
Tight Integration of Non-Ground Answer Set
Programming and Satisfiability Modulo
Theories

Tomi Janhunen, Guohua Liu, and Ilkka Niemelä

Aalto University, Department of Information and Computer Science

GTTV’11, May 16, 2011

GTTV’11, May 16, 2011

2/23

Background

◮ Non-Boolean variables are important primitives in logical
modeling in a number of disciplines: ASP, CP, . . .

◮ The SMT framework enriches Boolean satisfiability
checking in terms of a background theory.

◮ Logic programs under answer sets can be translated into
an SMT fragment, viz. difference logic (DL).

— Niemelä [AMAI, 2008]
— Janhunen, Niemelä, and Sevalnev [LPNMR, 2009]

◮ Translations in the other direction are impeded by the
potentially infinite domains of variables involved.

◮ There are existing approaches that combine ASP and CP:
— Balduccini [ASPOCP, 2009]
— Gebser et al. [ICLP, 2009]
— Mellarkord et al. [AMAI, 2008]

GTTV’11, May 16, 2011

3/23

Objectives

◮ Our goal is to integrate ASP and SMT so that non-Boolean
variables of these formalisms can be used together.

◮ We aim at a rule-based language ASP(SMT) which is
enriched by theory atoms from a particular SMT dialect.

Example
Let us formalize the n-queens problem in ASP(DL):

queen(1..n).
int(row(X))← queen(X).
← row(X)− row(Y) = 0, queen(X), queen(Y), X < Y .

. . .

Here row(X)− row(Y) = 0 is a theory atom from DL.

GTTV’11, May 16, 2011

4/23

Outline

Preliminaries

Integrated Language

Problem Modeling

Implementation

Preliminary Experiments

Conclusion

GTTV’11, May 16, 2011

5/23

PRELIMINARIES

◮ A normal logic program P is a set of rules of the form

a← b1, . . . ,bm,not c1, . . . ,not cn.

parts of which are abbreviated in the sequel by

hd(r) = a,
bd+(r) = {b1, . . . ,bm}, and
bd−(r) = {c1, . . . ,cn}.

◮ An interpretation M ⊆ At(P) is an answer set of P iff M is
the least model of the Gelfond-Lifschitz [1988] reduct

PM = {hd(r)← bd+(r) | r ∈ P and bd−(r) ∩M = ∅}.

GTTV’11, May 16, 2011

6/23

Weight Constraint Programs

◮ The extended rule types of the SMODELS system are
based on cardinality and weight constraints of the form

l{b1, . . . ,bn,not c1, . . . ,not cm}u
l{b1 = wb1

, . . . ,bn = wbn ,not c1 = wc1 , . . . ,not cm = wcm}u

◮ The class of weight constraint programs is based on rule
elements of this kind instead of propositional atoms.

◮ Extended rule types can be translated back to normal
programs using grounders and a tool called LP2NORMAL1.

◮ It is also straightforward to translate ground weight
constraints into DL as part of the ASP to DL translation.

1http://www.tcs.hut.fi/Software/asptools/

http://www.tcs.hut.fi/Software/asptools/

GTTV’11, May 16, 2011

7/23

Difference Logic

◮ Difference logic (DL) extends classical propositional logic
with atomic difference constraints of the form

x − y ≤ k .

◮ Operators <, >, ≥, =, and 6= can also be used.
◮ A difference constraint x − y ≤ k is satisfied in an

interpretation 〈I, τ〉, denoted 〈I, τ〉 |= x − y ≤ k , iff

τ(x)− τ(y) ≤ k .

◮ Other primitives are covered by propositional logic.

Example
The theory {x − y < 0, y − z < 0, z − x < 0} is unsatisfiable.

GTTV’11, May 16, 2011

8/23

INTEGRATED LANGUAGE

◮ A program P in ASP(DL) consists of rules of the form

a← b1, . . . ,bm,not c1, . . . ,not cn, t1, . . . ,tl

where t1, . . . ,tl are difference constraints.
◮ An interpretation of P is defined as a pair 〈I,T 〉 such that

T ∪ {¬t | t appears in P, t 6∈ T} is satisfiable in DL.
◮ A model M of a program P is an answer set of P iff

the propositional part Mp is the least model of

PM = { hd(r)← bd+(r) |

r ∈ P, bd−(r) ∩Mp = ∅, and M t |= bd t(r) }.

