
Algebraic Attacks on SOBER-t32 and
SOBER-t16 without stuttering

Joo Yeon Cho and Josef Pieprzyk?

Center for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University,

NSW, Australia, 2109
{jcho,josef}@ics.mq.edu.au

Abstract. This paper presents algebraic attacks on SOBER-t32 and
SOBER-t16 without stuttering. For unstuttered SOBER-t32, two differ-
ent attacks are implemented. In the first attack, we obtain multivariate
equations of degree 10. Then, an algebraic attack is developed using a
collection of output bits whose relation to the initial state of the LFSR
can be described by low-degree equations. The resulting system of equa-
tions contains 269 equations and monomials, which can be solved using
the Gaussian elimination with the complexity of 2196.5. For the second
attack, we build a multivariate equation of degree 14. We focus on the
property of the equation that the monomials which are combined with
output bit are linear. By applying the Berlekamp-Massey algorithm, we
can obtain a system of linear equations and the initial states of the
LFSR can be recovered. The complexity of attack is around O(2100)
with 292 keystream observations. The second algebraic attack is applica-
ble to SOBER-t16 without stuttering. The attack takes around O(285)
CPU clocks with 278 keystream observations.

Keywords : Algebraic attack, stream ciphers, linearization, NESSIE,
SOBER-t32, SOBER-t16, modular addition, multivariate equations

1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt
individual characters of a plaintext message one at a time, using a stream of
pseudorandom bits. Stream ciphers generally offer a better performance com-
pared with block ciphers. They are also more suitable for implementations where
computing resources are limited (mobile phones) or when characters must be in-
dividually processed (reducing the delay) [4].

Recently, there were two international calls for cryptographic primitives.
NESSIE is an European initiative [2] and CRYPTREC [1] is driven by Japan.
Many stream ciphers have been submitted and evaluated by the international
cryptographic community. NESSIE announced the final decision at Feb. 2003
and none of candidates of stream ciphers was selected in the final report.
? Supported by ARC Discovery grant DP0451484



According to the final NESSIE security report [3], there were four stream
cipher primitives which were considered during the phase II : BMGL [15], SNOW
[12], SOBER-t16 and SOBER-t32 [17]. The security analysis of these stream
ciphers is mainly focused on the distinguishing and guess-determine attacks.
Note that ciphers for which such attacks exist are excluded from the contest
(even if those attack do not allow to recover the secret elements of the cipher).

For SOBER-t16 and SOBER-t32, there are distinguishing attacks that are
faster than the key exhaustive attack. SOBER-t16 is distinguishable from the
truly random keystream with the work factor of 292 for the version without stut-
tering and with the work factor of 2111 for the version with stuttering [13]. The
same technique is used to construct a distinguisher for SOBER-t32 with com-
plexity of 286.5 for the non-stuttering version [13]. For the version with stuttering
[14], the distinguisher has the complexity 2153.

The distinguishing attacks are the weakest form of attack and normally iden-
tify a potential weakness that may lead to the full attack that allows to determine
the secret elements (such as the initial state) of the cipher. Recent development
of algebraic attacks on stream ciphers already resulted in a dramatic cull of
potential candidates for the stream cipher standards. The casualties of the al-
gebraic attacks include Toyocrypt submitted to CRYPTREC [7] and LILI-128
submitted to NESSIE [10].

In this paper, we present algebraic attacks on SOBER-t32 and SOBER-
t16 without stuttering. For unstuttered SOBER-t32, two different attacks are
implemented. In the first attack, we apply indirectly the algebraic attack on
combiner with memory, even though SOBER-t32 does not include an internal
memory state. We extract a part of most significant bits of the addition modulo
232 and the carry generated from the part of less significant bits is regarded as
the internal memory state (which is unknown). Our attack can recover the initial
state of LFSR with the workload of 2196.5 by 269 keystream observations, which
is faster than the exhaustive search of the 256-bit key.

For the second attack, we build a multivariate equation of degree 14. This
equation has a property that the monomials which are combined with output
bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a
system of simple linear equations and recover the initial states of the LFSR. The
attack takes O(2100) CPU clocks with around 292 keystream observations.

We apply the second algebraic attack to SOBER-t16 without stuttering. Our
attack can recover the initial state of LFSR with the workload of O(285) using
278 keystream observations for unstuttered SOBER-t16.

This paper is organized as follows. In Section 2, an algebraic attack method is
briefly described. The structure of SOBER-t32 is given in Section 3. In Section
4, the first algebraic attack on SOBER-t32 is presented. the second algebraic
attack on SOBER-t32 is presented in Section 5. In Section 6, an algebraic attack
on SOBER-t16 is presented. Section 7 concludes the paper.



