd(P ) ∩ I = ∅ whereHd(P ) is the set of head atoms ofP .

ThevisiblepartAtv(Π) = I∪O of At(Π) can be accessed by other modules to supply
input for Π or to utilize its output. Theinput signatureI and theoutput signatureO
of Π is also denoted byAti(Π) andAto(Π), respectively. Thehiddenatoms in the
differenceAth(Π) = At(Π) \ Atv(Π) = H can be used to formalize some auxiliary
concepts ofΠ . The fourth requirement of a program moduleΠ ensures that input atoms
are only allowed to appear as positive or negative conditions in rule bodies.

Example 1.Consider anSMODELSprogram moduleΠ having the following rules:

d← 2 ≤ {a, b, c}. e← a, b, c. f ← ∼d,∼f. f ← e,∼f.

The I/O interface ofΠ = 〈P, I, O, H〉 is determined byI = {a, b, c}, O = ∅, and
H = {d, e, f}. The purpose ofΠ is to check that exactly two among the input atomsa,
b, andc are true. To achieve this, three auxiliary atoms are used. The meaning ofd is that
at least two input atoms are true as formalized by the first rule. The second rule makes
e true only if all input atoms are true simultaneously. The last two rules are effectively
constraintsthat deny∼d ande, i.e.,d ande must be true and false, respectively. In this
manner, we obtain the desired net effect: exactly two input atoms are true. �

Let us now turn our attention to the semantics of program modules which cover also
ordinarySMODELSprograms as their special case, i.e., whenAti(Π) = ∅ = Ath(Π).
The semantics of default negation goes back to [19] whereas the treatment of input
atoms is based on [12, 17]. Both aspects are simultaneously covered by the following
definition and the resulting program does not contain input atoms nor negative literals.

Definition 1 ([12, 17]).Given a program moduleΠ = 〈P, I, O, H〉, the reductof P

with respect to a setS ⊆ At(Π) and the input signatureI, denoted byPS,I , contains

1. a basic rulea← (B \ I) if and only if there is a basic rulea← B,∼C in P such
thatB ∩ I ⊆ S, andS ∩C = ∅; or there is a choice rule{A} ← B,∼C in P such
thata ∈ A ∩ S, B ∩ I ⊆ S, andS ∩ C = ∅;

2. a cardinality rulea ← l′ ≤ {B \ I} if and only if there is a cardinality rule
a← l ≤ {B,∼C} in P andl′ = max(0, l − |B ∩ I ∩ S| − |C \ S|); and

3. a weight rulea ← w′ ≤ {B \ I = WB\I} if and only if there is a weight rule
a← w ≤ {B = WB,∼C = WC} in P and

w′ = max(0, w −
∑

b∈B∩I∩S wb −
∑

c∈C\S wc).
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Given anyΠ = 〈P, I, O, H〉 andS ⊆ At(Π), the reduced programPS,I is mono-
tonic and thus it has a unique closure3 Cl(PS,I) ⊆ O ∪H by Knaster-Tarski lemma.

Definition 2. A setS ⊆ At(Π) is an answer set of anSMODELS program module
Π = 〈P, I, O, H〉, denoted byS ∈ ASet(Π), if and only ifS \ I = Cl(PS,I).

Example 2.The moduleΠ from Example 1 has three answer sets in total, i.e.,ASet(Π)
equals to{{a, b, d}, {a, c, d}, {b, c, d}}. To verify thatS = {a, b, d} is indeed an an-
swer set, we note thatPS,I = {d← 0 ≤ {}. f ← e. } for whichCl(PS,I) = {d} =
S \ I. On the other hand, the setS′ = {a, b, c, d} is not an answer set asPS′,I consists
of d← 0 ≤ {}, e←, andf ← e. ThenCl(PS′,I) = {d, e, f} 6= S′ \ I = {d}. �

Unfortunately, answer sets as defined above do not provideSMODELS program
modules with a fullycompositionalsemantics. For instance, taking straightforward
unions of programs is not sufficient to guarantee that answersets assigned to the union
could be obtained by combining answer sets of its members. This is why we resort
to Gaifman-Shapiro-style criteria for program composition as put forth in [17]. Two
modulesΠ1 andΠ2 are eligible for composition only if their output signatures are
disjoint and theyrespect each other’s hidden atoms, i.e. Ath(Π1) ∩ At(Π2) = ∅ and
Ath(Π2) ∩At(Π1) = ∅. The outcome of composingΠ1 andΠ2 is defined as follows.

