
Allomorfessor: Towards Unsupervised

Morpheme Analysis

Oskar Kohonen, Sami Virpioja, and Mikaela Klami

Adaptive Informatics Research Centre,
Helsinki University of Technology

{oskar.kohonen,sami.virpioja,mikaela.klami}@tkk.fi

Abstract. We extend the unsupervised morpheme segmentation method
Morfessor Baseline to account for the linguistic phenomenon of allo-
morphy, where one morpheme has several different surface forms. Our
method discovers common base forms for allomorphs from an unanno-
tated corpus. We evaluate the method by participating in the Morpho
Challenge 2008 competition 1, where inferred analyses are compared
against a linguistic gold standard. While our competition entry achieves
high precision, but low recall, and therefore low F-measure scores, we
show that a small model change gives state-of-the-art results.

1 Introduction

Morphological analysis is crucial to many modern natural language process-
ing applications, especially when dealing with morphologically rich languages
where the enormous number of inflected word forms lead to severe problems with
data sparsity and computational efficiency. There are several successful methods
for unsupervised segmentation of word forms into smaller, morpheme-like units
[2, 3]. The phenomenon of allomorphy limits the quality of morpheme analysis
achievable by segmentation alone. Allomorphy is defined in linguistics as when
an underlying morpheme-level unit has two or more morph-level surface realiza-
tions which only occur in a complementary distribution: only one of the different
allomorphs of a given morpheme appear may appear in a certain morpho- and
phonotactical context. For example, in Finnish, the singular genitive case is
marked with a suffix n, e.g. auto (car) – auton (car’s). Many Finnish nouns
undergo a stem change when producing the genitive: kenkä (shoe) – kengän

(shoe’s), pappi (priest) – papin (priest’s), tapa (habit) – tavan (habit’s). A
segmentation based approach models changed stems as distinct morphemes.

There are two main tasks in literature on learning allomorphy: finding mor-
phologically related words (e.g. [9, 1]), and learning a morphological analyzer
(e.g. [10, 4]). In our contribution to Morpho Challenge 2008 [7], we present an
analyzer that is similar to Morfessor Baseline [3], but in addition finds com-
mon base forms for the inflected forms that derive from the same root word.
We currently ignore allomorphic variation in suffixes. Information sources used
in literature are orthographic similarity, word frequencies [10] and similar word

contexts [9, 1]. We currently use only orthographic features. They are used in a
similar manner in [10], but our model needs less supervision and allows concate-
native morphology, rather than only stem-suffix pairs. Maybe the closest work to
ours is presented in [4]. They study more general orthographic rewrite rules than
we do, but the algorithm includes several phases and many heuristics. They also
allow concatenative morphology, but the approach is not as general and cannot
find, e.g., suffixes between stems. By embedding allomorphy learning into the
Morfessor framework, we keep the algorithm flexible and conceptually simple.

2 Allomorfessor Model

In this section, we describe Allomorfessor, a morphological model that takes al-
lomorphic variation into account. We start by defining a probabilistic generative
model M for a text corpus. With Maximum a Posteriori (MAP) estimation, we
try to find the model that is the most probable given the training corpus:

MMAP = arg max
M

P (M|corpus) = arg max
M

P (M)P (corpus|M) (1)

P (M) is the Bayesian prior probability for the model and P (corpus|M) is the
likelihood of the training corpus. Compared to Maximum Likelihood estimation,
MAP provides a systematic way of balancing the model complexity and accuracy,
and thus helps with the problem of overlearning (see, e.g., Ch. 3 in [5]).

