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Abstract— This paper proposes a new method to detect
abnormal process state. The method is based on cluster
center point monitoring in time and is demonstrated in its
application to data from Olkiluoto nuclear power plant.
Typical statistical features are extracted, mapped ton-
dimensional space, and clustered online for every time step.
The process signals in the constant time window are classi-
fied into two clusters by the K-means method. By monitoring
features of the process signals, in addition to signal trends
and alarm lists, the operator gains a tool that helps in early
detection of the pre-stages of a process fault. By using cluster
center point time series monitoring, faults in the process can
be seen by at first glance or automatically by notification in
the alarm list. This provides a definite advantage to any
operating personnel and ultimately improves safety at the
nuclear power plant.
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1. Introduction
The goal of the process state detection method presented

in this paper is to detect abnormalities in Olkiluoto boiling
water reactor (BWR) type nuclear power plant (NPP) in
Finland. At Olkiluoto, thousands of signals are measured and
monitored. Because of the high dimensionality of the system,
manual selection becomes arduous. When a large numbers
of process signals exist, subsets of relevant variables are
automatically selected for modeling [1], [2]. This paper,
however, does not focus on the variable selection phase. It is
assumed that variables can be selected from certain area of
the plant or from all around the NPP. In other words, variable
selection depends on the need to improve given monitoring
in a certain area. The main emphasis of this paper is placed
on the cluster center point movement monitoring of those
variables.

An earlier study was conducted to investigate classifica-
tion by principal component analysis (PCA) [2]. The sizes
of the groups are same, and each object can be assigned
to many groups. In this paper, signals are classified in two
categories:slow (steady, inactive) andfast (quick, noisy).
Therefore data is classified by the K-means method into
two clusters for every time step of a constant frame size.
The sizes of the groups are different, and each object is
assigned only to one group. During a normal operation state,
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Fig. 1: The time series for three preprocessed process sig-
nals. The zero value is the global minimum (stored minimum
value of the signal in the database) for the signal and
one is the maximum. Most of the variables are near the
global maximum value in the normal operation state but this
naturally depends on the type of the variable.

most of the signals are classified asslow. In an abnormal
process state process signals vary and are classified asfast.
By monitoring features of the process signals the pre-stages
of the process fault can be detected.

Within the Olkiluoto control room, there is an overload
of alarms and notification which make it difficult for the
operator to make discerning decision. Some sort of alarm
sanitation is required [3]. The need for alarm handling is
reduced if there are meaningful and clear statistics derived
from process data [4], [5], [6]. For example: Hotelling’sT 2

statistics can be used to detect faults for multivariate process
data. This methos is actually compared to our method in the
sectionsimulation results. Other monitoring systems based
on noise analysis also already exist [7]. If a fault or its pre-
stage is detected, large-scale systems like the Olkiluoto NPP
can be improved significantly. In our newest research and in
this paper, real data from reactor unit 2 of Olkiluoto NPP
is used [8]. In 2007, more than 300 averaged signals were
stored, every hour, over a two months period. During this
time, an abnormal process state in the turbine section of the
NPP was captured in the recorded data.



2. Description of used methods
The traditional way in industrial plants to monitor time

series is with Shewhart charts and limit value checking [6].
Monitored signals have lower control limit (LCL) and upper
control limit (UCL). With this method it is difficult to find
the correct target value and limit values for each signal. One
reason for this is that the industrial process generates many
different types of signals. For example, Bergquist introduced
14 different signal classes [9]. These classes are periodic,
slowly varying, multiple steady state, and containing outliers.
Three different signals from Olkiluoto NPP are shown in the
Figure 1.

Features from range scaled signals are measured for
each time step. Scaling of the signals is important because
without it, signal values or features cannot be compared
between other signals [2], [10]. The results cannot be reliably
clustered without preprocessing the signals, so the effectof
white noise is eliminated by moving average (MA)

xt =
1

Nm

Nm−1
∑

k=0

xt−k, (1)

wherext is a scaled measurement value andNm is a frame
size of the moving average. First, theNm − 1 data points
are removed from the beginning. The undesirable start effect
is erased, which is acceptable because the data is stored
continuously and in actuality no data is wasted.

The first feature in this application is theabsolute differ-
ence, which is used to measure the rate of change

dt =
|xt − xt−Nd

|

Nd

, (2)

where xt is a preprocessed (scaled and averaged) mea-
surement value andNd is a frame sizeof the difference.
Difference is high pass filter and it extracts changes in the
signal. The Second feature is the moving standard deviation
(MSDV). It is a common measure of statistical dispersion
and it measures how widely the values are spread in time.
If the data points are far from the mean, then the MSDV
values are large. If all the data values are equal, then the
MSDV value at the current time is zero. MSDV is derived
from thesample variance

MSDVt =

√

√

√

√

1

Ns − 1

Ns−1
∑

k=0

(xt−k − xt)2, (3)

whereNs is theframe sizefor MSDV, xt is a scaled sample
value andxt is the moving average [11].

In this paper only two statistical features are introduced,
but there could be more such as skewness (measure of
symmetry of a distribution) and kurtosis (measure of the
peakedness or flatness of a distribution when compared with
a normal distribution). Selected features depend on the goal
of the classification.

K-means method is an unsupervised learning algorithm,
which classifies a given data set through a certain number
of k clusters [12]. The initial placement of the centroids are
randomly defined for every time step, one for each cluster.
Each object is assigned to the group that is closest to the
centroid. When all objects have been assigned, the positions
of thek centroids are recalculated. These steps are repeated
until the centroids no longer move. The optimal solution is
to minimize the cost-function

J =
k

∑

i=1

∑

xj∈Si

‖xj − µi‖
2, (4)

where there arek clustersSi, i = 1, 2, . . . , k andµi is the
centroid of all the pointsxj ∈ Si. With these features it is
clear that the center point near the axes origin relates to the
slow signals. The absolute value of the rate of change and
the MSDV are small compared to thefast signals.