Definition 3 ([17]). The composition of program modulesΠ1 = 〈P1, I1, O1, H1〉 and
Π2 = 〈P2, I2, O2, H2〉, denoted byΠ1 ⊕Π2, is

〈P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2, H1 ∪H2〉 (5)

if Ato(Π1) ∩Ato(Π2) = ∅ andΠ1 andΠ2 respect each other’s hidden atoms.

Example 3.Consider anotherSMODELSprogram moduleΠ ′ = 〈P ′, I ′, O′, H ′〉 where
P ′ contains a single choice rule{a, b, c} ← andI ′ = ∅, O′ = {a, b, c}, andH ′ = ∅.
The composition ofΠ from Example 1 withΠ ′ is defined sinceO ∩ O′ = ∅, H ′ = ∅
andΠ ′ does not mention atoms fromH . The resulting compositionΠ ⊕Π ′ has an I/O
interface based on the sets of atoms∅, {a, b, c}, and{d, e, f}, respectively. �

As demonstrated in [17], the conditions of Definition 3 do notyet imply the desired
relationship of answer sets in general. The conditions can be suitably tightened using
the positive dependency graphof the compositionΠ1 ⊕ Π2. Generally speaking, the
positive dependency graphDG+(Π) associated with anSMODELS program module
Π = 〈P, I, O, H〉 is the pair〈O ∪H,≤〉 whereb ≤ a holds for any atomsa andb of
O ∪ H if and only if a appears in the head of a rule ofP so thatb ∈ B. A strongly
connected component(SCC)S of DG+(P ) is a maximal setS ⊆ At(P ) such that
b ≤∗ a holds for everya, b ∈ S, i.e., all atoms ofS depend positively on each other.
If the compositionΠ1 ⊕ Π2 is defined, the members of the composition aremutually
dependentif and only if DG+(Π1 ⊕ Π2) has an SCCS such thatS ∩ Ato(Π1) 6= ∅
andS ∩Ato(Π2) 6= ∅, i.e., the SCC in question is effectivelysharedby Π1 andΠ2.

3 The least setS′ of atoms such thatS′ ⊆ O ∪H andS′ is closed under the rules ofP S,I .
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Definition 4 ([17]). Thejoin Π1 ⊔Π2 of twoSMODELSprogram modulesΠ1 andΠ2

is Π1 ⊕Π2, providedΠ1 ⊕Π2 is defined andΠ1 andΠ2 are mutuallyindependent.

The key observation from [17] is that positive recursion cannot be tolerated across
module boundaries. The proviso of Definition 4 is sufficient to guarantee that, roughly
speaking, a (global) answer set of anSMODELSprogram is also a (local) answer set of
its modules and vice versa. The following theorem characterizes the exact relationship
of answer sets for the joinΠ1 ⊔Π2 and its component modulesΠ1 andΠ2.

Theorem 1 (Module Theorem [17]).If Π1 andΠ2 are SMODELS program modules
such thatΠ1 ⊔Π2 is defined, thenASet(Π1 ⊔Π2) = ASet(Π1) ⋊⋉ ASet(Π2).

In the above, the operation⋊⋉ denotes anatural joinof compatibleanswer sets, i.e.,
S1 ∪ S2 belongs toASet(Π1) ⋊⋉ ASet(Π2) if and only if S1 ∈ ASet(Π1), S2 ∈
ASet(Π1), andS1 ∩ Atv(Π2) = S2 ∩ Atv(Π1). Theorem 1 is easily generalized for
finite joins of modules: ifΠ1 ⊔ · · · ⊔Πn is defined, then

ASet(Π1 ⊔ · · · ⊔Πn) = ASet(Π1) ⋊⋉ · · · ⋊⋉ ASet(Πn). (6)

Equation (6) provides a semantical basis for the link editorLPCAT to be described in
detail in the next section. GivenSMODELSprogram modulesΠ1, . . . , Πn which (i) re-
spect each other’s hidden atoms, (ii) have distinct output signatures, and (iii) are mutu-
ally independent, the tool can be used to safely compute their composition. The answer
sets of the resulting groundSMODELSprogram are then governed by (6).