2 Algebraic attacks

2.1 Previous works

The first application of algebraic approach for analysis of stream ciphers can be
found in the Courtois’ work [7]. The idea behind it is to find a relation between
the initial state of LFSR and the output bits that is expressible by a polyno-
mial of a low degree. By accumulating enough observations (and corresponding
equations) the attacker is able to create a system of equations of a low algebraic
degree. The number of monomials in these equations is relatively small (as the
degree of each equation is low). We treat monomials as independent variables
and solve the system by the Gaussian elimination. For Toyocrypt, the algebraic
attack shown in [7] is probabilistic and requires the workload of 292 with 219

keystream observations. In [10], the authors showed that Toyocrypt is breakable
in 249 CPU clocks with 20K bytes of keystream. They also analyzed the NESSIE
submission of LILI-128 showing that it is breakable within 257 CPU clocks with
762 GBytes memory. Recently, the algebraic approach has been extended to an-
alyze combiners with memory [5, 6, 8]. Very recently, the method that allows a
substantial reduction of the complexity of all these attacks is presented in [9].

2.2 General description of algebraic attacks

Let S0 = (s0, · · · , sn−1) be an initial state of the linear shift register at the
clock 0. The state variables are next input to the nonlinear block producing the
output v0 = NB(S0) where NB is a nonlinear function transforming the state
of the LFSR into the output. At each clock t, the state is updated according to
the following relation St = L(st, · · · , sn−1+t) with L being a multivariate linear
transformation. The output is vt = NB(St).

The general algebraic attack on such stream ciphers works as follows. For
details see [7] or [10].

– Find a multivariate relation Q of a low degree d between the state bits and
the bits of the output. Assume that the relation is Q(S0, v0) = 0 for the
clock 0.

– The same relation holds for all consecutive clocks t so

Q(St, vt) = Q(Lt(S0), vt) = 0

where the state St at the clock t is a linear transformation of the initial state
S0 or St = Lt(S0). Note that all relations are of the same degree d.

– Given consecutive keystream bits v0, · · · vM−1, we obtain a system of M
equations with monomials of degree at most d. If we collect enough obser-
vations so the number of linearly independent equations is at least as large
as the number T of monomials of degree at most d, then the system has a
unique solution revealing the initial state S0. We can apply the Gaussian
reduction algorithm that requires 7 · T log2 7 operations [18].



Finding relations amongst the input and output variables is a crucial task in
each algebraic attack. Assume that we have a nonlinear block with n binary
inputs and m binary outputs or simply the n×m S-box over GF (2). The truth
table of the box consists of 2n rows. The columns point out all input and output
variables (monomials of degree 1). We can add columns for all terms (monomials)
of degree 2. There are

(
n+m

2

)
such terms. We can continue adding columns for

higher degree monomials until

2n <
d∑

i=1

(
n + m

i

)
where d is the highest degree of the monomials. Informally, the extended truth
table can be seen as a matrix having more columns than rows so there are some
columns (monomials) that can be expressed as a linear combination of other
columns establishing a required relations amongst monomials of the S-box.

3 Brief description of SOBER-t32

3.1 Notation

All variables operates on 32-bit words. Refer to the Figures 1.

– ⊕ : addition in GF (232), � : addition modulo 232.
– si,j : the j-th bit of the state register si.
– si,j→k : a consecutive bit stream from the j-th bit to k-th bit of si.
– x = s0 � s16. xi is the i-th bit of x.
– α : the output of the first S-box. αi is the i-th bit of α.

3.2 SOBER-t32

SOBER-t32 is a word-oriented synchronous stream cipher. It operates on 32-bit
words and has a secret key of 256 bits (or 8 words). SOBER-t32 consists of
a linear feedback shift register (LFSR) having 17 words (or 544 bits), a non-
linear filter (NLF) and a form of irregular decimation called stuttering. The
LFSR produces a stream St of words using operations over GF (232). The vec-
tor St = (st, · · · , st+16) is known as the state of the LFSR at time t, and the
state S0 = (s0, · · · , s16) is called the initial state. The initial state and a 32-bit,
key-dependent constant called K are initialized from the secret key by the key
loading procedure.

A Nonlinear Filter (NLF) takes some of the states, at time t, as inputs and
produces a sequence vt. Each output stream vt is obtained as vt = NLF (St) =
F (st, st+1, st+6, st+13, st+16,K). The function F is described in the following
subsection. The stuttering decimates the stream that is produced by NLF and
outputs the key stream. The detailed description is given in [17].



