Linear Cryptanalysis

Highly Nonlinear Boolean Functions

Generalizations

Open Problem
Linear Cryptanalysis
Encryption System

- $K \in \mathcal{K}$ the key
- $x \in \mathcal{P}$ the plaintext
- $y \in \mathcal{C}$ the ciphertext

Encryption system is a family $\{E_K\}$ of transformations

$$E_K : \mathcal{P} \rightarrow \mathcal{C}$$

parametrised using the key K such that, for each encryption transformation E_K, there is a decryption transformation

$$D_K : \mathcal{C} \rightarrow \mathcal{P}$$

such that

$$D_K(E_K(x)) = x, \text{ for all } x \in \mathcal{P}.$$
Block Cipher

\[P = C = \mathbb{F}_2^n \]
\[\mathcal{K} = \mathbb{F}_2^\ell \]

The data to be encrypted is split into blocks

\[x_i, \quad i = 1, \ldots, N \]

of fixed length \(n \).

Typically \(n = 128 \) and \(\ell = 128 \)

Still today designed as proposed by Claude Shannon 1949: alternating layers of diffusions and confusions.
Block Cipher Building Blocks
Linear Approximation of Block Cipher
Trail Correlation

\textit{Piling-up lemma:} The strength of a linear approximation trail is measured as the product of building block correlations.

\textit{Building block correlation} is taken between \oplus of all input bits and \oplus of all output bits involved in the approximation.

Linear building block: correlation $= 1$
Nonlinear building block: $|\text{correlation}| < 1$
Linear trails are said to exist only if correlation $\neq 0$
Also correlations $= 0$ can be meaningful
Correlation over Block Cipher

- Correlation of linear approximation over block cipher is taken between \(\oplus \) of all plaintext bits and \(\oplus \) of all ciphertext bits involved in the approximation.

- Typically there exist many approximation trails involving the same plaintext bits and ciphertext bits.

- One trail correlation dominates: Correlation computed as trail correlation.

- Several trails with large correlations (Linear hull): Correlation (squared) is computed as the sum of all significant trail correlations (squared) [KN 1994]
Block Cipher PRESENT

- Recent design targeted for lightweight applications
- Abundant in single-bit strong linear approximation trails
- Best known attack (other than exhaustive key search) due to Joo Cho [2010]
 - breaks 26 out of 31 rounds
 - exploits linear hulls and multidimensional linear cryptanalysis developed by us
- The effect of linear hulls underestimated by the designers of PRESENT [Gregor Leander, Eurocrypt 2011]
Highly Nonlinear Boolean Functions
Binary Vector Space

- \mathbb{F}_2^n the space of n-dimensional binary vectors
- \oplus sum modulo 2
- Given two vectors

 $a = (a_1, \ldots, a_n), \ b = (b_1, \ldots, b_n) \in \mathbb{F}_2^n$

 the inner product (dot product) is defined as

 $a \cdot b = a_1 b_1 \oplus \cdots \oplus a_n b_n$.
Boolean Function

- $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ Boolean function.
- Linear Boolean function is of the form $f(x) = u \cdot x$, where $u \in \mathbb{F}_2^n$ is called a linear mask.
- $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m$ with $f = (f_1, \ldots, f_m)$, where f_i are Boolean functions, is called a vector Boolean function.
Correlation

The correlation between Boolean functions $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ and $\mathbb{F}_2^n \rightarrow \mathbb{F}_2$, $x \mapsto u \cdot x$ is defined as

$$c(f, u) = \frac{1}{2^n}(\#\{x \in \mathbb{F}_2^n | f(x) = u \cdot x\} - \#\{x \in \mathbb{F}_2^n | f(x) \neq u \cdot x\})$$

Linear cryptanalysis makes use of large correlations between Boolean functions and linear approximations derived from cipher constructions.
Parseval’s Theorem and Bent Functions

- **Parseval’s Theorem**

\[\sum_{u \in \mathbb{F}_2^n} c(f, u)^2 = 1. \]

- A Boolean function is called *bent* if

\[|c(f, u)| = 2^{-\frac{n}{2}}, \text{ for all } u \in \mathbb{F}_2^n. \]

[Rothaus1976][Dillon1978]

- Theorem. If \(f : \mathbb{F}_2^n \to \mathbb{F}_2 \) is bent then \(n \) is even.

- Meier and Staffelbach [1988] introduced the notion of perfect nonlinearity of Boolean functions as an important cryptographic criterion, and later observed that it is equivalent to bentness.
Vectorial Bent Functions

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a vector Boolean function. Then the following are equivalent [KN1991]

- f is bent, that is, $w \cdot f$ is bent, for all $w \neq 0$;
- f is perfect nonlinear (PN), that is,

$$f(x \oplus \alpha) \oplus f(x)$$

is uniformly distributed as x varies, for all fixed $\alpha \in \mathbb{F}_2^n \setminus \{0\}$.