GTTV’11, May 16, 2011

9/23

Example

Consider the following ASP(DL) program P:

← not s. s ← x > z. p ← x ≤ y . p ← q. q ← p, y ≤ z.

1. M1 = ({s}, {x > z}) is an answer set of P since
{(x > z),¬(x ≤ y),¬(y ≤ z)} is satisfiable in DL, M1 |= P,
and {s} is the least model of PM1 = {s ←; p ← q}.

2. M2 = ({s,p,q}, {x > z, x ≤ y , y ≤ z}) is not an answer
set, since {(x > z), (x ≤ y), (y ≤ z)} is not satisfiable.

3. M3 = ({s,p,q}, {x > z, y ≤ z}) is not an answer set as the
least model of PM3 = {s ←; p ← q; q ← p} is {s}.

GTTV’11, May 16, 2011

10/23

PROBLEM MODELING

◮ We provide a number of examples to illustrate the use and
advantages of ASP(DL) in logical modelling.

◮ In certain cases, difference constraints enable much more
concise encoding than a pure ASP language.

◮ In the paper, we provide sample encodings for
1. a scheduling problem,
2. routing under time constraints,
3. trip planning, and
4. a sorting problem.

◮ Savings up to quadratic factors (e.g., |T |2) are perceived.

GTTV’11, May 16, 2011

11/23

Scheduling Problem

◮ Predicate read(P,N,D) represents the duration D of a
person P reading a newspaper N.

◮ Integer variables s(P,N) and e(P,N) capture the
respective starting and ending times.

← e(P,N)− s(P,N) 6= D, read(P,N,D).

← s(P,N1) < s(P,N2), s(P,N2)− s(P,N1) < D1,

read(P,N1,D1), read(P,N2,D2), N1 6= N2.

← s(P1,N) < s(P2,N), s(P2,N)− s(P1,N) < D1,

read(P1,N,D1), read(P2,N,D2),P1 6= P2.

← e(P,N) > deadline, read(P,N,D).

GTTV’11, May 16, 2011

12/23

Sorting Problem

◮ The goal is to sort given numbers in an increasing order:

← p(X1) = p(X2), X1 6= X2, number(X1;X2).

← X1 > X2, p(X1) < p(X2), number(X1;X2).

◮ The respective ASP encoding is as follows:

1{place(X ,Y) : position(Y)}1← number(X).

1{place(X ,Y) : number(X)}1← position(Y).

← X1 > X2,Y1 < Y2, place(X1,Y1;X2,Y2),

number(X1;X2), position(Y1,Y2).

GTTV’11, May 16, 2011

13/23

IMPLEMENTATION

◮ Theory atoms are represented with special predicates like

dl_lt(X ,Y ,D)

for the difference constraint x − y < d in DL.
◮ Special domain predicates such as int(V) for DL are used

to declare the domains of theory constants.
◮ Names of these predicates can be easily changed.

Example

int(at(X))← edge(X ,Y ,W).
int(at(Y))← edge(X ,Y ,W).
← route(X ,Y),edge(X ,Y ,W),dl_lt(at(Y),at(X),W).

GTTV’11, May 16, 2011

14/23

Main Steps

A shell script called DINGO2

1. grounds a logic program using GRINGO which treats theory
atoms as externally defined predicates,

2. extracts the relevant type information from the ground
program to create the prologue of the DL theory,

3. translates the ground program into DL using LP2DIFF,

4. extracts the ground instances of theory atoms and expands
them into DL using a standard macro processor M4, and

5. invokes an SMT solver to compute a satisfying assignment
(if any) and extracts an answer set.

2http://www.tcs.hut.fi/Software/lp2diff/

http://www.tcs.hut.fi/Software/lp2diff/

GTTV’11, May 16, 2011

15/23

Live Demo

$ cat queen.lp

GTTV’11, May 16, 2011

16/23

Live Demo

$ cat queen.lp

queen(1..n).

int(row(X)) :- queen(X).

int(zero).

:- dl_le(row(X),zero,0), queen(X).

:- dl_gt(row(X),zero,n), queen(X).

:- dl_eq(row(X),row(Y),0), queen(X;Y), X<Y.