The linear feedback shift register SOBER-t32 uses an LFSR of length 17
over GF (232). Each register element contains one 32-bit word. The contents of
the LFSR at time t is denoted by st, · · · , st+16. The new state of the LFSR is
generated by shifting the previous state one step (operations are performed on
words) and updating the state of the most significant word according to the
following linear equation

st+17 = st+15 ⊕ st+4 ⊕ β · st

where β = 0xc2db2aa3.

-s0 � s16

S-box

?

-

?

α

x

xH xL

l?
-s1 l� K

� s6

?

-s13

v

f(x) -

Fig. 1. The non-linear filter of SOBER-32 without stuttering

The nonlinear filter At time t, the nonlinear filter takes five words from
the LFSR states, st, st+1, st+6, st+13, st+16 and the constant K as the input
and produces the output vt. The nonlinear filter consists of function f , three
adders modulo 232 and the XOR addition. The value K is a 32-bit key-dependent
constant that is determined during the initialization of LFSR. K is kept constant
throughout the entire session. The function f translates a single word input into
a word output. The output of the nonlinear filter, vt, is equal to

vt = ((f(st � st+16) � st+1 � st+6)⊕K) � st+13

where the function f(x) is illustrated in Figure 1.
The function uses a S-box with 8-bit input and 32-bit output. The input x

to the function f(x) is split into two strings, xH and xL. The first string xH is
transformed by the S-box that gives α.



The stuttering The output of the stream cipher is obtained by decimating
the output of the NLF in an irregular way. It makes correlation attack harder.
In this paper, however, we will ignore the stuttering phase and assume that the
attacker is able to observe the output vt directly.

4 The first attack on SOBER-t32 without stuttering

4.1 Building multivariate equations for the non-linear filter

If we look at the structure of the non-linear filter, the following equations relating
the state S0 = (s0, · · · , s16) of LFSR and the intermediate values x, α with the
output keystream v are established.

x0 = s0,0 ⊕ s16,0

α0 = x0 ⊕ s1,0 ⊕ s6,0 ⊕K0 ⊕ s13,0 ⊕ v0

x1 = s0,1 ⊕ s16,1 ⊕ s0,0s16,0

α1 = x1 ⊕ s1,1 ⊕ s6,1 ⊕K1 ⊕ s13,1 ⊕ v1 ⊕K0s13,0⊕
(x0 ⊕ α0)(s1,0 ⊕ s6,0 ⊕ s13,0)⊕ s1,0(s6,0 ⊕ s13,0)⊕ s6,0s13,0

...

(1)

Lemma 1. Variables xi and αi can be expressed as an equation of degree d ≥
i + 1 over the bits of the state variables.

Let’s consider the first modular addition x = s0�s16. If we denote the carry in the
24-th bit by ca, the addition modulo 232 can be divided into two independent
additions. One is the addition modulo 28 for the most significant 8 bits and
another is the addition modulo 224 for the remaining 24 bits. Then,

x24→31 = s0,24→31 � s16,24→31 � ca (modulo 28)
x0→23 = s0,0→23 � s16,0→23 (modulo 224)

Lemma 2. If the carry in the 24-th bit position is regarded as an unknown, the
degrees of equations which are related to each xi (24 ≤ i ≤ 31) are reduced to
(i− 23).

Now, we reconstruct a partial block of non-linear filter : the addition modulo
232 and the S-box. These two blocks can be considered as a single S-box. This is
going to open up a possibility of reduction of degree of relations derived for the
complex S-box. Furthermore, we consider the carry in the 24-th bit of addition
modulo 232 as an another input variable that is unknown (so we will avoid using
it in the relation and treat it as an unknown state [6, 8]).

The structure of the new block is shown in Figure 2. The addition is modified
to add two 8-bit strings (s0,24→31 and s16,24→31) with the carry c24 that is
unknown. Thus this part is an addition modulo 28. The output is put to the
S-box that has 32-bit output and amongst the output bits the least significant
two bits are α1, α0. If we regard the carry in addition modulo 2n as an internal
memory state, an algebraic attack on combiner with memory is able to be applied
to the new block since the structure of block is very similar to the model which
is analyzed in [6, 8].



s16,24→31 (8-bit) s0,24→31 (8-bit)

S-box

α (32-bit)

c24 (1-bit)

- ��

?

?

Input

Output
α1α0

A -

Fig. 2. A combined structure of partial addition modulo 28 and S-box

Lemma 3. Let A be the combined block of modular addition and S-box with
input s0, s16 and output α. If the carry in the 24-th bit c24 is considered as an
unknown, there is a multivariate equation that relates s0,24→31, s16,24→31 and
output bits α0, α1 without the carry bit c24.

Proof. Let’s create the following matrix.

– Rows are all the possibilities for s16,24→31, s0,24→31 and carry bit c24. There
are 217 rows enumerating all possible values for the input bits.