Modeling a corpus with a morphological model is not straightforward. As
occurrences of words in a corpus follow power law distributions (Zipf’s law), any
realistic model should abide by that phenomenon. Instead of using an explicit
model for the corpus, as in, e.g., [6], we separate word-level and morpheme-level
models, and concentrate only on the latter. We set the word-level model MW

to be a constant given a word lexicon LW , which contains all the word forms in
the corpus, and try to find only the morpheme-level model MM . In addition, we
divide MM into two parts: morpheme lexicon LM and morpheme grammar GM .
The former models word-internal syntax and the latter provides the morphemes
that from which the words are constructed. The optimization task is thus:

MMAP = arg max
GM ,LM

P (LW |GM ,LM)P (GM)P (LM). (2)

This is equivalent to the approach used in Morfessor [3], but instead of modeling
the original corpus, we are now modeling a lexicon of the words in the corpus.1

Our morpheme-level model resembles Morfessor Baseline, but it has a hi-
erarchical structure, whereas Morfessor Baseline models words as sequences of
morphs. At its core, our model is a probabilistic context-free grammar. Ter-
minals of the grammar are strings resembling linguistic morphemes, specifically
root stems and affixes. Non-terminals µ are morphs or their combinations. There

1 This has been recommended to be done also with Morfessor by setting all the word
counts to one. Otherwise, frequent word forms are often undersegmented.

are only two kinds of rules: µ is either replaced by a terminal (string), or two
non-terminals, a prefix and a suffix morph, with a mutation terminal. In the
former case, µ is a single real morph (root stem or affix). In the latter case, it
is a virtual morph, which has substructure. Prefix and suffix morphs of a virtual
morph can be either real or virtual morphs. The mutation is a special kind of
terminal which modifies the virtual prefix. The mutation may be empty, which
corresponds to a regular inflection or compound word, where the previous morph
does not undergo any changes. For an illustration, see Fig. 1.

Fig. 1. An example analysis of the
Finnish word jalkapallokengän (foot-
ball shoe’s). First, the word is split in
two with an empty mutation denoted as
(), then the virtual prefix jalkapallo

is further split into the stems jalka

and pallo. The virtual suffix kengän is
split into the stem kenkä, the mutation
(k|g) which transforms it into kengä,
and the suffix n.

When designing the mutation
model for allomorphy we strive to: (1)
Make wrong analyses costly by favor-
ing mutations close to the suffix. E.g.,
the edit distance between blue and
glue is only one, but they are not al-
lomorphs of the same morpheme. (2)
Use mutation types general enough to
allow statistical analysis. I.e., similar
variations in different words should
be modeled with the same mutation.
The mutation type used in Allomor-
fessor is a special case of the standard
edit distance (see, e.g., [8]). We allow
only substitution and deletion opera-
tions, and make the mutation position
independent. The affected position is
found by matching to k:th instance of
a target letter, that is scanned for starting from the end of the virtual prefix (or
previous operation). Examples are shown in Table 1.

To calculate the smallest mutation of this kind between two arbitrary strings
we apply the dynamic programming based algorithm for minimum edit distance
(see, e.g., [8]), which can be modified to return also the edit operations needed.
We want the optimal path not containing insertions, so we set the cost of in-
sertions to be larger than what the other operations may yield for the given
string lengths. In this way we always find alternative paths without insertions if
possible, by discarding candidates with too high costs. It is trivial to transform
the edit operations into the Allomorfessor mutation format.

2.1 Model Probabilities

Next we give a formal description of the probabilities of Equation 2 for the
Allomorfessor model. The formulation follows the work by Creutz and Lagus [3],
with a few changes. First, every word form in the word lexicon is represented by
one real or virtual morph µj . Thus the likelihood of the word lexicon is simply

P (LW |GM ,LM) =

MW
∏

j=1

P (µj), (3)

Table 1. The allowed operations in mutations and some examples in Finnish.

Operation Notation Description

substitution kx|y Change k:th x to y

deletion -kx Remove k:th x

(k is omitted when k = 1)

Source Mutation Target

kenkä (shoe) (k|g) kengä (e.g. kengä+ssä, in shoe)
tanko (pole) (k|g) tango (e.g. tango+t, poles)
ranta (shore) (-a t|n) rann (e.g. rann+oi+lla, on shores)
ihminen (human) (2n|s) ihmisen (human’s)

where MW is the number of words in the lexicon. The probability of the morph
µ is estimated from the number of references to it from the word lexicon and
virtual morphs.

