Modular Construction of Ground Logic Programs
using LPCAT *

Tomi Janhunen

Aalto University School of Science and Technology
Department of Information and Computer Science
PO Box 15400, FI-00076 Aalto, Finland
Tom . Janhunen@ kk. fi

Abstract. In this paper, we view declarative problem solving from tleespec-
tive of answer set programming (ASP). The idea is to solvegivgn problem
by formalizing it as a logic program whose answer sets caphe solutions of
the problem. In practice such sets are computed using aatyeoipose search
engine, viz. an answer set solver, and a ground programnaatdy instantiating
term variables appearing in the rules of the program. Duepotantial blow-up
in the number of rules, the generation of the ground programbecome a bur-
den. Since modular program development is gaining morataitein ASP, the
objective of this paper to apply modules in the constructibground logic pro-
grams. Our specific goal is to demonstrate that a tool thks lingether ground
program modules can be effective and highly useful whenrmgtqarograms are
generated. In this paper, we provide a formal account ofrgtqarogram mod-
ules and present a link editarpcAT, which is designed to be used wigMoD-
ELS-compatible grounders and answer set solvers. We studyfftbiercy of our
approach using a benchmark that yields millions of grounéstuMoreover, we
illustrate the potential of ground program modules in pangitransformations.

1 Introduction

In this paper, we view declarative problem solving from thendpoint of answer set
programming (ASP) [15, 16, 1] which emerged in the contexbgic programming in
the 90s. According to this paradigm, any problem of inteie$brmalized as a logic
program whosanswer setsapture the solutions of the problem. Answer sets are com-
puted in practice using a dedicated search engine,avizanswer set solveand a
ground logic program obtained by instantiating term vddalin the rules of the pro-
gram. Although modergrounderssuch as PARSE[20] andGRINGO [7] try to reduce
the number of resulting ground rules using partial evatuatechniques there is still
a potential blow-up in the number of rules—slowing down tbenputation of answer
sets. To address this downside, new reasoning technigweskean developed to cir-
cumvent grounding altogether [3]. Another strategy is &rr@nge the computation of
answer sets as a stepwise process where ground rules are@doir one program

* This research has been partially funded by the Academy damidnhunder project “Methods
for Constructing and Solving Large Constraint Models” (2329).

slice at a time and the respective portion of an answer sheis ¢computedihcremen-
tally [5]. Many application domains suit to this strategy as tmplve parameters (such
as plan length in Al planning [13]) that induce a naturalislicfor problem instances.

On the other hand, modular program development is becomargasingly impor-
tant in ASP. Due to the global nature of answer sets, howi\vgmnon-trivial to find an
appropriate notion of program modules so that the semantti@$ogic program can be
directly based on the semantics of its component modules.€Binly approach based
on splitting setq14] is inherently asymmetric: the composition of logic grams out
of modules is viewed as an ordered sequence of program uimidhe most general
setting. The same can be stated about the slicing techriijae$cribed above due to
interleaving grounding and the computation of (partialywer sets. By contrast, the
aim of our work is a symmetric (order-independent) relagtip of program modules
based on the theory of modules presented in [17] in the cas&0DELS programs.
These results provide a basis for a systematic (de)conipositground programs pro-
duced by grounders. The respective operations on grem@DELS programs have
been implemented as tools callebpLIST andLPCAT.! The former can be used to
split a ground logic program into smallest possible unitdlefined in [17]. The latter
is alink editor, orlinker for short, in the sense of traditional compilation. The tcah
be used, among other things, to combine modules producetbloy IST back into a
single entity which is then ready to be processed by an anssteolver.

A specific objective of this paper is to study how a link editke LPCAT could be
exploited in the construction of ground programs in the fitate. The idea is to pro-
duce the grounding of logic program in separate parts dddigehe programmer and
then linked together usingeCAT. The file format of thesMmODELSSystem is used as the
intermediate representation of modufddence the approaches described in this paper
are applicable to angMODELScompatible grounders and solvers—not juBARSE
and SMODELS. The other grounder mentioned abo@RINGO, meets this criterion.
There are also other answer set solvers suocbMasDELS [8] and CLASP [6] that are
basicallysmobELS-compatible but involve language extensions. Some of thembe
translated back into primitives included in teeoDELSformat.

The tools described in this paper are also applicable in farerwersatile ways.
They were originally designed for verification purposes.,ithe problem of deciding
whether two programs have exactly the same answer sets. @néovaddress such
a problem is to modularize the task by splitting the two pamgs under consideration
into small components and by checking the equivalence opoorents [18]. We foresee
yet another general strategy for performing modular trarmsétions to programs. The
idea is (i) to split the program into its components, e.g.intwpking MODLIST, (i) to
transform each module in turn using transformation-spetfils, and (iii) to compose
the result withLPCAT. It is likely that such a strategy will at least save memongsi
the input programs (modules) for the transforming progralibe smaller. Our further

! Both tools are available in thaspTooLs collection athttp://ww. tcs. hut.fi/
Sof t war e/ aspt ool s/ .

2 The expected benefits and requirements of intermediateseptation languages are discussed
in detail in [10]. A more recent and more general proposa, &swer set programming
intermediate language specificatiGASPILS) can be found in [4].

objective of this paper is to study the time efficiency of thigategy. To this end, a
natural requirement is that modularization should notdahout substantial overhead.
The rest of this paper is organized as follows. In Section &,provide a brief
account ofSMODELSprograms and, in particular, their modularity propertigse aim
is to establish a theoretical background for the tools ohired in the sequel. This
takes place in Section 3 where some technical aspects ofgmo@le)composition are
discussed. The goal of Section 4 is to present two encodirthe wenchmark problem
used in this paper, namely thequeens problem. The first is a basic encoding as an
SMODELSprogramQ;™. The second is a modular one which is obtained by identifying
aslice Qﬁ‘,’cd for each parameter value< k < n. The resulting ground program can

be computed asjain Q9 L. L1 Q< by linking the component progran@;’q?,
anng’)‘;ld together using.PCAT. The outcome is equivalent witQ>™ but may
differ syntactically due to new atoms introduced by grousd8ection 5 is devoted to
the performance analysis of contemporary grounders viyers produced directly or
when it is grounded slice-by-slice and linked togethergsPCAT. The results indicate
systematic savings as regards time. In certain casesastilaétmemory savings can be
achieved using the modular approach. In Section 6, we prasgrategy for performing

modular program transformations usinRCAT. Section 7 concludes the paper.