– The columns are all the monomials of degree up to 9 which are coming from
the input bits s16,24→31, s0,24→31 and the output bits α1, α0. The number of
columns is

9∑
i=0

(
18
i

)
= 217 +

1
2

(
18
9

)
∼= 217 + 214.5

If we apply the Gaussian elimination to this matrix, definitely we can obtain
equations of degree up to 9 because the number of columns is greater than that
of rows.

Let’s denote the equation which is derived above as F (s0,24→31, s16,24→31, α0, α1)
of degree 9. If α0 and α1 are replaced by Equation (1) for the multivariate
equation F , the degree of F becomes at most 10 which consists of only state bits
of the LFSR, K and output bits of the NLF. In Appendix A, we present a toy
example for illustrating the idea of the attack.

4.2 Complexity

We can apply the general algebraic attack to unstuttered SOBER-t32 by using
the equation F . The number of monomials T of degree up to 10 are chosen from
544 unknowns.

T =
10∑

i=0

(
544
i

)
∼= 269



From [10], the attack requires roughly 7 · T log2 7 ∼= 2196.5 CPU clocks with 269

keystream observations. In CRYPTO’03, a method that can solve the multivari-
ate equations more efficiently by pre-computation is presented [9]. Even though
the constant factor of complexity is not precisely estimated, this method seems
to allow a further reduction of the complexity of our attack. According to [9],
the main workload of algebraic attack is distributed into pre-computation stage
and Gaussian reduction stage. The pre-computation is operated by LFSR syn-
thesis method, say the Berlekamp-Massey algorithm. This step needs to take
O(S log S+Sn) steps if the asymptotically fast versions of the Berlekamp-Massey
algorithm is used, where S is the size of the smallest linear dependency and n
is the number of the state bits. Then, Gaussian elimination is applied to the
monomials of reduced degree.

For our attack, the pre-computation operation needs about O(278.3) steps.
Then, Gaussian reduction can be applied to the monomials of degree up to 9. It
takes about O(2180) steps with 2126.4 bits of memory.

5 The second attack on SOBER-32 without stuttering

5.1 An observation of modular addition

Let us consider the function of modular addition c = a�b where a = (a31, · · · , a0),
b = (b31, · · · , b0) and c = (c31, · · · , c0).

Lemma 4. Let ci be the i-th output bit of the modular addition. Then, c0 =
a0 ⊕ b0, c1 = a1 ⊕ b1 ⊕ a0b0 and for 2 ≤ i ≤ 31,

ci = ai ⊕ bi ⊕ ai−1bi−1 ⊕
i−2∑
t=0

atbt{
i−1∏

r=t+1

(ar ⊕ br)}

Each ci is expressed as a function of input bits of degree i + 1.

Theorem 1. Let ci, 24 ≤ i ≤ 31 be the i-th output bit of modular addition
c = a�b. If ci is multiplied by (1⊕a23⊕b23), then, the degree of ci ·(1⊕a23⊕b23)
is reduced to (i− 22).

Proof. For 24 ≤ i ≤ 31, ci can be separated into two parts : one part includes
(a23 ⊕ b23) and the remaining part does not. Therefore,

ci = p(a23→i, b23→i)⊕ (a23 ⊕ b23) · q(a0→i, b0→i)

where p and q are functions of the input bits. Then,

ci · (1⊕ a23 ⊕ b23) = p(a23→i, b23→i) · (1⊕ a23 ⊕ b23)

From Lemma 4, the degree of ci · (1⊕ a23 ⊕ b23) is (i− 22).



5.2 Building a system equation for the non-linear filter

If we look at the structure of the non-linear filter, we can easily see that the
following equation holds. (see Figure 1)

α0 = s0,0 ⊕ s16,0 ⊕ s1,0 ⊕ s6,0 ⊕ s13,0 ⊕ v0 ⊕K0 (2)

An equation for α0. The bit α0 is the least significant output bit of the S-box.
α0 can be represented by a non-linear equation where variables consist of only
the input bits of the S-box. Let’s construct the following matrix.

– Rows generate all the possibilities for (x31, · · · , x24), so there are 28 rows
enumerating all possible values for the input bits.