Example 4.RecallSMODELSprogram modulesΠ andΠ ′ from Examples 1 and 3. The
setASet(Π) is listed in Example 2 whereas it is clear thatASet(Π ′) = 2{a,b,c}. For
instance,T = {a, b} belongs to this set, because(P ′)T,I′

= {a← . b← . } by Defi-
nition 1. Note thatS from Example 2 andT are mutually compatible, asS∩Atv(Π ′) =
{a, b} = T ∩ Atv(Π), andS ∪ T = S. It follows thatASet(Π ⊕Π ′) = ASet(Π) ⋊⋉

ASet(Π ′) = ASet(Π) by generalization. This reflects the fact that the joinΠ ⊔Π ′ is
defined and Theorem 1 holds for the modulesΠ andΠ ′ under consideration. �

Finally, let us discuss how non-ground programs fit into thisscenario. Given a set
of non-ground rulesP , we writeGnd(P ) for the resulting groundSMODELSprogram
module. Because non-ground rules typically involve language extensions in addition
to term variables, we leave the exact definition ofGnd(Π) open and refer the reader
to [20] for a comprehensive syntax. To exploit the theory of modules presented so far
we assume that for each non-ground programP , the semantics ofP is determined
by the setASet(Gnd(P )) whereGnd(P ) contains only rules of the forms (1)–(4).
In the sequel, our strategy to computeGnd(P ) is to split P into partsP1, . . . , Pn

so thatGnd(P1), . . . , Gnd(Pn) can be computed in separation, the joinGnd(P1) ⊔
. . . ⊔ Gnd(Pn) is defined, and it effectively4 equals toGnd(P ) for the original pro-
gramP . HenceASet(Gnd(P1)) ⋊⋉ · · · ⋊⋉ ASet(Gnd(Pn)) essentially captures the set
ASet(Gnd(P )) of answer sets associated withP . In contrast to the incremental ap-
proach of [5], the strategy just described is totally symmetric and, basically, the join
Gnd(P1) ⊔ . . . ⊔Gnd(Pn) can be computed in any order.

4 The new (hidden) atoms inserted by grounders may lead to slight syntactic differences, though.
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3 Practical Issues of the Implementation

The objectives of this section are twofold. First, we describe how the notion ofSMOD-
ELS program modules, as outlined in Section 2, can be realized inpractice. Second, we
discuss the main design decisions behind the link editorLPCAT.

It is natural to assume that thesource codeof an ASP module is written in the input
language of the grounder to be used—exploiting term variables and language extensions
as appropriate. However, for compatibility reasons, we expect that the resulting ground
program is in the file format of theSMODELSsystem. Note that such a representation is
analogous to anobject modulein conventional programming languages. Recalling the
general structure〈P, I, O, H〉 of SMODELS program modules from Section 2, this is
how we obtain the setP of ground rules. In order to control the visibility of atoms,both
LPARSEandGRINGOsupporthideandshowdeclarations. The atoms which are not hid-
den will have a name in a symbol table which accompanies the internal representation
of rules (in terms of natural numbers). In practice, the table provides a partial mapping
from natural numbers to symbolic names of atoms.

What remains is the distinction between the setsI andO. Input atoms can be sim-
ulated in terms ofexternal/non-domain5 predicates ifLPARSE is used but such decla-
rations are not recognized byGRINGO for the moment. A further obstacle is that the
intermediate file format used bySMODELS-compatible tools does not allow the specifi-
cation of input atoms either. This shortage is fixed in the ASPILS proposal [4] but the
format in question is not widely understood by ASP systems yet. To resolve this issue
pragmatically, we have coordinated an extension of theSMODELSfile format which en-
ables the declaration of external (input) atoms in the same way ascompute statements
are used to assign truth values to particular atoms. This enables the reliable transmission
of external atoms from a grounder to solvers and other tools.Note that a typical answer
set solver would assign input atoms false by default in the absence of defining rules.

To help with interfacing programs involving external atomswith existing systems,
we provide a simple program calledIGEN which replaces such declarations by aninput
generator. This amounts to adding a choice rule (2) withn = 0 andm = 0 for the entire
set of input atomsI = {a1, . . . , ah} in a moduleΠ = 〈P, I, O, H〉. This construction
was actually illustrated by Examples 3 and 4: the moduleΠ ′ plays the role of an input
generator andΠ ⊕Π ′ can be viewed as a conventionalSMODELSprogram whered, e,
andf are hidden. In this way, one can compute stable models for individual modules in
separation from the rest of the answer set program and it is not necessary to modify the
source code of a module to achieve this.