Theorem [KN1991]. If $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is bent then $n \geq 2m$.
Let $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ be an S-box. Then f is said to be *almost perfect nonlinear* (APN) if $f(x \oplus \alpha) \oplus f(x)$ is as uniformly distributed as possible, as x varies, for all fixed $\alpha \in \mathbb{F}_2^n \setminus \{0\}$.

- The function

 $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n, \; f(x) = x^{2^k+1}$,

 with multiplication in \mathbb{F}_{2^n} is APN.

- This function is bijective only for odd n [KN1993]
Highly Nonlinear S-Boxes

- \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n, \ f(x) = x^{-1}, \ f(0) = 0 \)
 with multiplication in \(\mathbb{F}_{2^n} \) is bijective.
- For odd \(n \), it is APN, and for even \(n \),
 \[
 \# \{ x \mid f(x \oplus \alpha) \oplus f(x) = \beta \} \leq 4,
 \]
 for all \(\alpha \neq 0 \) and \(\beta \).
- In addition, all correlations \(|c(w \cdot f(x) \oplus u \cdot x)|\) are upperbounded by \(2^{-\frac{n}{2}+1} \) [KN1993].
- Was adapted as the core of the S-box for the Rijndael block cipher in 1998 to become the AES in 2001.
Discrete Logarithm

The n-bit discrete logarithm S-box $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ is defined as

$$f(x) = \begin{cases} \log_\alpha(x), & \text{for } x \neq 0 \\ (1, 1, \ldots, 1), & \text{for } x = 0. \end{cases}$$

where α is a generator of $(\mathbb{F}_{2^n}, \times)$, x is considered as an element in \mathbb{F}_{2^n}, and n-bit integers $\log_\alpha(x)$ and $2^n - 1$ are considered as elements in \mathbb{F}_2^n.

For any single bit of f, its correlation with any linear function is upperbounded by

$$O(n 2^{-n/2}).$$

For multiple-bit maskings no useful upperbound known.

The best known bounds for the inverse of f

$$f^{-1}(y) = \begin{cases} \alpha^y, & \text{for } y \neq (1, 1, \ldots, 1) \\ 0, & \text{for } y = (1, 1, \ldots, 1). \end{cases}$$

is $O(n^{1/4} 2^{-n/8})$ [Shparlinski and Winterhof, 2006]
Generalized Linearity
SAFER Block Cipher
Non-binary mod 256 Diffusion

\[
[2\text{-PHT}](x, y) = (2x + y, x + y), \quad x, y \in \mathbb{Z}_{256}
\]
Generalized Bent Functions

Let $q \geq 2$ be integer and denote

$$e_q(x) = e^{2\pi x i^q}.$$

$f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is bent if and only if

$$| \sum_{x \in \mathbb{F}_2^n} e_2(f(x) \oplus u \cdot x) | = 2^n/2, \text{ for all } u \in \mathbb{F}_2^n.$$

Kumar-Scholtz-Welch [1985]:

$f : \mathbb{Z}_q^n \rightarrow \mathbb{Z}_q$ is generalized bent if

$$| \sum_{x \in \mathbb{Z}_q^n} e_q(f(x) - ux) | = q^n/2, \text{ for all } u \in \mathbb{Z}_q^n.$$
Existence

- **Theorem.** For all odd primes p and all positive n, there exist generalized bent functions $f : \mathbb{Z}_p^n \rightarrow \mathbb{Z}_p$.

- **Example.** $f : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$, $f(x) = x^2$.

\[
\left| \sum_{x \in \mathbb{Z}_p} e_p(x^2 - ux) \right|^2 = \left(\sum_{x \in \mathbb{Z}_p} e_p(x^2 - ux) \right) \left(\sum_{y \in \mathbb{Z}_p} e_p(y^2 - uy) \right)
\]

\[
= \sum_{x} e_p(x^2 - ux) \sum_{y} e_p((x - y)^2 - u(x - y))
\]

\[
= \sum_{x,y} e_p(x^2 - ux - (x - y)^2 + u(x - y))
\]

\[
= \sum_{y} e_p(-y^2 - uy) \sum_{x} e_p(2xy)
\]

\[
= p
\]