– The columns are all the monomials of degree up to 8 which are coming from
the input bits (x31, · · · , x24) and the least significant output bit α0. The
number of columns becomes 28 + 1

If we apply the Gaussian elimination to this matrix, we can obtain a non-linear
equation because the number of columns is greater than that of rows. Simulation
shows that the degree of the equation for α0 is 6. (See Appendix B)

In the next step, let’s take a look at the first modular addition of the non-
linear filter, which is x = s0 � s16. By Theorem 1, for 24 ≤ i ≤ 31, xi · (1 ⊕
s0,23 ⊕ s16,23) becomes

xi · (1⊕ s0,23 ⊕ s16,23) = g(s0,23→i, s16,23→i)

where g is a multivariate equation of degree up to (i−22). Let Ai be a monomial
which is built over variables from the set {x24, · · · , x31}. Then,

Ai · (1⊕ s0,23 ⊕ s16,23) = Gi(s0,23→31, s16,23→31)

where Gi is a non-linear equation of degree dGi
.

Lemma 5. The degree of Ai · (1⊕ s0,23 ⊕ s16,23) is at most 16.

We can see that the number of variables which give effect on the degree dGi

is at most 18, which is the set of variable {s0,23→31, s16,23→31}. However, not
all the monomials are available. For example, a monomial s0,31 · s0,30 · · · s0,23 ·
s16,31 · · · s16,23, which is of degree 18, cannot happen. By careful inspection, we
see that the degree of monomials is at most 16.

As shown in Appendix B, α0 =
∑

i Ai. If α0 is multiplied by (1⊕s0,23⊕s16,23),
the monomials which include (s0,23 ⊕ s16,23) vanish.

Lemma 6. The degree of α0 · (1⊕ s0,23 ⊕ s16,23) is at most 14.

The degree of remaining monomials is expected to be not bigger than 16. How-
ever, computer simulation shows that the degree of monomials is not bigger than
14.



The degree of Equation (2). If we multiply (1⊕ s0,23 ⊕ s16,23) by Equation
(2), then we get

α0 · (1⊕ s0,23 ⊕ s16,23)
= (s0,0 ⊕ s16,0 ⊕ s1,0 ⊕ s6,0 ⊕ s13,0 ⊕ v0 ⊕K0) · (1⊕ s0,23 ⊕ s16,23)

(3)

Let’s consider the left part of the equation. The bit α0 plays a major role in
determining the degree of the equation. We know that α0 · (1 ⊕ s0,23 ⊕ s16,23)
has the monomials of maximum degree 14. The right part equation becomes
quadratic by multiplication. Therefore, we can obtain a multivariate equation of
degree 14.

5.3 Applying an algebraic attack

Let’s recall the recent algebraic attack introduced in [9]. Let Sd
t denote the

monomials of state variables of the degree up to d and V d
t denote the monomials

of output variables of the degree up to d at clock t. Then, the final equation of
degree 14 can be described as a following way.

S14
t ⊕ StVt = 0 (4)

If we put all the monomials on the left side which do not include the output
variables,

S14
t = StVt or

{
Left(St) = S14

t

Right(St, Vt) = StVt

We can see that Lt(S0) = St where S0 is the initial state of the state variables
and L is a connection function which is linear over GF (2). If we collect N >∑14

i

(
544
i

)
consecutive equations, a linear dependency γ = (γ0, . . . , γN−1) for left

side equations must exist and

N−1∑
t=0

γt · Left(Lt(S0)) = 0, γi ∈ GF (2)

Let’s recover γ from the given sequence. (see [9]) We choose a non-zero random
key S′0 and compute 2T outputs bits ct of the left side equations.

ct = Left(Lt(S′0)), for t = 0, . . . , 2T − 1

where ct ∈ GF (2). Then we apply the well-known Berlekamp-Massey algorithm
to find the smallest connection polynomial that generates the sequence c =
(c0, . . . , c2T−1).

If we find γ successfully, the same linear dependency holds for the right hand
side. So,

0 =
N+i−1∑

t=i

γt−i · Right(Lt(S0), Vt), i = 0, 1, . . . (5)

We can see that Equation (5) is linear. If we collect and solve these equations for
consecutive keystreams, we can recover the initial state bits of the LFSR with
small complexity.



5.4 The complexity of the algebraic attack

If we denote T as the number of monomials of degree up to 14 that are chosen
from n = 544 unknowns, then

T =
14∑

i=0

(
544
i

)
∼= 291

We see that recovering the linear dependency γ dominates the complexity of
computation. It is estimated to take O(T log(T )+Tn) by using improved versions
of the Berlekamp-Massey algorithm. [9, 11] Therefore, our attack is estimated to
take around O(2100) CPU clocks with around 292 keystream observations.

For memory requirement, we need to store at most T bits of memory for the
linear dependency γ. We need also some memory for Equation (5) but it is much
smaller than T . Therefore, we expect that our attack needs around 291 bits of
memory.