2 Theoretical Background for Program Modules

In this section, we review the syntax and semanticsMbDELS programs [19] and
present the notion of program modules from [17] which ardloentral for the design
of LPCAT. Moreover, we recall the basic modularity properties ofim@rsets [17] which
provide the foundation for modular (de)compositiorsefODELS programs.

Any sSMODELScompatible grounder is supposed to produce a ground progra
an intermediate representation, i.e., the file format natly introduced in the context
thesmMoDELSsystem. The format is based on a nhumerical encoding of fdetypes:

a<+by,...,bp,~C1,...,~Cp Q)

{at,...,;ap} < b1,...,bp,~c1, ..., ~Cy (2
a—1<{by,...,by,~c1,...,~cm} 3)

a—w<{by =wWp,...,bp =Wp, ,~C1 = Wey,...,~Cm =W, } 4)

Rules of the forms above are assumed to be ground alreadgekgn’s, b;’s, andcy,’s
are ground atomdasic rulesof the form (1) arenormal rulesinvolving default nega-
tion (denoted by ~”). The intuition is that théneada is supposed to be true whenever
thebodyof the rule is satisfied, i.e., when &li's are true and none @f,’s is true by any
other rules in the program. The hefd, . . ., a5, } of achoice rule(2) denotes a specific
choice to be made when the body of the rule is satisfied: amy'®ftan be true. The
body of acardinality rule(3) is satisfied when the number of satisfied literals is atlea
More generally, the body ofweight rule(4) is satisfied if the sum of weights (denoted
by wy,’s andw,,'s above) associated with satisfied literals is at leastsing short-
handsA, B, andC for the sets of atoms involved in (1)—(4) ard” = {~c | c € C}
for any setC of atoms, we obtain abbreviations such{as} — B, ~C for a choice

rule (2). Likewise, a shorthand — w < {B = Wg,~C = W} denotes a weight
rule (4) with the respective sets of weightg; andW¢ from (4).

An sMODELSprogramP is defined as a finite set of ground rules of the forms (1)—
(4). Given such a program, the set of atoms occurring in its rules, i.e., the signature
of P, is denoted byAt(P). We encapsulateMODELS programs in the way proposed
in [17]. An sSMODELSprogram moduldT is a quadrupléP, I, O, H) where

1. P isansSMODELSprogram,

2. 1,0, andH are pairwise disjoint sets of input, output, and hidden atom
3. At(P) C At(IT) whereAt(IT) is definedad UO U H; and

4. Hd(P) N I = p whereHd(P) is the set of head atoms &f.

ThevisiblepartAt, (I7) = TUO of At(IT) can be accessed by other modules to supply
input for I1 or to utilize its output. Thénput signature/ and theoutput signature)

of IT is also denoted bwt;(II) and At,(II), respectively. Théniddenatoms in the
differenceAty, (IT) = At(II) \ At,(IT) = H can be used to formalize some auxiliary
concepts of . The fourth requirement of a program modileensures that input atoms
are only allowed to appear as positive or negative conditiomule bodies.

Example 1.Consider arsMmODELSprogram modulél having the following rules:
d—2<{abc}. e—abec fe—r~d~f [fe—er~f

The /O interface offl = (P, 1,0, H) is determined byl = {a,b,c}, O = (, and

H = {d,e, f}. The purpose ofT is to check that exactly two among the input atams
b, andc are true. To achieve this, three auxiliary atoms are useginfdaning ofl is that

at least two input atoms are true as formalized by the firgt flihe second rule makes
e true only if all input atoms are true simultaneously. The ta® rules are effectively
constraintghat deny~d ande, i.e.,d ande must be true and false, respectively. In this
manner, we obtain the desired net effect: exactly two inparna are true. |

Let us now turn our attention to the semantics of program riesduhich cover also
ordinarySMODELS programs as their special case, i.e., when(17) = 0 = Aty (I1).
The semantics of default negation goes back to [19] wheleasréatment of input
atoms is based on [12, 17]. Both aspects are simultaneooggred by the following
definition and the resulting program does not contain inpuhia nor negative literals.

Definition 1 ([12,17]). Given a program modulél = (P, I, 0O, H), thereductof P
with respect to a sef C At(I7) and the input signaturé, denoted by, contains

1. abasicrules — (B\ I) if and only if there is a basic rule — B, ~C'in P such
thatBNI C S,andSNC = 0; orthere is a choice rul§ A} — B,~C in P such
thata € ANS,BNICS,andSNC = 0;

2. a cardinality rulea «— I’ < {B\ I} if and only if there is a cardinality rule
a—1<{B,~C}in Pandl’ =max(0,l — |[BNINS|—|C\S|); and

3. aweight rulea < w’ < {B\ I = Wpg\,} if and only if there is a weight rule
a—w<{B=Wg,~C=Wc}inPand

w' =max(0,w — 3 pe prrng Wo — ZceC\S we).

Given anyll = (P, 1,0, H) andS C At(IT), the reduced prograi®*:! is mono-
tonic and thus it has a unique clostitel(P5-7) C O U H by Knaster-Tarski lemma.

Definition 2. A setS C At(II) is an answer set of aBMODELS program module
I = (P,1,0, H), denoted bys € ASet(IT), if and only ifS \ I = C1(PS1).