The morph lexicon LM consists of the real and virtual morphs. The proba-
bility of the morph lexicon is based on the properties of the morphs:

P (LM) = P (size(LM) = M)P (properties(µ1) . . . properties(µM))M ! (4)

If a non-informative prior is used for the probability of the lexicon size M , its
effect is minimal and it can be neglected. The factor M ! is explained by the fact
that there are M ! possible orderings of M items, and the lexicon is the same
regardless of the order in which the morphs are discovered.

The properties of the morphs are divided into two parts, usage and form. The
usage includes properties of the morph itself and the properties of its context. In
this model, we use only morph frequencies. For the probability of the frequency
distribution, we use a non-informative, implicit frequency prior

P (usage(µ1) . . . usage(µM)) = P (freq(µ1) . . . freq(µM)) = 1/

(

N − 1

M − 1

)

, (5)

where N is the sum of the counts of the morphs.
The form of a morph is its representation in the model. Forms of the morphs

are assumed to be independent. As described before, µi is either a real morph
represented by a string of letters, or a virtual morph consisting of prefix (µpre)
and suffix (µsuf) morphs and a (possibly empty) mutation δk. The probabilities
are defined as:

P (form(µi)) =

{

P (sub)P (µpre)P (δk)P (µsuf), if µi is virtual;
[

1 − P (sub)
]

P (len(µi))
∏len(µi)

j=1 P (ĉij), otherwise.
(6)

P (sub) is the probability that a morph has substructure, and for real morphs, ĉij

is the jth character of the morph. The lengths of the real morphs are modeled
explicitly using a gamma distribution with shape a and scale b:

P (len(µi)) =
1

Γ (a)ba
len(µi)

a−1e−len(µi)/b. (7)

Grammar GM of the model contains the set of mutations ∆. Similarly to the
lexicons,

P (GM) = P (size(∆) = Mδ)P (properties(δ1) . . . properties(δMδ
))Mδ!, (8)

and properties can be divided into usage and form. Usage features include only
the frequencies; the non-informative prior is applied (cf. Equation 5). The prior
probability for the form of a mutation δi with len(δi) operations is given by:

P (form(δi)) = P (len(δi))

len(δi)
∏

j=1

P (kij)P (opij) (9)

P (opij) =

{

P (del) 1
Σ if opij is a deletion

P (sub) 1
Σ2 if opij is a substitution

(10)

For the weights we use P (del) = P (sub) = 0.5, Σ is the alphabet size, and
kij tells which instance of the target letter of the operation opij is matched.
P (len(δi)) and P (kij) are taken from Gamma distributions.

2.2 Learning the Model

The model is learned by iteratively improving the model posterior P (M|corpus),
processing one word at a time and selecting the analysis of that word that
maximizes the probability, as shown in Algorithm 1. Note that Aw is a list and
we use + to denote the append operation. The algorithm considers analyzing
the word w (1) without splits (2) with all possible splits of w and an empty
mutation (3) with all possible splits and a base form similar to the virtual prefix
and the required mutation. The two former ones are the same as in Morfessor
Baseline and the third is our extension, with details shown in Algorithm 2.

Since each word has 2(len(w)−1) possible analyses without considering muta-
tions, we search greedily for the best split at any time, reducing the search space
to O(len(w)2). When considering mutations, any word w could potentially be
the base form for any other word w∗. This would lead naturally to a O(N2)
algorithm. This is unfeasible for large datasets, and therefore we constrain the
candidates in heuristic ways, such as limiting the number of analyses to K per
morph and iteration, as can be seen in Algorithm 2. Since finding the baseforms
can be done as a range search it requires O(K log(N)) time, and thus the time
complexity for the whole learning algorithm is O(NK log(N)).

3 Experiments

The model was evaluated in Morpho Challenge 2008 competition 1 [7]. The fol-
lowing parameter settings are used: Morph lexicon length distribution in Equa-
tion 7: shape a = 5 and scale b = 1. The number of candidates considered for
each virtual morph K = 20. For the mutation lengths and kij in Equation 9, we
used parameters a = 1 and b = 1 of the gamma prior to prefer short mutations.