:- dl_eq(row(X),row(Y),#abs(X-Y)), queen(X;Y), X!=Y.

GTTV’11, May 16, 2011

17/23

Live Demo

$ cat queen.lp

queen(1..n).

int(row(X)) :- queen(X).

int(zero).

:- dl_le(row(X),zero,0), queen(X).

:- dl_gt(row(X),zero,n), queen(X).

:- dl_eq(row(X),row(Y),0), queen(X;Y), X<Y.

:- dl_eq(row(X),row(Y),#abs(X-Y)), queen(X;Y), X!=Y.

$ dingo.sh -cn=7 queen.lp

GTTV’11, May 16, 2011

18/23

Live Demo

$ cat queen.lp

queen(1..n).

int(row(X)) :- queen(X).

int(zero).

:- dl_le(row(X),zero,0), queen(X).

:- dl_gt(row(X),zero,n), queen(X).

:- dl_eq(row(X),row(Y),0), queen(X;Y), X<Y.

:- dl_eq(row(X),row(Y),#abs(X-Y)), queen(X;Y), X!=Y.

$ dingo.sh -cn=7 queen.lp

SATISFIABLE

queen(1) queen(2) queen(3) queen(4) queen(5) queen(6) queen(7)

Theory:

Vars: row(7)=7 zero=0 row(6)=2 row(5)=4 row(4)=6 row(3)=1 row(2)=3

GTTV’11, May 16, 2011

19/23

PRELIMINARY EXPERIMENTS

◮ We compared two systems, DINGO and CLINGO (v. 2.0.3),
using encodings in ASP(DL) and pure ASP, respectively.

◮ Running times of these system and the sizes of resulting
ground instances were subject to comparison.

◮ For each problem, we experimented with 10 groups of
instances and each group contained 100 randomly
generated instances.

◮ The cut off time was set to 300 seconds.

GTTV’11, May 16, 2011

20/23

Newspaper Benchmark

Deadline
DINGO CLINGO

time size ratio time size ratio
100 0.09 1.0 2.10 1.0
200 0.11 1.1 9.00 3.1
300 0.11 1.3 21.32 6.3
400 0.10 1.4 36.68 15
500 0.12 1.5 61.15 23
600 0.12 1.7 93.51 34
700 0.11 1.8 – 44
800 0.11 1.9 – 60
900 0.12 2.1 – 74
1000 0.13 2.2 – 81

GTTV’11, May 16, 2011

21/23

Sorting Benchmark

Numbers
DINGO CLINGO

time size ratio time size ratio
60 0.59 1.0 13.12 1.0
70 0.77 1.3 25.50 2.1
80 1.01 1.8 49.70 2.7
90 1.26 2.3 76.14 4.9
100 1.54 2.8 145.43 7.8
110 1.84 3.4 – 12
120 2.25 4.1 – 17
130 2.71 4.8 – 28
140 3.17 5.6 – 34
150 3.56 6.4 – 38

GTTV’11, May 16, 2011

22/23

CONCLUSION

◮ In this research, we present an approach to integrating the
languages used in ASP and SMT.

◮ The idea is to enrich rules with extra conditions which
together form a theory in a particular SMT fragment.

◮ Our prototype implementation, viz. DINGO, exploits
off-the-shelf ASP and SMT components for grounding
(GRINGO) and the search for answer sets (Z3).

◮ Macros enable the use of standard ASP grounders for the
creation of SMT theories of interest.

◮ The combined language ASP(DL) enables more concise
ways to encode problems from various domains.

◮ Our first experiments using these encodings also suggest
positive effects on solving time.

GTTV’11, May 16, 2011

23/23

Future Work

◮ Other SMT dialects should be taken into consideration.
◮ It may be necessary to develop a translation from ASP into

the SMT dialect in question and to extend LP2DIFF.
◮ The optimization of answer-set programs involving

external/input atoms requires special attention.
◮ There is also potential for combining SMT dialects as long

as there is a suitable target language and a back-end SMT
solver available.

◮ It is also feasible to develop ASP(SMT) encodings in a
modular way and to link modules together with LPCAT.

	Preliminaries
	Integrated Language
	Problem Modeling
	Implementation
	Preliminary Experiments
	Conclusion