The operators in the control room are already overloaded
with monitoring work, so a simple index,unsteadiness, is
introduced. The idea is to monitor the cluster center point
coordinates of theslow signals. It is more important to
concentrate on theslowsignals because there are remarkably
large changes in some measurements in their normal oper-
ating state. These signals temporarily have high MSDV and
difference values. These rapid but normal changes in process
signal values increase the center point coordinates offast
signals. Examples of such events in NPP are: control flow
from one pipeline to another, watering, and rapid changes in
flow in a feed filter. Theunsteadinesslimit can be adjusted
to produce an automatic alarm. The MA of the cluster center
point of the fast signals is measured and the current alarm
limit its minimum value.

Our method is compared to the Hotelling’sT 2 statistics
which is a measure of the variation within the PCA model.

T 2 = (H − H)T S−1(H − H), (5)

whereH is the score matrix,H andS are the common esti-
mators for the mean vector and covariance matrix obtained
from the scores [13]. The scoresH are the preprocessed
data mapped into the new coordinate system defined by the
principal components.

Process abnormality is detected with the help of
Hotelling’s T 2, which defines the normal operating area
corresponding to 95% confidence. The upper control limit
(UCL) of the multivariate Hotelling’sT 2 statistics can be
defined

T 2

UCL =
(n − 1)(n + 1)k

n(n − k)
Fα(k, n − k), (6)

where Fα(k, n − k) is the upper critical point of theF -
distribution withk andn−k degrees of freedom. In practice
k is the amount of selected variables andn is the number
of measurements. [6]



3. Simulation Results
All variables are range scaled by the database minimum

and maximum values because it provides better classification
results. In our research the database was constructed offline.
It was aggregated by 40 design based and abnormal stored
data sets such as watering and scram situations. These data
sets are provided by Teollisuuden Voima Oy. The frame size
used for the MA, MSDV, andabsolute value of the rate of
changewas eight hours.
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Fig. 2: An example of the clustering result att = 6. Variables
located near the axes origin are classified asslow signals.
Variables near the other cluster center point (X) are classified
as fast signals.

Signal measurements were selected all around the NPP,
because it was decided that common safety improvements
were a priority. Features are measured for 307 variables at
each time step. Theunsteadinessin this case monitors the
general process state in the NPP. Feature values of each
variable, the classification result, and the center points can
be illustrated and updated in selected time period (every hour
or minute), see Figure 2. This can be useful for expert users
but not for operators in the control room.

In Figure 3 the deviation (the center point of MSDVs)
for the slow and thefast signals is shown. The automatic
alarm is based on these values. Deviation of theslowsignals
increased and NPP is not stable aftert = 1361. Because
of the limit was exceeded, theunsteadinessnotification is
shown in the display of alarms at the control room. In this
visualization, high MSDV values for thefast signal can be
seen att = 961. It is a normal operation state and the
high measurement values are caused by rapid changes in
feed filters flows and temperatures. Few variables change
the MSDVs and they only have a minor effect to the center
point of slow signals.

Figures 4 and 5 show time series which can be displayed
in the control room. These are actually not mandatory
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Fig. 3: Deviation values for theslow signals (solid line) and
the alarm limit (dash dotted line). It is the minimum value of
the moving average of deviation for thefast signals (dashed
line) until current time.

because a notification system using theunsteadinessindex
works without operator monitoring. Of course important
information is aggregated to the limit line as in the case
of the center point coordinates of thefast signals. After the
alarm notification, the limit can be re-settled. In this casethe
notification ofunsteadinessis given att = 1359 because of
the high absolute difference values and att = 1361 because
of the high deviation values.
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Fig. 4: The absolute difference value of theslow signals
(solid line) and the minimum value of thefastsignals cluster
center points (dash dotted line).

The simulation results are satisfying, because most of the
signals get normal values untilt = 1364, see Figure 1. The
method presented here detects a process fault three hours
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Fig. 5: MSDV of slow signals (solid line) and the minimum
value of thefast signals cluster center points (dash dotted
line).

earlier than Hotelling’sT 2 statistics, see Figure 6. There are
some false alarms: at the time of rapid changes in feed filters
flows and temperatures,t = 961, and when a gas flow was
controlled from one pipeline to another att = 1175.

PCA was performed offline all time series data with same
preprocessing parameters. Complicated matrix inversions
are usually a problem in multivariate methods. Therefore
an online implementation of PCA would be a problem
especially when the size of moving time window is small.
Because of the feature extraction and data mapping into two
dimensional space, these problems do not exist in method
presented in this paper.
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Fig. 6: Hotelling’s T 2 statistics (solid line) and the upper
control limit (UCL) as an alarm limit (dash dotted line).

4. Conclusion
The method presented in this paper can be used for pre-

stage detection of process faults through the introductionof
an unsteadiness index. The implementation of this method
requires little investment in terms of increased process com-
plexity while offering a solid advantage in terms of pre-stage
fault detection capability. Through early detection, NPP
will ultimately enjoy reduced maintenance costs, decreased
downtimes, and increased safety.

One possible limitation for the method presented here is
that the NPP has rather strict rules for the automation system
changes. Also computation time can be a problem if data
is analyzed too frequently. Future research will concentrate
on developing methods for maintenance personnel. There is
also a demand for the development of calibration monitoring
technology because more than 90 percent of current calibra-
tion efforts are unnecessary. Calibration can also be harmful
to reactor equipment and even to plant safety [14].
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