We turn our attention to another application of program modules now and consider
the composition of larger (ground) programs in terms of the operator⊕ from (5). We
have implemented this functionality as alink editor calledLPCAT whose design is dis-
cussed next. Additionally, the tool checks themodule conditionAto(Π1)∩Ato(Π2) =
∅ from Definition 3 upon request. The current version leaves the check for mutual inde-
pendence at the programmer’s responsibility. This is merely a design decision to save
memory: the memory reserved by the rules of a module can be deallocated as soon as

5 Consulthttp://www.tcs.hut.fi/Software/smodels/lparse.ps for details.
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they have been written out. This would not be possible if the SCCs of the resulting
program were incrementally constructed. The main tasks ofLPCAT are the following.

1. The symbolic names of (visible) atoms given in symbol tables are matched. This
accounts for the computation of(I1 \ O2) ∪ (I2 \ O1) in Equation (5). Thus an
atom which is defined by a module and used by another will have aunique atom
number in the resulting symbol table. This functionality isimplemented in terms
of a standard hash table which also stores the natural numberassociated with each
name. Thus, when the hash table is consulted to check whethera particular name is
already in use and this turns out to be the case, the respective atom number can be
returned. This number is needed for subsequent substitutions in the following step.

2. Each module isrelocated, i.e., the atom numbers used in the intermediate represen-
tation of rules are replaced by contiguous values fromn + 1 to n + m wheren is
the number of atoms encountered so far andm is the number of distinct atoms in
the module not seen yet. Of course, the idea is that the numbers of atoms that are
encountered again remain unchanged in the relocation process. Such atoms have
already a number between1 andn.

The output ofLPCAT uses contiguous numbers for atoms in the range1 . . . n where
n is the number of distinct atoms. Hence all unused atom numbers will be effectively
removed and the symbol table gets compressed. This will mostlikely reduce the amount
of memory reserved by the solver which, in turn, can also favor running times.

Large programs can involve many modules and storing them in separate files can
become a burden of its own. This is especially the case if existing ground programs are
afterwards split into modules, e.g., using SCCs as the criterion. As a result, there might
be simply too many files to handle: even basic shell commands may fail to the user’s
surprise if thousands of arguments are provided (consider,e.g., “ls *” in this respect).
To deal with huge numbers of modules,LPCAT is able to read in modules recursively
from file or, perhaps more conveniently, from streams. Then,at least in certain cases,
expensive file operations can be avoided altogether, e.g., if shell pipelinesare used for
passing modules around. Applications of this feature are addressed in Section 6.

4 Encoding and Slicing then-Queens Problem

The famousn-queens problem is related to the game of chess: the goal is toplace
simultaneouslyn queen pieces on an×n chess board so that they do not threaten each
other. In this section, we present a basic encoding as anSMODELS programQsm

n that
goes back to [16]. However, we will express the placement of queens using choice rules
(2) rather than basic/normal rules for better readability.The use of other rule types such
as cardinality rules will be discussed in the end of this section. In addition to the basic
encoding, we develop a sliced version ofQsm

n which consists of modulesQmod
n,k where

the parameter1 ≤ k ≤ n. Roughly speaking, the rules inQmod
n,k formalize choices and

constraints related to thekth row and thekth column of the chess board.
We decided to use then-queens problem in this paper for several reasons. First, the

problem definition is simple and intuitively clear and thus the domain lends itself for
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1. d(1). . . . d(n).
2. {q(X, Y )} ← d(X),d(Y ).
3. u← q(X, Y1), q(X, Y2), d(X), d(Y1), d(Y2), Y1 < Y2.

4. u← q(X1, Y ), q(X2, Y ), d(X1), d(X2), d(Y ), X1 < X2.

5. u← q(X1, Y1), q(X2, Y2), d(X1),d(X2), d(Y1), d(Y2),
X1 < X2, |X1 −X2| = |Y1 − Y2|.

6. hasq(X)← q(X, Y ), d(X),d(Y ).
7. u← ∼hasq(X), d(X).
8. f ← u,∼f.

Fig. 1.An encoding of then-queens problem using basic and choice rules

easy illustration. Second, there is a natural parameter, the number of queensn, involved
which affects the complexity of the problem in a non-linear way. Third, although the
problem is easy to solve for small numbers of queens using ASPtechniques, size factors
come into play when the number of queens is increased up to100 or more. Then it is
no longer easy to deal with resulting ground programs which involve millions of rules.
Fourth, variants of then-queens problem are standard benchmarks in ASP competitions.