- This function is not bijective.
Generalized Correlation

- Baignéres, Vaudenay, Stern [2007]: Additive groups
- Drakakis, Requena, McGuire [2010]: \mathbb{Z}_p and \mathbb{Z}_{p-1}
- Feng, Zhou, Wu, Feng [2011]: Subsets of \mathbb{Z}_{2^n}
- For any positive integers q and p and $f : A \rightarrow \mathbb{Z}_p$, where A is a subset of \mathbb{Z}_q, we define

$$c(wf(x), ux) = \frac{1}{|A|} \sum_{x \in A} e_p(wf(x)) e_q(ux)$$
$f(x) = (45^x \mod 257) - 1, \ x \in \mathbb{Z}_{256}$

and its inverse

$f^{-1}(y) = \log_{45}(y + 1), \ y \in \mathbb{Z}_{256}$

Nonlinearity?
Welch-Costas Functions

p odd prime
g generator of the multiplicative group in \mathbb{F}_p

Exponential Welch-Costas function

$$f(x) = (g^x \mod p) - 1, \ x \in \mathbb{Z}_{p-1}$$

and its inverse, namely, *logarithmic Welch-Costas function*

$$f^{-1}(y) = \log_g(y + 1), \ y \in \mathbb{Z}_{p-1}$$

are bijections in \mathbb{Z}_{p-1}.

Drakakis, Requena, McGuire [2010] conjectured asymptotic upperbound for absolute values of correlations. Hakala [2011] proved even a stronger upperbound $O(p^{-\frac{1}{2}} \log p)$.
Almost Linear Embedding $\mathbb{Z}_p \setminus \{0\} \rightarrow \mathbb{Z}_{p-1}$

- Lemma [Hakala2011]. Let $\phi : \mathbb{Z}_p \setminus \{0\} \rightarrow \mathbb{Z}_{p-1}$ be defined as $\phi(y) = y - 1$. Then for all $v \in \mathbb{Z}_p$ and $w \in \mathbb{Z}_{p-1}$, $w \neq 0$, we have

$$\sum_{v \in \mathbb{Z}_p} |c(w\phi(y), vy)| \leq C \log p.$$

- Proof based on an idea of L. J. Mordell [1972].

- For any function $f : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$

$$1 \leq \sum_{v \in \mathbb{Z}_p} |c(f(x), vx)| \leq p^{1/2},$$

where the equality on the left hand side is obtained by linear functions of the form $f(x) = vx$, and on the right hand side by bent functions.

- The embedding $\phi : \mathbb{Z}_p \setminus \{0\} \rightarrow \mathbb{Z}_{p-1}$ is hence closer to the linear side. Is it the most linear in this sense?
Exponentiation $\mathbb{Z}_{p-1} \rightarrow \mathbb{Z}_p$ Perfect Nonlinear

- Exponentiation $\mathbb{Z}_{p-1} \rightarrow \mathbb{Z}_p \setminus \{0\}$ is perfect nonlinear, that is,
 $$x \mapsto g^{x+\alpha} - g^x = g^x(g^{\alpha} - 1)$$
 is bijective for all $\alpha \neq 0$.

- It follows:

 Theorem [Drakakis-Requena-McGuire 2011].

 $$|c(vg^x \mod p, ux)| = \begin{cases}
p^{-\frac{1}{2}}, & \text{for } u \neq 0
p^{-1}, & \text{for } u = 0.
\end{cases}$$
Bounds for Correlations of Exponential Costas-Welch

- Compute the correlation of the composition

\[f : \mathbb{Z}_{p-1} \ni x \mapsto g^x \mapsto g^x - 1 \ni \mathbb{Z}_p \ni v \mapsto \mathbb{Z}_{p-1} \]

- Then

\[
|c(wf(x), ux)| \leq \sum_{v \in \mathbb{Z}_p} |c(w \phi(z), vz)||c(vg^x, ux)| \\
\leq p^{-\frac{1}{2}} \sum_{v \in \mathbb{Z}_p} |c(w \phi(z), vz)| \\
\leq Cp^{-\frac{1}{2}} \log p.
\]
Open Problems
Logarithm and Exponent Functions in \mathbb{F}_2^n

- $\phi : \mathbb{Z}_p \rightarrow \mathbb{Z}_{p-1}$ almost linear
- Problem: Can this approach be applied to the exponent function in \mathbb{F}_2^n where exponentiation is taken in \mathbb{F}_{2^n}?

$$f(y) = \begin{cases} \alpha^y, & \text{for } y \neq (1, 1, \ldots, 1) \\ 0, & \text{for } y = (1, 1, \ldots, 1) \end{cases}$$

- Similar perfect nonlinearity as in modp case
- Natural embeddings

$$\mathbb{F}_2^n \setminus \{(1, 1, \ldots, 1)\} \rightarrow \mathbb{Z}_{2^n-1} \text{ or } \mathbb{F}_2^n \rightarrow \mathbb{Z}_{2^n}$$

not very linear, indeed, addition mod 2^n and addition mod 2^{n-1} are commonly used nonlinear components in cipher constructs.