Example 2.The modulell from Example 1 has three answer sets in total, ABet (I7)
equals to{{a,b,d},{a,c,d},{b,c,d}}. To verify thatS = {a,b,d} is indeed an an-
swer set, we note thdt®! = {d «— 0 < {}. f < e. } forwhichCl(P%!) = {d} =
S\ 1. On the other hand, the st = {a, b, ¢, d} is not an answer set d&° -/ consists
ofd — 0 < {},e — andf — e. ThenCl(P5"1) = {d,e, f} # 5"\ I = {d}. [

Unfortunately, answer sets as defined above do not promideDELS program
modules with a fullycompositionalsemantics. For instance, taking straightforward
unions of programs is not sufficient to guarantee that ansetsrassigned to the union
could be obtained by combining answer sets of its memberis. i§hwhy we resort
to Gaifman-Shapiro-style criteria for program compositas put forth in [17]. Two
modulesi; and I, are eligible for composition only if their output signatarare
disjoint and theyespect each other’s hidden atome. Aty (17;) N At(Ily) = § and
Aty (II2) N At(II;) = 0. The outcome of composing; andl is defined as follows.

Definition 3 ([17]). The composition of program modul&s = (P, I;, 01, H;) and
I, = <P2,IQ, 02, H2>, denoted by]l & 115, is

<P1UP2,([1\02)U(IQ\01),01U02,H1UH2> (5)
if Ato(I17) N Ato(I12) = @ and T, andII, respect each other’s hidden atoms.

Example 3.Consider anothesmoDELSprogram moduldl’ = (P’ I’ O’, H') where
P’ contains a single choice rufe:, b, c} < andl’ = 0, O’ = {a,b,c}, andH’ = 0.
The composition of 7 from Example 1 with/I’ is defined sinc® N O’ = 0, H' = (
andI’ does not mention atoms frofdi. The resulting compositioi @ I7’ has an 1/0
interface based on the sets of atdinga, b, c}, and{d, e, f}, respectively. |

As demonstrated in [17], the conditions of Definition 3 do yettimply the desired
relationship of answer sets in general. The conditions @asuitably tightened using
the positive dependency grapti the compositionl; @ I1>. Generally speaking, the
positive dependency gragdG " (I7) associated with asMODELS program module
I =(P1,0,H) is the pairf(O U H, <) whereb < a holds for any atoms andb of
O U H if and only if a appears in the head of a rule Bfso thatb € B. A strongly
connected compone(BCC) S of DG (P) is a maximal setS C At(P) such that
b <* a holds for everyu,b € S, i.e., all atoms ofS depend positively on each other.
If the compositionlI; & II5 is defined, the members of the composition remetually
dependenif and only if DG™ (IT; @ II,) has an SCGS such thatS N At,(IT;) # 0
andS N At,(II2) # 0, i.e., the SCC in question is effectivedaredby 17, and .

% The least sef’ of atoms such tha§’ C O U H and S’ is closed under the rules &L,

Definition 4 ([17]). Thejoin I1; LI I15 of two SMODELS program module$/; and 1,
is IT; & 115, providedIl; & I, is defined and1; andIl, are mutuallyindependent

The key observation from [17] is that positive recursionrgatrbe tolerated across
module boundaries. The proviso of Definition 4 is sufficiengtiarantee that, roughly
speaking, a (global) answer set of amoODELSprogram is also a (local) answer set of
its modules and vice versa. The following theorem charemsthe exact relationship
of answer sets for the joifY; U 11> and its component moduld$; and 1.

Theorem 1 (Module Theorem [17]).If II; and I, are SMODELS program modules
such thatll; U IT, is defined, the\Set (I1; U I1s) = ASet(I1;) x ASet(Il5).

In the above, the operation denotes aatural join of compatibleanswer sets, i.e.,
S1 U Ss belongs toASet(IT;) x ASet(Il7) if and only if S; € ASet(I11), Se €
ASet(I1), andS; N Aty (IIs) = Se N Aty (I11). Theorem 1 is easily generalized for
finite joins of modules: iff7; U - - - L IT,, is defined, then

ASet(IT; U --- U IT,,) = ASet(ITy) w - - x ASet(II,,). (6)

Equation (6) provides a semantical basis for the link editatAT to be described in
detail in the next section. GivesMODELS program modulegly, .. ., IT,, which (i) re-
spect each other’s hidden atoms, (ii) have distinct outiguiadures, and (iii) are mutu-
ally independent, the tool can be used to safely computedbaiposition. The answer
sets of the resulting groureMoODELS program are then governed by (6).

Example 4.RecallsMoDELSprogram modulegl and/I’ from Examples 1 and 3. The
setASet(IT) is listed in Example 2 whereas it is clear theet(17') = 2{**<}, For
instance]” = {a, b} belongs to this set, becauge’)™"! = {a — . b+« . } by Defi-
nition 1. Note thatS from Example 2 and” are mutually compatible, e At, (IT") =
{a,b} = TN At,(II),andSUT = S. It follows thatASet(IT & II') = ASet(II) x
ASet(I1") = ASet(IT) by generalization. This reflects the fact that the jfinJ IT’ is
defined and Theorem 1 holds for the modulésind I’ under consideration. |

Finally, let us discuss how non-ground programs fit into Huenario. Given a set
of non-ground rules?, we write Gnd(P) for the resulting groundMODELS program
module. Because non-ground rules typically involve lamguaxtensions in addition
to term variables, we leave the exact definitionChfd(II) open and refer the reader
to [20] for a comprehensive syntax. To exploit the theory aidules presented so far
we assume that for each non-ground progrBmthe semantics of is determined
by the setASet(Gnd(P)) whereGnd(P) contains only rules of the forms (1)—(4).
In the sequel, our strategy to compubend(P) is to split P into partsPy,..., P,
so thatGnd(P,),...,Gnd(P,) can be computed in separation, the jéind(P;) U
... U Gnd(P,) is defined, and it effectivefyequals toGnd(P) for the original pro-
gramP. HenceASet(Gnd(P;)) x --- x ASet(Gnd(FP,)) essentially captures the set
ASet(Gnd(P)) of answer sets associated with In contrast to the incremental ap-
proach of [5], the strategy just described is totally synmineand, basically, the join
Gnd(P;) U ... U Gnd(P,) can be computed in any order.