A program formalizing then-queens problem is presented in Figure 1. A syntax that
is close to the input syntax ofLPARSE is used. We exploit term variablesX , Y , etc. in
the rules but, otherwise, try to use rules of the forms (1) and(2) as far as possible. In the
encoding, predicated(·) is used as a domain predicate to define valid coordinate values
1 . . . n for then queens to be placed on the board. These predicates are evaluated by
LPARSEand effectively removed from the resulting ground program.The same applies
to extra conditions expressed in terms of infix operators< and=. The domain ofd(·)
is specified on line 1. The choice whether there is a queen in square(X, Y ) or not is
stated on line 2. Rules on line 3–5 formalize the constraintsinvolving the columns, rows,
and diagonals of the chess board, respectively. The atomu denotingunsatisfiabilityis
derived in case of any two queens threatening each other. Rules listed on lines 6–7
ensure that there is at least one queen in each columnX of the board. The last rule
excludes answer sets containingu, i.e., those violating the constraints governing the
problem. In practice, the program can be written without thenew atomu and the last
rule. In other words, rules without heads can be used directly to formalize constraints.

Our next objective is to find a way of splitting the encoding above inn slices pa-
rameterized by1 ≤ k ≤ n. To this end, we introduce arestricteddomainrd(·) for the
coordinate values1 . . . k − 1. Actually, this can be defined in terms of a rule

rd(X)← d(X), X < k.

Then placements on thekth column and thekth row are captured by these choice rules:

{q(k, Y )} ← rd(Y ). {q(k, k)}. {q(X, k)} ← rd(X).

In addition to rules above, it is necessary to declareq(·, ·) as an external predicate,
since the choices regarding other columns and rows are formalized by other slices of
the program. The column-wise constraints involvingkth squares in a column/row are:
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u← q(k, Y1), q(k, Y2), rd(Y1), rd(Y2), Y1 < Y2.
u← q(X, Y ), q(X, k), d(X), rd(Y ).

Due to obvious symmetry between rows and columns, we omit therequired row-wise
constraints. As regards diagonals, the constraints incident with kth squares are:

u← q(X1, k), q(X2, Y2), rd(X1), rd(X2), rd(Y2), |X1 −X2| = |k − Y2|.
u← q(k, Y1), q(X2, Y2), rd(Y1), rd(X2), rd(Y2), |k −X2| = |Y1 − Y2|.
u← q(X, X), q(k, k), rd(X).
u← q(k, Y ), q(Y, k), rd(Y ).

Last, we slice constraints that ensure the existence of at least one queen on each column:

hasq(X)← q(X, k), rd(X). hasq(k)← q(k, Y ), d(Y ). u← ∼hasq(k).

If we compare the rules derived above with the original ones in Figure 1, the number
of source code lines is roughly doubled due to slicing. This goes back the fact that the
problem is inherently two-dimensional. To create a groundSMODELSprogram for the
n-queens problem for a particular value ofn, the rules derived above are to be grounded
for each1 ≤ k ≤ n in turn and linked together usingLPCAT. The efficiency of this
strategy will be addressed in Section 5 using the encoding and slicing described above.

It is worth pointing out that there are also alternative waysto encode then-queens
problem. If cardinality rules (3) are used, it is very easy toformulate that, for instance,
exactly one queen is placed on each columnX :

u← 2 ≤ {q(X, 1), . . . , q(X, n)}. s← 1 ≤ {q(X, 1), . . . , q(X, n)}.
f ← u,∼f. f ← ∼s,∼f.

In words, an assignment is to be disqualified if there are two or no queens on columnX .
We did not resort to rules of this kind because they do not lendthemselves for slicing
in a straightforward way. For instance, if the rule fors above is to be reused in the
formulation ofs← 1 ≤ {q(X, 1), . . . , q(X, n + 1)} for increased problem sizen + 1,
we end up writing normal rules recursively in the way we did for hasq(·). Thus we note
that there are more concise encodings of then-queens problem in sight if cardinality
constraints are considered. But, since finding a space-optimal SMODELS program for
the problem is not the main issue of this paper, we omit the study of such encodings.

