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Abstract—This paper proposes a new method to detect ‘ __ Range scaled signal values
abnormal process state. The method is based on cluste
center point monitoring in time and is demonstrated in its
application to data from Olkiluoto nuclear power plant.
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Fig. 1: The time series for three preprocessed process sig-
Keywords: nuclear industry, abnormal process state detectionNals. The zero value is the global minimum (stored minimum

high dimensional data, feature extraction, classification value of the signal in the database) for the signal and
) one is the maximum. Most of the variables are near the
1. Introduction global maximum value in the normal operation state but this

The goal of the process state detection method present@gturally depends on the type of the variable.
in this paper is to detect abnormalities in Olkiluoto bailin
water reactor (BWR) type nuclear power plant (NPP) in
Finland. At Olkiluoto, thousands of signals are measureti anmost of the signals are classified slew. In an abnormal
monitored. Because of the high dimensionality of the systenprocess state process signals vary and are classifitabtas
manual selection becomes arduous. When a large numbdsy monitoring features of the process signals the pre-stage
of process signals exist, subsets of relevant variables am the process fault can be detected.
automatically selected for modeling [1], [2]. This paper, Within the Olkiluoto control room, there is an overload
however, does not focus on the variable selection phase. It of alarms and notification which make it difficult for the
assumed that variables can be selected from certain area@ferator to make discerning decision. Some sort of alarm
the plant or from all around the NPP. In other words, variablesanitation is required [3]. The need for alarm handling is
selection depends on the need to improve given monitoringeduced if there are meaningful and clear statistics dérive
in a certain area. The main emphasis of this paper is placdom process data [4], [5], [6]. For example: Hotellingé¢
on the cluster center point movement monitoring of thosestatistics can be used to detect faults for multivariateess
variables. data. This methos is actually compared to our method in the

An earlier study was conducted to investigate classificasectionsimulation results Other monitoring systems based
tion by principal component analysis (PCA) [2]. The sizeson noise analysis also already exist [7]. If a fault or its-pre
of the groups are same, and each object can be assignstge is detected, large-scale systems like the Olkilu&B N
to many groups. In this paper, signals are classified in twaan be improved significantly. In our newest research and in
categoriessslow (steady, inactive) andast (quick, noisy). this paper, real data from reactor unit 2 of Olkiluoto NPP
Therefore data is classified by the K-means method intis used [8]. In 2007, more than 300 averaged signals were
two clusters for every time step of a constant frame sizestored, every hour, over a two months period. During this
The sizes of the groups are different, and each object i8me, an abnormal process state in the turbine section of the
assigned only to one group. During a normal operation stat&PP was captured in the recorded data.



2. Description of used methods K-means method is an unsupervised learning algorithm,
which classifies a given data set through a certain number

series is with Shewhart charts and limit value checking [6].Of k clusters [,12]' The initial placement of the centroids are

Monitored signals have lower control limit (LCL) and upper IrEandhomkl))_/ def_med fpr e\éery tlrr]ne step, ot?e f_or elach clustehr.
control limit (UCL). With this method it is difficult to find 2" © 13\% > assigne t‘;t eg“’“pt atis & OhSGSt to the
the correct target value and limit values for each signak Oncentroid. When all objects have been assigned, the position

reason for this is that the industrial process generatesymaﬁ)f thek centrou_js are recalculated. These stg ps are rgpea_tted
different types of signals. For example, Bergquist intrcet until the centroids no longer move. The optimal solution is
14 different signal classes [9]. These classes are periodiE:0 minimize the cost-function
slowly varying, multiple steady state, and containingieus! &
T_hree different signals from Olkiluoto NPP are shown in the J= Z Z laj — pal|, (4)
Figure 1. i=1 2,€5:

Features from range scaled signals are measured for _ _
each time step. Scaling of the signals is important becaué’ghere_there aré cIus_tersSl-, i =1, _2’ .-,k andy; is the_
without it, signal values or features cannot be Compareﬁemro'd of all the pomt_a:j € Si. With these_ f_eatures It Is
between other signals [2], [L0]. The results cannot belslia clear t_hat the center point near the axes origin relateseto th
clustered without preprocessing the signals, so the effect slow signals. The absolute value of the rate of change and

white noise is eliminated by moving average (MA) the MSDV are small compared to tlf@st signals.
The operators in the control room are already overloaded

The traditional way in industrial plants to monitor time

_ 1 Nmd with monitoring work, so a simple indexynsteadinessis
Tt = N, LTt—k; (1) introduced. The idea is to monitor the cluster center point
k=0 coordinates of theslow signals. It is more important to

wherexz; is a scaled measurement value ayig is aframe  concentrate on thelowsignals because there are remarkably

size of the moving average. First, th¥,, — 1 data points large changes in some measurements in their normal oper-
are removed from the beginning. The undesirable startteffe@ting state. These signals temporarily have high MSDV and
is erased, which is acceptable because the data is stordiference values. These rapid but normal changes in psoces

continuously and in actuality no data is wasted. signal values increase the center point coordinatetastf
The first feature in this application is tlasolute differ- signals. Examples of such events in NPP are: control flow
ence which is used to measure the rate of change from one pipeline to another, watering, and rapid changes in
_ flow in a feed filter. Theunsteadinesimit can be adjusted
d; = W, (2) to produce an automatic alarm. The MA of the cluster center
d

point of thefast signals is measured and the current alarm
where z; is a preprocessed (scaled and averaged) medimit its minimum value.