4 The new (hidden) atoms inserted by grounders may lead tat siigtactic differences, though.

3 Practical Issues of the Implementation

The objectives of this section are twofold. First, we ddsetiow the notion o§MOD-
ELS program modules, as outlined in Section 2, can be realizpdaictice. Second, we
discuss the main design decisions behind the link edit@AT.

Itis natural to assume that tseurce codef an ASP module is written in the input
language of the grounder to be used—exploiting term vaegadihd language extensions
as appropriate. However, for compatibility reasons, weeekthat the resulting ground
program is in the file format of themoODELSsystem. Note that such a representation is
analogous to anbject moduleén conventional programming languages. Recalling the
general structuréP, I, O, H) of SMODELS program modules from Section 2, this is
how we obtain the s&® of ground rules. In order to control the visibility of atonb&th
LPARSEandGRINGO supporthideandshowdeclarations. The atoms which are not hid-
den will have a name in a symbol table which accompanies tieenal representation
of rules (in terms of natural numbers). In practice, thedalybvides a partial mapping
from natural numbers to symbolic names of atoms.

What remains is the distinction between the detsdO. Input atoms can be sim-
ulated in terms o&xternal/non-domafpredicates ifLPARSE is used but such decla-
rations are not recognized [BRINGO for the moment. A further obstacle is that the
intermediate file format used BMODELS-compatible tools does not allow the specifi-
cation of input atoms either. This shortage is fixed in the ASPproposal [4] but the
format in question is not widely understood by ASP systentsfi@resolve this issue
pragmatically, we have coordinated an extension obtheDEeLsfile format which en-
ables the declaration of external (input) atoms in the samgagcompute statements
are used to assign truth values to particular atoms. Thislesthe reliable transmission
of external atoms from a grounder to solvers and other tblmte that a typical answer
set solver would assign input atoms false by default in treeabe of defining rules.

To help with interfacing programs involving external atowith existing systems,
we provide a simple program calledeN which replaces such declarations byiaput
generator This amounts to adding a choice rule (2) with= 0 andm = 0 for the entire
set of input atomd = {a1,...,a} inamodulell = (P,1,0, H). This construction
was actually illustrated by Examples 3 and 4: the modtilelays the role of an input
generator andl ¢ I1’ can be viewed as a conventiosalODELSprogram wheré, e,
andf are hidden. In this way, one can compute stable models farichchl modules in
separation from the rest of the answer set program and itisgeessary to modify the
source code of a module to achieve this.

We turn our attention to another application of program meslnow and consider
the composition of larger (ground) programs in terms of therator® from (5). We
have implemented this functionality adilak editor calledLPCAT whose design is dis-
cussed next. Additionally, the tool checks thedule conditiomt, (171) N Ato(I12) =
¢ from Definition 3 upon request. The current version leavestieck for mutual inde-
pendence at the programmer’s responsibility. This is meaalesign decision to save
memory: the memory reserved by the rules of a module can Hbpdaied as soon as

5 Consultht t p: / / www. t cs. hut . fi / Sof t war e/ snodel s/ | par se. ps for details.

they have been written out. This would not be possible if tx&S of the resulting
program were incrementally constructed. The main task® ofT are the following.

1. The symbolic names of (visible) atoms given in symboldaldre matched. This
accounts for the computation 6f; \ O2) U (I2 \ O1) in Equation (5). Thus an
atom which is defined by a module and used by another will haweigue atom
number in the resulting symbol table. This functionalityrigplemented in terms
of a standard hash table which also stores the natural nussbeciated with each
name. Thus, when the hash table is consulted to check whegreticular name is
already in use and this turns out to be the case, the respattim number can be
returned. This number is needed for subsequent substitutiahe following step.

2. Each module iselocatedi.e., the atom numbers used in the intermediate represen-
tation of rules are replaced by contiguous values from 1 to n + m wheren is
the number of atoms encountered so far anigs the number of distinct atoms in
the module not seen yet. Of course, the idea is that the ninafe@toms that are
encountered again remain unchanged in the relocation ggo&ich atoms have
already a number betweérandn.

The output ofLPCAT uses contiguous numbers for atoms in the rangen where
n is the number of distinct atoms. Hence all unused atom nusb#irbe effectively
removed and the symbol table gets compressed. This will likest reduce the amount
of memory reserved by the solver which, in turn, can alsorffanoning times.

Large programs can involve many modules and storing thereparsite files can
become a burden of its own. This is especially the case ifiagiground programs are
afterwards split into modules, e.g., using SCCs as therizniteAs a result, there might
be simply too many files to handle: even basic shell commaradsfail to the user’s
surprise if thousands of arguments are provided (consdgr,1 s *”in this respect).
To deal with huge numbers of module®,CAT is able to read in modules recursively
from file or, perhaps more conveniently, from streams. Tla¢teast in certain cases,
expensive file operations can be avoided altogether, €ghell pipelinesare used for
passing modules around. Applications of this feature adees$ed in Section 6.

4 Encoding and Slicing then-Queens Problem

The famousn-queens problem is related to the game of chess: the goalptate
simultaneously: queen pieces onmax n chess board so that they do not threaten each
other. In this section, we present a basic encoding asvaFDELS programQ$™ that
goes back to [16]. However, we will express the placementiebgs using choice rules
(2) rather than basic/normal rules for better readabilihe use of other rule types such
as cardinality rules will be discussed in the end of thisisecin addition to the basic
encoding, we develop a sliced version@§™ which consists of module@ﬁf;cd where
the parametet < k < n. Roughly speaking, the rules (le,‘;cd formalize choices and
constraints related to the" row and thekt" column of the chess board.