6 Algebraic attack on SOBER-t16 without stuttering

The structure of SOBER-t16 is a very similar to that of SOBER-t32. Major
differences from SOBER-t32 are

– operation based on 16-bit word
– the linear recurrence equation
– a S-box with 8-bit input and 16-bit output

For detail description of SOBER-t16, see [16].
We can apply a very similar algebraic attack presented in Section 5 for the

unstuttered SOBER-t16. Let’s look at Equation (2), which holds in SOBER-t16
as well. If we multiply Equation (2) by (1⊕ s0,7 ⊕ s16,7), then we get

α0 · (1⊕ s0,7 ⊕ s16,7)
= (s0,0 ⊕ s16,0 ⊕ s1,0 ⊕ s6,0 ⊕ s13,0 ⊕ v0 ⊕K0) · (1⊕ s0,7 ⊕ s16,7)

(6)

Let’s consider the left part of the equation. The bit α0 plays a major role in
determining the degree of the equation. Computer simulation shows that α0 ·(1⊕
s0,7 ⊕ s16,7) has the monomials of maximum degree 14. The right part equation
becomes quadratic by multiplication. Therefore, we can obtain a multivariate
equation of degree 14. The remaining process for attack follows Section 5.3.

The complexity If we denote T as the number of monomials of degree up to
14 that are chosen from n = 272 unknowns, then

T =
14∑

i=0

(
272
i

)
∼= 276.5

Therefore, our attack is estimated to take around O(285) CPU clocks with 278

keystream observations. For memory requirement, we expect that our attack
needs around 276.5 bits of memory.



7 Conclusion

In this paper we present two algebraic attacks on SOBER-t32 without stutter-
ing. For the first attack, we have built multivariate equations of degree 10. The
carry at a specific bit position in addition modulo 2n is regarded as an internal
memory state. From some subset of the keystream observation, we can derive
sufficient multivariate equations which are utilized in the algebraic attack. By
solving these equations, we are able to recover all the initial states of LFSR
and constant value K with roughly 2196.5 CPU clocks and 269 keystream obser-
vations. Furthermore, fast algebraic attack with pre-computation allows more
reduction of the complexity of our attack.

For the second attack, we derive a multivariate equation of degree 14 over the
non-linear filter. The equation is obtained by multiplying the initial equation by a
carefully chosen polynomial. Then, a new algebraic attack method is presented
to recover the initial state bits of the LFSR. The attack is estimated to take
O(T log(T ) + Tn) ∼= O(2100) CPU clocks with 292 keystream observations.

By the similarity of the structure, we can apply the second algebraic attack
to SOBER-t16 without stuttering. Our attack takes around O(285) CPU clocks
using 278 keystream observations for unstuttered SOBER-t16.

Acknowledgment We are grateful to Greg Rose, Frederik Armknecht and
unknown referees for their very helpful comments.

References

1. Cryptrec. http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html.
2. Nessie : New european schemes for signatures, integrity, and encryption.

https://www.cryptonessie.org.
3. Nessie security report. Technical Report V2.0, Feb. 2003.
4. S. Vanstone A. Menezes, P. Oorschot. Handbook of Applied Cryptography. CRC

Press, fifth edition, October 1996.
5. F. Armknecht. A linearization attack on the bluetooth key stream generator.

Cryptology ePrint Archive, Report 2002/191, 2002. http://eprint.iacr.org/.
6. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In

Advances in Cryptology - CRYPTO 2003, volume 2729 / 2003, pages 162 – 175.
Springer-Verlag, October 2003.

7. N. Courtois. Higher order correlation attacks, xl algorithm and cryptanalysis of toy-
ocrypt. Cryptology ePrint Archive, Report 2002/087, 2002. http://eprint.iacr.org/.

8. N. Courtois. Algebraic attacks on combiners with memory and several outputs.
Cryptology ePrint Archive, Report 2003/125, 2003. http://eprint.iacr.org/.

9. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology - CRYPTO 2003, volume LNCS 2729, pages 176 – 194.
Springer-Verlag, October 2003.

10. N. Courtois and W.Meier. Algebraic attacks on stream ciphers with linear feedback.
In E. Biham, editor, Advances in Cryptology - EUROCRPYT 2003, LNCS 2656,
pages 345 – 359. Springer-Verlag, January 2003.

11. J. Dornstetter. On the equivalence between belekamp’s and euclid’s algorithms.
IEEE Trans. on Information Theory, IT-33(3):428–431, May 1987.



12. P. Ekdahl and T.Johansson. Snow. Primitive submitted to NESSIE, Sep. 2000.
13. P. Ekdahl and T.Johansson. Distinguishing attacks on sober-t16 and t32. In

V. Rijmen J. Daemen, editor, Fast Software Encryption, volume LNCS 2365, pages
210–224. Springer-Verlag, 2002.

14. P. Ekdahl and T.Johansson. Distinguishing attacks on sober-t16 and t32. In
Proceedings of the Third NESSIE Workshop, 2002.