Algorithm 1 The learning algorithm

while P (M| corpus) increases do

for w ∈ LW in random order do optimize(w,len(w))
end while

function optimize(w,n)
Aw ←

ˆ

w
˜

+
ˆ

(w1..i, w(i+1)..n) : i ∈ 1, ..., n − 1
˜

+ mutated analyses(w, n)
Apply the analysis a∗

w of the first K elements of Aw that maximizes P (M| corpus)
if a∗

w involved a split then optimize(w1..i, i); optimize(w(i+1)..n, n − i)

Algorithm 2 mutated analyses(w, n)

for i ∈ 1, ..., n − 1 do

if n >= 4 ∧ len(w(i+1)..n) <= 5 ∧ w(i+1)..n ∈ LM then

if n > 6 then difflen ← 4 else difflen ← 3
baseforms ← {v ∈ LW : v1..(n−difflen) = w1..(n−difflen)}
Calculate mutations δj between each baseformsj and w(i+1)..n

Aw ← Aw +
ˆ

(vj , w(i+1)..n, δj) : vj ∈ baseforms
˜

end if

end for

return Aw sorted by i and descending len(vj)

The Morpho Challenge results are summarized in Table 2. The most striking
figures are our very low recall numbers. Low recall means that the model un-
dersegments heavily, i.e., the algorithm should find more morphemes per word
(e.g. kengän and papin are both unsegmented). The precisions are quite good,
especially for Turkish and Finnish, but are explained by the low recall.

Mutations were not used very frequently in the analyses. Where substructure
was found in the word form, 98% of the mutations were empty for English and
96% for Finnish. The algorithm often favors using new base forms over using
mutations, e.g. prettier is analysed as pretti () er, not pretty -y er. The
five most common mutations for English and Finnish are shown in Table 3. Some
of the example analyses shown are desired (e.g., -e in abjure, -a in haljeta),
but in many cases the mutation is clearly unnecessary. E.g., a simpler analysis for
suspicions would be suspicion () s. Mutations are also used commonly in
misspelled words. E.g., both contructed and contructive exist in the English
corpus, and mutation -d-e is used to get the missing base form contruct.

Table 2. Results from the Morpho Challenge evaluation. See [7] for details.

Language Precision Recall F-Measure F/Winner F/Morf.Baseline

English 83.39% 13.43% 23.13% 56.26% 54.04%
German 87.92% 7.44% 13.71% 54.06% 31.01%
Turkish 93.25% 6.15% 11.53% 51.99% 20.08%
Finnish 92.55% 6.89% 12.82% 48.47% 21.16%

Table 3. The five most frequent mutations found by the algorithm for English (left
side) and Finnish (right side).

Mutation Freq. Example

(-e) 2033 abjure (-e) ed
(-s) 537 actress (-s) s’
(-y) 386 inequity (-y) able
(-n) 243 suspicion (-n) ns

(-d -e) 183 contructed (-d-e) ive

Mutation Freq. Example

(-n) 27510 antiikin (-n) lle
(-n -e) 15830 edustajien (-n-e) esi
(-a) 6241 haljeta (-a) essa
(-i) 4203 kliimaksi (-i) in

(-a -t) 2792 alokkaita (-a-t) lle

4 Discussion

Our model gave poor results in Morpho Challenge even compared to Morfes-
sor Baseline (see Table 2). Afterwards, we have found out the reasons for the
undersegmentation and implemented a new version that solves the problems.
The main reasons for the undersegmentation are hierarchical model structure
and context independent mutations, which both result in increased cost of data.
Compare, e.g., the following analyses of English word “mispronouncing”:

P (mispronouncing|M) = P (mis)P (ǫ)P (pronouncing)

P (pronouncing|M) = P (pronounce)P (-e)P (ing)

vs.