We decided to use the-queens problem in this paper for several reasons. Fiest, th
problem definition is simple and intuitively clear and thhe domain lends itself for

1. d(1). ...d(n).

2. {q(X,Y)} — d(X),d(Y).

3. u—q(X,¥1),q(X,Y2),d(X),d(Y1),d(Y2), Y1 < Ya.

4. u—q(X1,Y),q(X2,Y),d(X1),d(X2),d(Y), X1 < Xa.

5. u«q(X1,1),q(X2,Y2),d(X1),d(X2),d(Y1),d(Y2),
X1 < X2, | X1 — Xo| = |V1 — Yal.

6. hasq(X) — q(X,Y),d(X),d(Y).

7. u <« ~hasq(X),d(X).

8. f«— u,~f.

Fig. 1. An encoding of thex-queens problem using basic and choice rules

easy illustration. Second, there is a natural parametenumber of queens, involved
which affects the complexity of the problem in a non-lineaywThird, although the
problem is easy to solve for small numbers of queens usingté&miques, size factors
come into play when the number of queens is increased upt@r more. Then it is
no longer easy to deal with resulting ground programs whigblive millions of rules.
Fourth, variants of the-queens problem are standard benchmarks in ASP compstition
A program formalizing thex-queens problem is presented in Figure 1. A syntax that
is close to the input syntax aPARSEIs used. We exploit term variablés, Y, etc. in
the rules but, otherwise, try to use rules of the forms (1)(@)ds far as possible. In the
encoding, predicaté(-) is used as a domain predicate to define valid coordinate value
1...n for then queens to be placed on the board. These predicates aretedatya
LPARSEand effectively removed from the resulting ground prograhre same applies
to extra conditions expressed in terms of infix operatomnd=. The domain ofi(-)
is specified on line 1. The choice whether there is a queendarsgX, Y') or not is
stated online 2. Rules on line 3-5 formalize the constramtsving the columns, rows,
and diagonals of the chess board, respectively. The atdemotingunsatisfiabilityis
derived in case of any two queens threatening each otheesRigted on lines 6—7
ensure that there is at least one queen in each colkinmf the board. The last rule
excludes answer sets containingi.e., those violating the constraints governing the
problem. In practice, the program can be written withoutriee atomu and the last
rule. In other words, rules without heads can be used dyrézflormalize constraints.
Our next objective is to find a way of splitting the encodingadinn slices pa-
rameterized byt < k < n. To this end, we introducer@stricteddomainrd(-) for the
coordinate values.. . . k — 1. Actually, this can be defined in terms of a rule

rd(X) — d(X), X < k.
Then placements on thié? column and thé*™" row are captured by these choice rules:
{a(k,Y)} —rd(Y). {a(k,k)}. {a(X,k)} < rd(X).

In addition to rules above, it is necessary to declgre-) as an external predicate,
since the choices regarding other columns and rows are fiazedaby other slices of
the program. The column-wise constraints involviij squares in a column/row are:

u <« q(k,Yl),q(k,YQ), rd(Yl), rd(Yg),Yl <Ys.
u—q(X,Y),q(X,k),d(X),rd(Y).

Due to obvious symmetry between rows and columns, we omiteyeired row-wise
constraints. As regards diagonals, the constraints intigdih k" squares are:

UHq(Xl,),q(XQ,}/Q) rd(Xl),rd(Xg),rd(Yg),|X17X2|: |k*Y2|
u < q(k Y1)7q(X2,}/2) rd(Yl) rd(Xg),rd(Yg), |k — X2| = |Y1 — }/2|
u—q(X, X),q(k, k), rd(X).

u—q(k,Y),q(Y,) d(Y).

Last, we slice constraints that ensure the existence oésit e queen on each column:
hasq(X) « q(X, k), rd(X). hasq(k) — q(k,Y),d(Y). u < ~hasq(k).

If we compare the rules derived above with the original ondsgure 1, the number
of source code lines is roughly doubled due to slicing. Tlisgback the fact that the
problem is inherently two-dimensional. To create a grogme@DELS program for the
n-queens problem for a particular valuergtthe rules derived above are to be grounded
for eachl < k < n in turn and linked together usingrcAT. The efficiency of this
strategy will be addressed in Section 5 using the encodidgbeing described above.

It is worth pointing out that there are also alternative wiyencode the:-queens
problem. If cardinality rules (3) are used, it is very easyaionulate that, for instance,
exactly one queen is placed on each colukiin

u—2<{q(X,1),...,q9X,n)}. s<—1<{q(X,1),...,q9(X,n)}.

f— u, ~f. f «— ~s, ~f.

In words, an assignment is to be disqualified if there are twma@ueens on columi .
We did not resort to rules of this kind because they do not teedhselves for slicing
in a straightforward way. For instance, if the rule foabove is to be reused in the
formulation ofs — 1 < {q(X,1),...,q(X,n + 1)} for increased problem size+ 1,
we end up writing normal rules recursively in the way we didHesq(-). Thus we note
that there are more concise encodings ofthgueens problem in sight if cardinality
constraints are considered. But, since finding a spaceaapiMODELS program for
the problem is not the main issue of this paper, we omit thaystd such encodings.
The encoding presented above serves as an example of ang digproach but
for a particular problem. To grasp other potential appi@atiomains of the same idea
but on a more general level, we refine the description givehdérend of Section 2. As
presented therein, the sliciifg, . . . , P, of a programP is based on a certain parameter
1 < i < n that is specific to the problem being solved. To make the rbgomain
predicates explicit, we assume that each skigeonsists of the domain paR; and the
restQ; = P, \ D; so thatGnd(D;) is always a set of facts. As demonstrated above,
Q.’s are likely to be disjoint whereas domains grow monotolhic&nd (D) C ... C
Gnd(D,,). Thus it may be worthwhile to delete instances of domain ipeges from
the ground programs as possible witnRSE ThenGnd(P) is obtained as the join of
Gnd(Q; U D;) \ Gnd(D;) for eachl < i < n andGnd(D) whereD = |J!_, D