15. J. Hastad and M. Naslund. Bmgl: Synchronous key-stream generator with provable
security. Primitive submitted to NESSIE, Sep. 2000.

16. P.Hawkes and G.Rose. Primitive specification and supporting documentation for
sober-t16 submission to nessie. In Proceedings of the first NESSIE Workshop,
Belgium, Sep. 2000.

17. P.Hawkes and G.Rose. Primitive specification and supporting documentation for
sober-t32 submission to nessie. In Proceedings of the first NESSIE Workshop,
Belgium, Sep. 2000.

18. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.



A. A toy example to build equations by reconstructing block

This appendix illustrates a small example for building an low degree equation
by reconstructing the non-linear block of SOBER-t32. Figure 3 represents the
structure of new built block. The input and output operate on 4-bit. The most

s0,H s16,H s0,L s16,L

- �

?

S-box

bH bL

c

�

- �

?
- k

? ?

Input

Output

carry

Fig. 3. A reconstructed block for the modular addition and S-box

significant two bits of each input are added modulo 22 with carry and become
the input of S-box. The S-box is 2 × 4 substitution defined by the following
look-up table : {7,10,9,4}.

Let’s denote as following

– s0,H = {s0,3, s0,2} and s0,L = {s0,1, s0,0}
– s16,H = {s16,3, s16,2} and s16,L = {s16,1, s16,0}
– bH = {b3, b2} and bL = {b1, b0}

At first, we construct a matrix containing the input of modular addition and
the S-box output.

– Rows are the possibilities for {carry, s0,3, s0,2, s16,3, s16,2}
– Columns are all monomials of degree to 3 which are coming from
{s0,3, s0,2, s16,3, s16,2, b1, b0}.

Applying the Gaussian elimination, we can build at least 10 multivariate equa-
tions. The matrix below shows a part of the combination of monomials. Note
that the number is represented by hexadecimal format. One of the equations
that are built by the Gaussian elimination is

s0,2s16,2b1 ⊕ s0,2s0,3s16,2 ⊕ s0,2s16,2s16,3 = 0



This equation is verified in the table below. Let us denote the equation as Q.
We see that the Q is always zero for all possibilities of input value.

1 F F F F F F F F
s16,2 5 5 5 5 5 5 5 5
s16,3 3 3 3 3 3 3 3 3
s0,2 0 F 0 F 0 F 0 F
s0,3 0 0 F F 0 0 F F
b0 A 5 A 5 5 A 5 A
b1 C 9 3 6 9 3 6 C
...

...
s0,2s16,2b1 0 1 0 4 0 1 0 4

...
...

s0,2s0,3s16,2 0 0 0 5 0 0 0 5
...

...
s0,2s16,2s16,3 0 1 0 1 0 1 0 1

...
...



s0 s16 s0 � s16 (s0 � s16)H b1b0 Q
0 0 0 0 3 0
0 1 1 0 3 0
0 2 2 0 3 0
...

...
...

...
...

...
0 F F 3 0 0
1 0 1 0 3 0
...

...
...

...
...

...
F F E 3 0 0



B. Algebraic equations of S-box in SOBER-t32 and SOBER-t16

For the S-box of SOBER-t32, we denote the 8-bit input stream of S-box as
(a31, a30, . . . , a24) and the 32-bit output stream as (b31, b30, . . . , b0). Each bi can
be also represented by the combination of monomials which are composed of only
the input stream. In particular, the least significant output bit, b0 is described
as the combination of monomials of degree up to 6 as follows.