The encoding presented above serves as an example of our slicing approach but
for a particular problem. To grasp other potential application domains of the same idea
but on a more general level, we refine the description given inthe end of Section 2. As
presented therein, the slicingP1, . . . , Pn of a programP is based on a certain parameter
1 ≤ i ≤ n that is specific to the problem being solved. To make the role of domain
predicates explicit, we assume that each slicePi consists of the domain partDi and the
restQi = Pi \ Di so thatGnd(Di) is always a set of facts. As demonstrated above,
Qi’s are likely to be disjoint whereas domains grow monotonically: Gnd(D1) ⊆ . . . ⊆
Gnd(Dn). Thus it may be worthwhile to delete instances of domain predicates from
the ground programs as possible withLPARSE. ThenGnd(P ) is obtained as the join of
Gnd(Qi ∪Di) \Gnd(Di) for each1 ≤ i ≤ n andGnd(D) whereD =

⋃n

i=1
Di.
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n 50 100 150 200 250 unit
number of atoms 2.6k 10k 23k 40k 63k
number of rules 210k 1.7M 5.6M 13M 26M
LPARSE-1.0.17 2.26 28.1 130 388 939 s

12 79 260 610 1200 MB
LPARSE-1.0.17+LPCAT-1.17 2.25 21.9 89.7 248 555 s

- 8.6 26 56 100 MB
LPARSE-1.1.2 9.30 86.1 325 845 1850 s

3.4 3.9 4.8 6.0 7.1 MB
LPARSE-1.1.2+LPCAT-1.17 9.27 78.5 279 693 1420 s

- 6.7 26 56 94 MB
GRINGO-2.0.5 2.17 29.1 140 417 998 s

2.3 3.6 5.6 8.5 11 MB
GRINGO-2.0.5+LPCAT-1.17 2.03 22.1 95 275 631 s

- - - - - MB

Table 1.Time and memory resources used by various grounding strategies

5 Performance Analysis

The goal of this section is to evaluate the effectiveness of various grounding strate-
gies using the two encodings introduced in Section 4. As regards grounders, we will
use twoSMODELS-compatible grounders available today:LPARSE(versions 1.0.17 and
1.1.2) andGRINGO (version 2.0.5). The reason for considering two different versions
of LPARSE is that the treatment of symbolic names changed considerably since the
last version of 1.0.* series. There is also another experimental grounder,BINGO, being
developed as part of the Potassco6 collection. It was recently extended to support the
declaration of external predicates in a very refined way: even particular instances of a
predicate can be assumed to be defined outside the current module. However, we had to
excludeBINGO from our experiments due to its restricted input language.

In our benchmark, the idea is to first ground the basic encodingQsm
n using the three

grounders for the values ofn in the range50 . . .250 using an increment of50 queens.
Then the second representation will be used to form the corresponding ground program
Qmod

n in slices which are finally linked together usingLPCAT. Again, each of the three
grounders will be responsible for grounding the required slices one at a time. As the
hardware we use Intel Core2 1.86 Ghz CPUs with 2 GBs of main memory. Running
times are measured by the Linux/usr/bin/time utility whereas sizes of processes
are perceived by taking snapshots of/proc/*/stat ten times per second. Because
GRINGO does not support external predicates for the moment we have to estimate its
running time when grounding the sliced program. In order to preventGRINGO from
dropping relevant ground rules involving external predicates, we add an extra choice
rule {q(X, Y )} ← rd(X), rd(Y ) to thekth slice. Afterwards, we subtract the time
elapsed when grounding and linking these extra rules for each 1 ≤ k ≤ n.

6 Seehttp://potassco.sourceforge.net/ for details.
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The results of our grounding benchmark have been collected in Table 1. The used
memory cannot be calculated accurately whenn = 50 and LPCAT is used or when
extra rules have to be used withGRINGO (hence the dashes in certain entries). More-
over, we expect errors up to 10% in size measurements due to snapshots. The following
observations can be made. The old version ofLPARSE consumes a lot of memory as
it gradually creates data structures for the newly introduced atoms. However, if slicing
andLPCAT are used, the effects of this activity are limited to each slice and the symbol
table cumulated byLPCAT reserves roughly one tenth of memory compared toLPARSE-
1.0.17. This favors also running times so that the groundingstrategy which uses slic-
ing, LPARSE-1.0.17, andLPCAT scales best. The new version ofLPARSE(1.1.2) spends
more time on grounding but uses least space. A reduction is obtained, too, if slicing and
LPCAT are used. It is interesting thatGRINGO scales almost identically withLPARSE-
1.0.17 but eventually uses only slightly more memory thanLPARSE-1.1.2. Our esti-
mates suggest that running times can be reduced using the slicing strategy but not quite
as much as in the case ofLPARSE-1.0.17.