10

n 50 100 150 200 250|unit

number of atoms 2.6k 10k 23k 40k 63k
number of rules 210k 1.7M 5.6M 13M 26M
LPARSE-1.0.17 226 28.1 130 388 939|s

12 79 260 610 1200|MB
LPARSE-1.0.17+PCAT-1.17 |2.25 219 89.7 248 555|s
- 8.6 26 56 100 (MB
LPARSE1.1.2 9.30 86.1 325 845 1850s
3.4 39 48 6.0 7.1 |MB
LPARSE-1.1.24.PCAT-1.17 |9.27 78.5 279 693 1420|s
- 6.7 26 56 94 |MB
GRING0-2.0.5 217 291 140 417 998|s
2.3 3.6 5.6 8.5 11 |MB
GRINGO-2.0.5#.PCAT-1.17 |2.03 22.1 95 275 631]s
- - - - - |MB

Table 1. Time and memory resources used by various grounding sieateg

5 Performance Analysis

The goal of this section is to evaluate the effectivenessaoious grounding strate-
gies using the two encodings introduced in Section 4. Asroesggrounders, we will
use twosMODELS-compatible grounders available todaparRsE (versions 1.0.17 and
1.1.2) andGRINGO (version 2.0.5). The reason for considering two differegrsions
of LPARSE is that the treatment of symbolic names changed considesitte the
last version of 1.0.* series. There is also another experisigroundergINGO, being
developed as part of the Potasscollection. It was recently extended to support the
declaration of external predicates in a very refined wayneaaticular instances of a
predicate can be assumed to be defined outside the currentenbldwever, we had to
excludeBINGO from our experiments due to its restricted input language.

In our benchmark;, the idea is to first ground the basic encp@iit* using the three
grounders for the values afin the ranges0 . . . 250 using an increment gi0 queens.
Then the second representation will be used to form the sporaling ground program
Q™4 in slices which are finally linked together usingcAT. Again, each of the three
grounders will be responsible for grounding the requirécesl one at a time. As the
hardware we use Intel Core2 1.86 Ghz CPUs with 2 GBs of main engriRunning
times are measured by the Lintxsr / bi n/ ti me utility whereas sizes of processes
are perceived by taking snapshotd @t oc/ =/ st at ten times per second. Because
GRINGO does not support external predicates for the moment we loagstimate its
running time when grounding the sliced program. In orderr@v@entGRINGO from
dropping relevant ground rules involving external prethsawe add an extra choice
rule {q(X,Y)} « rd(X),rd(Y) to the k'" slice. Afterwards, we subtract the time
elapsed when grounding and linking these extra rules fdn eac k < n.

6 Seeht t p: // pot assco. sour cef or ge. net/ for details.

11

The results of our grounding benchmark have been collectdable 1. The used
memory cannot be calculated accurately wher= 50 and LPCAT is used or when
extra rules have to be used witRINGO (hence the dashes in certain entries). More-
over, we expect errors up to 10% in size measurements duepsisots. The following
observations can be made. The old versiom®{RSE consumes a lot of memory as
it gradually creates data structures for the newly intreduatoms. However, if slicing
andLPCAT are used, the effects of this activity are limited to eaatesdind the symbol
table cumulated byPCAT reserves roughly one tenth of memory comparadPRSE
1.0.17. This favors also running times so that the groundirategy which uses slic-
ing, LPARSE-1.0.17, and PCAT scales best. The new versionn#fARSE(1.1.2) spends
more time on grounding but uses least space. A reductionésraul, too, if slicing and
LPCAT are used. It is interesting thaRINGO scales almost identically withPARSE
1.0.17 but eventually uses only slightly more memory thanrse1.1.2. Our esti-
mates suggest that running times can be reduced using¢ivgdglirategy but not quite
as much as in the caselgfARSE-1.0.17.

In summary, we conclude that the slicing technique leadggtematic speed-up in
this benchmark. In thea-queens benchmark, the combinationnehRse1.0.17 and
LPCAT-1.17 leads to the best performance as regards time wheraso-2.0.5 is
able to operate in the least amount of memory. There is adutibnefit of the mod-
ular approach demonstrated in this section. Since thedaigstanceQ3:%! includes
all smaller instances as its proper submodules, thesentedecan be created as by-
products of generating the largest one. This takes only aleaf seconds more for
file I/O compared to the cumulative time required to prod@zg from slices. Fol-
lowing the incremental approach from [5], the resultingeimiediate ground programs
instances can be used for solving purposes if appropriatiaéoproblem domain. By
contrast, there is no natural way to the reuse of ground progiproduced for smaller
numbers of queens if the basic encoding from Section 4 is.used

6 Modular Program Transformations

So far we have demonstrated the use of our linker in the asetgtn of ground logic
programs out of modules which have been grounded sepatatéys section, we look
at another application afPcAT when the goal is to transform ground logic programs in
a systematic fashion, e.g., in order to simplify or to tratesthem.