P (mispronouncing|M) = P (mis)P (pronounc)P (ing),

where ǫ is an empty mutation. The former analysis may save one lexical item
due to the use of the mutation -e, but the data cost will have six probabilities
compared to three in the latter analysis. If “mispronouncing” were analyzed as
a single morph, the data probabilities of the two model would be equal. Thus
complex segmentations are penalized more in our model.

The problem of mutation costs can be solved by conditioning the mutations
by the following morph (suffix). In the previous example, we can get:

P (mispronouncing|M) = P (mis)P (ǫ|mis) × P (pronounce)P (ǫ|pronounce) ×

P (ing)P (-e|ing).

Note that most of the morphs are stems, and occur only with the empty mu-
tation. Then P (ǫ |µ) = 1, and the data cost does not increase. Using a flat
structure and conditioning the mutation probabilities on suffixes do not require
complicated changes to the Allomorfessor model. The most relevant change is
that the word lexicon is represented by a sequence of morphs and mutations:

P (LW |GM ,LM) =

MW
∏

j=1

nj
∏

k=1

P (µjk)P (δjk|µjk), (11)

where nj is the number of morphs in word j. As morphs will not have any
substructure, P (sub) is zero in Equation 6. Probabilities P (δ |µ) are estimated

from the observed frequencies. Non-informative prior probabilities of the co-
occurrences of mutations and morphs are added to the usage properties of the
morphs.

We have made preliminary test with the new version using the English task of
competition 1. To speed up the computation and reduce misspellings, the word
forms that occurred only once were excluded from training. With this setting,
F-measure was 57.12% (precision 65.26%, recall 50.79%). This is significant im-
provement over the submitted version, and shows that the general framework
is working. Part of the improvement in recall and F-measure was due to the
pruned training data: with the same data, F-measure for Morfessor Baseline
was 56.14% (precision 64.49%, recall 49.69%). However, the improvement over
Morfessor Baseline was statistically significant for both precision and recall.

We conclude that our framework for learning allomorphy seems to be promis-
ing. In addition to more extensive testing and error analysis with the new version,
future work will include using context and frequency information to both limit
and weight the potential allomorphs.

References

1. Marco Baroni, Johannes Matiasek, and Harald Trost. Unsupervised discovery of
morphologically related words based on orthographic and semantic similarity. In
Proceedings of the ACL-02 workshop on Morphological and phonological learning,
pages 48–57, Morristown, NJ, USA, 2002. ACL.

2. Delphine Bernhard. Simple morpheme labelling in unsupervised morpheme analy-
sis. In Advances in Multilingual and Multimodal Information Retrieval, 8th Work-
shop of the CLEF, volume 5152 of Lecture Notes in Computer Science, 2008.

3. Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmenta-
tion and morphology learning. ACM Transactions on Speech and Language Pro-
cessing, 4(1), January 2007.

4. Sajib Dasgupta and Vincent Ng. High-performance, language-independent mor-
phological segmentation. In In the annual conference of the North American Chap-
ter of the ACL (NAACL-HLT), 2007.

5. Carl G. de Marcken. Unsupervised Language Acquisition. PhD thesis, MIT, 1996.
6. Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Interpolating between

types and tokens by estimating power-law generators. In Advances in Neural In-
formation Processing Systems (NIPS), page 18, 2006.

7. Mikko Kurimo, Ville Turunen, and Matti Varjokallio. Overview of Morpho Chal-
lenge 2008. In Evaluating Systems for Multilingual and Multimodal Information
Access – 9th Workshop of the CLEF, Lecture Notes in Computer Science, Aarhus,
Denmark, September 2008 (printed in 2009).

8. Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, 2001.

9. Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using
latent semantic analysis. In Proceedings of the 2nd workshop on Learning language
in logic and the 4th conference on Computational natural language learning, pages
67–72, Morristown, NJ, USA, 2000. ACL.

10. David Yarowsky and Richard Wicentowski. Minimally supervised morphological
analysis by multimodal alignment. In Proceedings of the 38th Meeting of the ACL,
pages 207–216, 2000.