In summary, we conclude that the slicing technique leads to systematic speed-up in
this benchmark. In then-queens benchmark, the combination ofLPARSE-1.0.17 and
LPCAT-1.17 leads to the best performance as regards time whereasGRINGO-2.0.5 is
able to operate in the least amount of memory. There is a further benefit of the mod-
ular approach demonstrated in this section. Since the largest instanceQmod

250 includes
all smaller instances as its proper submodules, these instances can be created as by-
products of generating the largest one. This takes only a couple of seconds more for
file I/O compared to the cumulative time required to produceQmod

250 from slices. Fol-
lowing the incremental approach from [5], the resulting intermediate ground programs
instances can be used for solving purposes if appropriate for the problem domain. By
contrast, there is no natural way to the reuse of ground programs produced for smaller
numbers of queens if the basic encoding from Section 4 is used.

6 Modular Program Transformations

So far we have demonstrated the use of our linker in the construction of ground logic
programs out of modules which have been grounded separately. In this section, we look
at another application ofLPCAT when the goal is to transform ground logic programs in
a systematic fashion, e.g., in order to simplify or to translate them.

The idea is to apply any transformation of interestmodule by modulerather than to
the entire ground program, and eventually link the transformed programs together. If
LPCAT is to be used for linking, the only requirement is that the outcome of the trans-
formation can be represented in theSMODELS format. Hence, for instance, translations
within the SMODELS format are easily covered. But if the target format is different,
then it becomes necessary to implement a link editor for thatformat. To implement the
scenario just sketched we need two further tools in additionto the link editor itself:

1. A tool for splitting groundSMODELS programs into modules such asMODLIST

described in the introduction. A drawback of the current implementation is that it
tries to produce as small modules as possible and hence the number of modules
can get very high for large program instances. This may slow down the linking
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phase and for this reason, we intend to implement alternative ways of splitting
ground logic programs into fewer modules. The user could, specify in advance that
a particular instance is to be split, e.g., in 100 pieces of roughly equal size—each
of which is then transformed in turn. On the other hand, if theground program is
produced in slices as in Section 4, then modules for the transformation are readily
available before linking and splitting tools, orsplittersfor short, are not needed.

2. A tool for running the transforming program for each module in a stream of mod-
ules in turn. We have implemented this functionality as a newtool MODRUN (ver-
sion 1.3) which reads modules from its standard input one at atime and invokes the
given shell command for each module. The output ofMODRUN concatenates the
outputs of the commands executed for each module. If they areSMODELSprogram
modules, thenLPCAT can be invoked in order to compute their composition.

We present three shell pipelines below for the sake of illustrating how the tools de-
scribed above are integrated with other ASP tools. It is assumed that a hypothetical
tool, TRANSFORM, implements the desired program transformation forSMODELSpro-
grams. The first command line shows how a monolithic program is grounded using
LPARSE and then transformed. The second example produces a stream of modules us-
ing MODLIST, runsTRANSFORM on each of these, and joins the results of individual
transformations withLPCAT. It is perhaps worth mentioning that the intermediate results
are not stored in physical files and are forwarded very efficiently through standard I/O
streams. The third pipeline begins with an (incompletely specified) loop that grounds
a bunch of programs usingLPARSE and forwards the resulting stream of modules for
similar processing as in the second case. Any of the given pipelines could be extended
by a call to a solver if the computation of answer sets were of interest straight away.

$ lparse program.lp | transform
$ lparse program.lp | modlist | modrun transform | lpcat -r
$ ( for f in p1.lp p2.lp ... ; do lparse $f; done ) \

| modrun transform | lpcat -r

To do some experiments in this direction, we decided to try out a couple of trans-
formations that have been previously implemented forSMODELS programs. The first,
LP2NORMAL (version 1.9) [11], translates a groundSMODELSprogram into a program
having only basic/normal rules. This transformation can bedone on a rule-by-rule basis.
The second transformation, implemented byLP2ATOMIC (version 1.15) [9], removes all
positive body literals, i.e.,b1, . . . , bn in (1), appearing in the rules of a normal program.7

The second is potentially more demanding transformation asit is non-linear (of the or-
der ofm log m) in the worst case, but the transformation stays linear since our encoding
of then-queens problem does not involve positive recursion. Nevertheless, the SCCs of
the program must be computed byLP2ATOMIC to realize this. We useLPARSE-1.1.2
to create ground program (modules) needed in these experiments in the same way as
done in Section 5. The results are collected in Table 2 and thedata forLPARSE-1.1.2
(both with and withoutLPCAT-1.17) in Table 1 give baselines for comparison. Running
times scale very similarly although translations are incorporated. The good news is that
modularized variants become slightly faster as program instances grow.