The idea is to apply any transformation of intenegidule by moduleather than to
the entire ground program, and eventually link the tramsft programs together. If
LPCAT is to be used for linking, the only requirement is that thecoate of the trans-
formation can be represented in theoDELSformat. Hence, for instance, translations
within the sMoDELS format are easily covered. But if the target format is difes
then it becomes necessary to implement a link editor forftratat. To implement the
scenario just sketched we need two further tools in additidhe link editor itself:

1. A tool for splitting groundsMODELS programs into modules such &ODLIST
described in the introduction. A drawback of the currentlenpentation is that it
tries to produce as small modules as possible and hence thieemwf modules
can get very high for large program instances. This may slowndthe linking

12

phase and for this reason, we intend to implement altematizys of splitting
ground logic programs into fewer modules. The user coulekifpin advance that
a particular instance is to be split, e.g., in 100 pieces ofhty equal size—each
of which is then transformed in turn. On the other hand, ifgheund program is
produced in slices as in Section 4, then modules for thefvamstion are readily
available before linking and splitting tools, splittersfor short, are not needed.
2. Atool for running the transforming program for each medial a stream of mod-
ules in turn. We have implemented this functionality as a teWMODRUN (ver-
sion 1.3) which reads modules from its standard input oneiatexand invokes the
given shell command for each module. The outpumaDRUN concatenates the
outputs of the commands executed for each module. If thegracEL S program
modules, themPCAT can be invoked in order to compute their composition.

We present three shell pipelines below for the sake of ihiistg how the tools de-
scribed above are integrated with other ASP tools. It is msslithat a hypothetical
tool, TRANSFORM, implements the desired program transformatiorsf@pDELS pro-
grams. The first command line shows how a monolithic programrounded using
LPARSEand then transformed. The second example produces a stfgandales us-
ing MODLIST, runSTRANSFORM on each of these, and joins the results of individual
transformations withPCAT. Itis perhaps worth mentioning that the intermediate tssul
are not stored in physical files and are forwarded very efftbreghrough standard 1/0
streams. The third pipeline begins with an (incompletelgcsiped) loop that grounds
a bunch of programs usingPARSE and forwards the resulting stream of modules for
similar processing as in the second case. Any of the giveslipigs could be extended
by a call to a solver if the computation of answer sets weratefest straight away.

$ | parse programlp | transform
$ I parse programlIp | nodlist | nodrun transform| |pcat -r
$(for f inpl.lp p2.lp ... ; do |Iparse $f; done) \

| modrun transform| |pcat -r

To do some experiments in this direction, we decided to ttyaotouple of trans-
formations that have been previously implementedsiapDELS programs. The first,
LP2NORMAL (version 1.9) [11], translates a grougBiODELSprogram into a program
having only basic/normal rules. This transformation caddnee on a rule-by-rule basis.
The second transformation, implemented BgAtomic (version 1.15) [9], removes all
positive body literals, i.eb;, . . ., b, in (1), appearing in the rules of a normal program.
The second is potentially more demanding transformatiahiason-linear (of the or-
der ofm log m) in the worst case, but the transformation stays lineaesiuz encoding
of then-queens problem does not involve positive recursion. Nbe&ss, the SCCs of
the program must be computed by2ATOMIC to realize this. We usePARSE-1.1.2
to create ground program (modules) needed in these exp#drirethe same way as
done in Section 5. The results are collected in Table 2 andakee forLPARSE-1.1.2
(both with and without PCAT-1.17) in Table 1 give baselines for comparison. Running
times scale very similarly although translations are ipooated. The good news is that
modularized variants become slightly faster as progratamtes grow.

" In the terminology of [9]atomicrules are normal rules of the forme— ~ci, ..., ~cm.

13

Transformation/number of nodes 50 100 150 200 250
LP2NORMAL 9.8 90.4 334 869 1920
LP2NORMAL+LP2ATOMIC 10.3 948 351 912 1950
MODRUN+LP2NORMAL+LPCAT 10.1 829 294 728 1500

MODRUN+LP2NORMAL+LP2ATOMIC+LPCAT| 10.9 88.9 315 780 1590

Table 2. Running times in seconds for nonmodular vs. modular prodransformations

An obvious benefit of the modular approach is that the transiition can be com-
puted using far less memory. The consumption of memory besosoon crucial if
extremely large program instances with millions of rules dealt with. An instance
that reserves the whole memory of a CPU may cause a lot of padts ind force the
virtual memory system to thrash—slowing down computatmnssiderably. In this re-
spect, consider the task of translating a ground progratanies which reserves 2GBs
of memory. By splitting the program into 200 modules, eactduie fits into roughly
10M of memory. Such instances fit easily into memory on modesrkstations and
even more expensive transformations may become feasibte. tNat it is also possi-
ble to reduce the resulting programs before linking thenetiogr. To this end, many
ASP solvers offer this kind of functionality (see optionisnt er nal and- - pre in
SMODELSandCLASP, respectively). Such functionalities can be used to relisorst-
case behaviors of translators which are often relativebyptimized in order to ensure
soundness. The modular approach described herein enalstgrammer to implement
a transformation without worrying too much about modulescivitan beexternalized
from the tool design using auxiliary tools suchnasDLIST, MODRUN, andLPCAT.

7 Discussion

One of the high-level goals of our work is to bring good softevangineering practice
to the realm of ASP. In this respect, we are especially isterkin the potential applica-
tions of modularity in the development of answer set progrddur previous theoretical
work on this aspect [12, 17] is tightly connected to and naiéd by the development
of tool support for exploiting modularity in the context sMODELS system. In this
paper, we are especially interested in the constructioreof large ground program
instances up to millions of rules. We propose a modular nteezording to which
programs are grounded in slices and the resulting progradutes are linked together
using a link editor. We have demonstrated that our tool pyp®LPCAT is already
effective for such purposes using a benchmark problem wiher@umber of ground
rules varies from 200 thousand to 26 million. In the experitnéhe largest instances
reserved roughly 100MB of memory which indicates that eaegdr instances could be
created given more time. When stored in a file such instam@s390MBs disk space
(but only 90MBs if compressed byziP). A particularly new feature of our approach
is the support for streams of modules. This is a new way ofatipg intermediate file
formats (see [10] for a detailed analysis) in ASP and it aferery efficient means to
transfer large numbers of modules from a phase of computtdianother.