surement value andV, is a frame sizeof the difference. Our method is compared to the Hotellingl® statistics
Difference is high pass filter and it extracts changes in thevhich is a measure of the variation within the PCA model.
signal. The Second feature is the moving standard deviation 9 e _

(MSDV). It is a common measure of statistical dispersion I"=(H-H)'S"(H-H), ()

and it measures how widely the values are spread in timgyhereH is the score matrixd andS are the common esti-
If the data points are far from the mean, then the MSDVimators for the mean vector and covariance matrix obtained
values are large. If all the data values are equal, then theom the scores [13]. The scoré$ are the preprocessed
MSDV value at the current time is zero. MSDV is derived gata mapped into the new coordinate system defined by the

N1 Process abnormality is detected with the help of

1 — Hotelling’s T2, which defines the normal operating area

MSDV, = g —Tt)? 3 o . L
! Ny —1 Z (@t = 70)% ®) corresponding to 95% confidence. The upper control limit

k=0 . . . . L.
(UCL) of the multivariate Hotelling’sI"? statistics can be

where N is theframe sizefor MSDV, x; is a scaled sample defined
value a!ndft is the moving average [11]. _ , (n —1)(n+ 1)k
In this paper only two statistical features are introduced, Thop = —F—7—+"
but there could be more such as skewness (measure of n(n — k)
symmetry of a distribution) and kurtosis (measure of thewhere F,,(k,n — k) is the upper critical point of the"-
peakedness or flatness of a distribution when compared wittistribution withk andn — k degrees of freedom. In practice
a normal distribution). Selected features depend on thé goa is the amount of selected variables amds the number
of the classification. of measurements. [6]

Fo(kyn —k), (6)



3. Simulation Results

Deviation value and alarm limit
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information is aggregated to the limit line as in the case

of the center point coordinates of tfest signals. After the

Fig. 2: An example of the clustering resulttat 6. Variables
located near the axes origin are classifiedsksv signals.
Variables near the other cluster center point (X) are diassi
asfast signals.

Signal measurements were selected all around the NP

alarm notification, the limit can be re-settled. In this ctee
notification ofunsteadiness given att = 1359 because of
the high absolute difference values and at 1361 because
of the high deviation values.

Difference value and alarm limit

because it was decided that common safety improvemen o
were a priority. Features are measured for 307 variables ¢ 005l
each time step. Thansteadines# this case monitors the
general process state in the NPP. Feature values of ea woal
variable, the classification result, and the center poiats ¢ = g
be illustrated and updated in selected time period (eveny ho 3
or minute), see Figure 2. This can be useful for expert user § o
but not for operators in the control room. 5
In Figure 3 the deviation (the center point of MSDVs) ooz
for the slow and thefast signals is shown. The automatic
alarm is based on these values. Deviation ofdleev signals oot —v—
increased and NPP is not stable after= 1361. Because S vocae
of the limit was exceeded, thensteadinessotification is 800 w10 1100 1200 oo 1400

shown in the display of alarms at the control room. In this
visualization, high MSDV values for thfast signal can be

Time [h]

seen att 961. It is a normal operation state and the Fig. 4: The absolute difference value of teeow signals

high measurement values are caused by rapid changes (splid Iine) and the minimum. value of tHastsignals cluster

feed filters flows and temperatures. Few variables change€nter points (dash dotted line).

the MSDVs and they only have a minor effect to the center

point of slow signals. The simulation results are satisfying, because most of the
Figures 4 and 5 show time series which can be displayesignals get normal values until= 1364, see Figure 1. The

in the control room. These are actually not mandatorymethod presented here detects a process fault three hours
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4. Conclusion

The method presented in this paper can be used for pre-
stage detection of process faults through the introduaifon
an unsteadiness index. The implementation of this method
requires little investment in terms of increased process-co
plexity while offering a solid advantage in terms of preg&ta
fault detection capability. Through early detection, NPP
will ultimately enjoy reduced maintenance costs, decrase
downtimes, and increased safety.

One possible limitation for the method presented here is
that the NPP has rather strict rules for the automation syste
changes. Also computation time can be a problem if data
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Time [h]

1300

is analyzed too frequently. Future research will concdetra
on developing methods for maintenance personnel. There is

also a demand for the development of calibration monitoring

Fig. 5: MSDV of slowssignals (solid line) and the minimum
value of thefast signals cluster center points (dash dotte
line).

technology because more than 90 percent of current calibra-
dtion efforts are unnecessary. Calibration can also be harmf
to reactor equipment and even to plant safety [14].
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