7 In the terminology of [9],atomicrules are normal rules of the forma← ∼c1, . . . ,∼cm.
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Transformation/number of nodes 50 100 150 200 250
LP2NORMAL 9.8 90.4 334 869 1920
LP2NORMAL+LP2ATOMIC 10.3 94.8 351 912 1950
MODRUN+LP2NORMAL+LPCAT 10.1 82.9 294 728 1500
MODRUN+LP2NORMAL+LP2ATOMIC+LPCAT 10.9 88.9 315 780 1590

Table 2.Running times in seconds for nonmodular vs. modular programtransformations

An obvious benefit of the modular approach is that the transformation can be com-
puted using far less memory. The consumption of memory becomes soon crucial if
extremely large program instances with millions of rules are dealt with. An instance
that reserves the whole memory of a CPU may cause a lot of page faults and force the
virtual memory system to thrash—slowing down computationsconsiderably. In this re-
spect, consider the task of translating a ground program instance which reserves 2GBs
of memory. By splitting the program into 200 modules, each module fits into roughly
10M of memory. Such instances fit easily into memory on modernworkstations and
even more expensive transformations may become feasible. Note that it is also possi-
ble to reduce the resulting programs before linking them together. To this end, many
ASP solvers offer this kind of functionality (see options-internal and--pre in
SMODELSandCLASP, respectively). Such functionalities can be used to relieve worst-
case behaviors of translators which are often relatively unoptimized in order to ensure
soundness. The modular approach described herein enables aprogrammer to implement
a transformation without worrying too much about modules which can beexternalized
from the tool design using auxiliary tools such asMODLIST, MODRUN, andLPCAT.

7 Discussion

One of the high-level goals of our work is to bring good software engineering practice
to the realm of ASP. In this respect, we are especially interested in the potential applica-
tions of modularity in the development of answer set programs. Our previous theoretical
work on this aspect [12, 17] is tightly connected to and motivated by the development
of tool support for exploiting modularity in the context ofSMODELS system. In this
paper, we are especially interested in the construction of very large ground program
instances up to millions of rules. We propose a modular method according to which
programs are grounded in slices and the resulting program modules are linked together
using a link editor. We have demonstrated that our tool prototype LPCAT is already
effective for such purposes using a benchmark problem wherethe number of ground
rules varies from 200 thousand to 26 million. In the experiment, the largest instances
reserved roughly 100MB of memory which indicates that even larger instances could be
created given more time. When stored in a file such instances take 590MBs disk space
(but only 90MBs if compressed byGZIP). A particularly new feature of our approach
is the support for streams of modules. This is a new way of exploiting intermediate file
formats (see [10] for a detailed analysis) in ASP and it offers a very efficient means to
transfer large numbers of modules from a phase of computation to another.
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It should be emphasized that the techniques demonstrated inthis paper are not lim-
ited to theSMODELSsystem. OtherSMODELS-compatible solvers, such asCLASP and
CMODELS, are also supported. In addition to modular grounding, there are also other
use cases ofLPCAT such as query evaluation and, in particular, when used in conjunc-
tion with MODLIST for modular processing ofSMODELS programs. It is also possible
to combine arbitrarySMODELS programs together having no atoms in common using
LPCAT. The resulting program will have the Cartesian product of the sets of answer sets
of its component programs as its set of answer sets, i.e.,⋊⋉ coincides with× in (6).

As regards future work, we are looking forward to new releases of the grounders
LPARSE andGRINGO that would natively support external (input) atoms using the ex-
tension of theSMODELS format described in Section 3. This would enable the full ap-
plication of the tools reported in this paper. Until now, we have been obliged tosimulate
input atoms by assuming that an input atoma has a name in in the symbol table of the
program but nodefining rules, i.e., rules witha as one of the head atoms. A drawback of
this approach is that input atoms might not be correctly recovered, e.g., after simplifying
a program.8 The recent extensions ofBINGO look also very interesting from the point
of view of the slicing technique proposed in this paper. It isimportant that the definition
of a predicate can be distributed among several program slices or even all of them. This
requires a very controlled way of declaring which instancesof a predicate are external
indeed. As regards further tool development, it may be worthwhile to study alternative
ways of splitting ground programs and to implement them as new functionality com-
plementary toMODLIST. We also expect that the idea of using streams of modules and
a linker for composing them can lead to completely new architectures for grounders.
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