14

It should be emphasized that the techniques demonstrateiipaper are not lim-
ited to thesMODELS system. OthesMODELScompatible solvers, such asAsP and
CMODELS, are also supported. In addition to modular grounding gteee also other
use cases afPCAT such as query evaluation and, in particular, when used ijuncn
tion with MmoDLIST for modular processing (§MODELS programs. It is also possible
to combine arbitrarsMODELS programs together having no atoms in common using
LPCAT. The resulting program will have the Cartesian product efdbts of answer sets
of its component programs as its set of answer setspi.egincides withx in (6).

As regards future work, we are looking forward to new releasfethe grounders
LPARSE andGRINGO that would natively support external (input) atoms using éix-
tension of thesmoDELS format described in Section 3. This would enable the full ap-
plication of the tools reported in this paper. Until now, wab been obliged teimulate
input atoms by assuming that an input aternas a name in in the symbol table of the
program but nalefining rulesi.e., rules withu as one of the head atoms. A drawback of
this approach is that input atoms might not be correctlyvened, e.g., after simplifying
a progrant The recent extensions @8iNGO look also very interesting from the point
of view of the slicing technique proposed in this paper. itiportant that the definition
of a predicate can be distributed among several prograessticeven all of them. This
requires a very controlled way of declaring which instanafes predicate are external
indeed. As regards further tool development, it may be wulite to study alternative
ways of splitting ground programs and to implement them as fo@ctionality com-
plementary tavoDLIST. We also expect that the idea of using streams of modules and
a linker for composing them can lead to completely new agchitres for grounders.

Acknowledgmentd he author wishes to thank Martin Gebser, Roland Kamingid, a
Patrik Simons for their comments on extending the intesnadDEL sfile format.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative l@motSolving Cam-
bridge University Press, 2003.

2. C. Baral, G. Brewka, and J. S. Schlipf, editorsogic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, &mga, USA, May 15-17, 2007,
Proceedingsvolume 4483 ot ecture Notes in Computer Scien&pringer, 2007.

3. P. A. Bonatti, E. Pontelli, and T. C. Son. Credulous retsotufor answer set programming.
In D. Fox and C. P. Gomes, edito’sAAl, pages 418-423. AAAI Press, 2008.

4. M. Gebser, T. Janhunen, M. Ostrowski, T. Schaub, and ®I&hA versatile intermediate
language for answer set programming. In M. Pagnucco and Nélsidher, editorsPro-
ceedings of the 12th International Workshop on NonmonotB&asoningpages 150-159,
Sydney, Australia, 2008. University of New South Wales,&ttof Computer Science and
Engineering, Technical Report, UNSW-CSE-TR-0819.

5. M. Gebser, R. Kaminski, R. Kaufmann, M. Ostrowski, T. Sdhyand S. Thiele. Engineering
an incremental ASP solver. I€LP, pages 190-205, 2008.

6. M. Gebser, B. Kaufmann, A. Neumann, and T. Schallbasp: A conflict-driven answer set
solver. In Baral et al. [2], pages 260—265.

8 Consider, for instance, the effect of deleting the only ofl® = {a « a} whena is visible.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Gebser, T. Schaub, and S. Thiele. Gringo : A new groufateanswer set programming.
In Baral et al. [2], pages 266-271.

. E. Giunchiglia, Y. Lierler, and M. Maratea. Answer setgnamming based on propositional

satisfiability. Journal of Automated Reasoningp(4):345-377, 2006.

. T. Janhunen. Representing normal programs with clauseR. Lopez de Mantaras and

L. Saitta, editorsECAI, pages 358-362. I0S Press, 2004.

T. Janhunen. Intermediate languages of ASP systemsalsd in M. De Vos and T. Schaub,
editors,Proceedings of the 1st International Workshop on Softwagiieering for Answer
Set Programmingnumber CSBU-2007-05 in Department of Computer Sciencejausity

of Bath, Technical Report Series, pages 12—-25, Tempe, AaiZdSA, 2007.

T. Janhunen, |. Niemel&, and M. Sevalnev. Computindestabdels via reductions to dif-
ference logic. In E. Erdem, F. Lin, and T. Schaub, editbP\NMR volume 5753 ot ecture
Notes in Computer Scienggages 142—-154. Springer, 2009.

T. Janhunen and E. Oikarinen. Automated verification e&kvequivalence within the
SMODELS system.Theory and Practice of Logic Programming(6):697—744, 2007.

V. Lifschitz. Answer set planning (abstract). In M. Gelfl, N. Leone, and G. Pfeifer, editors,
LPNMR volume 1730 ofLecture Notes in Computer Sciengemges 373—-374. Springer,
1999.

Vladimir Lifschitz and Hudson Turner. Splitting a logicogram. InICLP, pages 23-37,
1994.

V. Marek and M. Truszchski. Stable models and an alternative logic programming
paradigm. InThe Logic Programming Paradigm: a 25-Year Perspectpages 375-398.
Springer, 1999.

I. Niemel&. Logic programming with stable model sen@n#s a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligenc@5(3-4):241-273, 1999.

E. Oikarinen and T. Janhunen. Achieving compositityalithe stable model semantics for
smodels programsTheory and Practice of Logic Programming(5-6):717—761, 2008.

E. Oikarinen and T. Janhunen. A translation-based apprto the verification of modular
equivalenceJournal of Logic and Computatiori9(4):591-613, 2009.

P. Simons, I. Niemel&, and T. Soininen. Extending andémpnting the stable model se-
mantics.Artificial Intelligence 138(1-2):181-234, 2002.

T. Syrjanen. Logic Programs and Cardinality Constraints: Theory and &iae Doc-
toral dissertation, TKK Dissertations in Information andr@puter Science TKK-ICS-D12,
Helsinki University of Technology, Faculty of Informatiamd Natural Sciences, Department
of Information and Computer Science, Espoo, Finland, 2009.

16