b0 = 1⊕ a24 ⊕ a25 ⊕ a24a25 ⊕
a26 ⊕ a25a26 ⊕ a25a27 ⊕ a24a25a27 ⊕ a26a27 ⊕
a24a26a27 ⊕ a25a26a27 ⊕ a25a28 ⊕ a24a25a28 ⊕ a25a26a28 ⊕
a27a28 ⊕ a24a27a28 ⊕ a24a25a27a28 ⊕ a26a27a28 ⊕ a25a26a27a28 ⊕
a29 ⊕ a24a29 ⊕ a24a25a29 ⊕ a26a29 ⊕ a24a25a26a29 ⊕
a27a29 ⊕ a24a25a27a29 ⊕ a24a26a27a29 ⊕ a25a26a27a29 ⊕ a24a28a29 ⊕
a25a28a29 ⊕ a24a27a28a29 ⊕ a25a27a28a29 ⊕ a24a25a27a28a29 ⊕ a25a26a27a28a29 ⊕
a24a25a26a27a28a29 ⊕ a25a26a30 ⊕ a24a25a26a30 ⊕ a24a27a30 ⊕ a25a27a30 ⊕
a26a27a30 ⊕ a24a26a27a30 ⊕ a28a30 ⊕ a24a28a30 ⊕ a26a28a30 ⊕
a24a25a26a28a30 ⊕ a27a28a30 ⊕ a24a27a28a30 ⊕ a25a26a27a28a30 ⊕ a29a30 ⊕
a24a29a30 ⊕ a25a29a30 ⊕ a24a25a26a29a30 ⊕ a27a29a30 ⊕ a24a27a29a30 ⊕
a24a25a27a29a30 ⊕ a25a26a27a29a30 ⊕ a24a28a29a30 ⊕ a25a28a29a30 ⊕ a24a25a28a29a30 ⊕
a26a28a29a30 ⊕ a25a26a28a29a30 ⊕ a27a28a29a30 ⊕ a24a27a28a29a30 ⊕ a25a27a28a29a30 ⊕
a24a25a27a28a29a30 ⊕ a26a27a28a29a30 ⊕ a24a26a27a28a29a30 ⊕ a25a26a27a28a29a30 ⊕ a31 ⊕
a26a31 ⊕ a25a26a31 ⊕ a24a25a26a31 ⊕ a24a27a31 ⊕ a25a26a27a31 ⊕
a24a25a26a27a31 ⊕ a25a28a31 ⊕ a24a25a28a31 ⊕ a26a28a31 ⊕ a24a26a28a31 ⊕
a24a25a26a28a31 ⊕ a24a27a28a31 ⊕ a25a27a28a31 ⊕ a24a25a27a28a31 ⊕ a24a25a26a27a28a31 ⊕
a25a29a31 ⊕ a24a25a29a31 ⊕ a24a26a29a31 ⊕ a25a26a29a31 ⊕ a24a25a26a29a31 ⊕
a27a29a31 ⊕ a24a27a29a31 ⊕ a25a27a29a31 ⊕ a24a25a27a29a31 ⊕ a26a27a29a31 ⊕
a25a26a27a29a31 ⊕ a28a29a31 ⊕ a24a28a29a31 ⊕ a25a28a29a31 ⊕ a26a28a29a31 ⊕
a25a27a28a29a31 ⊕ a26a27a28a29a31 ⊕ a25a26a27a28a29a31 ⊕ a30a31 ⊕ a24a30a31 ⊕
a24a25a30a31 ⊕ a26a30a31 ⊕ a24a26a30a31 ⊕ a24a25a26a30a31 ⊕ a24a27a30a31 ⊕
a25a26a27a30a31 ⊕ a24a28a30a31 ⊕ a24a25a28a30a31 ⊕ a25a26a28a30a31 ⊕ a27a28a30a31 ⊕
a25a27a28a30a31 ⊕ a24a25a27a28a30a31 ⊕ a24a26a27a28a30a31 ⊕ a29a30a31 ⊕ a25a26a29a30a31 ⊕
a27a29a30a31 ⊕ a24a27a29a30a31 ⊕ a25a27a29a30a31 ⊕ a26a27a29a30a31 ⊕ a28a29a30a31 ⊕
a24a28a29a30a31 ⊕ a24a25a28a29a30a31 ⊕ a26a28a29a30a31 ⊕ a25a27a28a29a30a31

For S-box of SOBER-t16, we denote the 8-bit input stream of S-box as
(a15, a14, . . . , a8) and the 16-bit output stream as (b15, b14, . . . , b0). Then, the
least significant output bit, b0 is described as the combination of monomials of
degree up to 6 as follows.



b0 = 1⊕ a8 ⊕ a9 ⊕ a8a9 ⊕
a10 ⊕ a8a10 ⊕ a8a9a10 ⊕ a11 ⊕ a9a11 ⊕
a8a9a11 ⊕ a8a10a11 ⊕ a8a9a12 ⊕ a8a10a12 ⊕ a11a12 ⊕
a9a11a12 ⊕ a8a9a11a12 ⊕ a9a10a11a12 ⊕ a9a10a13 ⊕ a11a13 ⊕
a8a11a13 ⊕ a9a11a13 ⊕ a8a9a11a13 ⊕ a10a11a13 ⊕ a9a10a11a13 ⊕
a12a13 ⊕ a9a12a13 ⊕ a8a9a12a13 ⊕ a9a10a12a13 ⊕ a11a12a13 ⊕
a8a11a12a13 ⊕ a9a11a12a13 ⊕ a10a11a12a13 ⊕ a8a10a11a12a13 ⊕ a9a10a11a12a13 ⊕
a9a14 ⊕ a10a14 ⊕ a8a10a14 ⊕ a9a10a14 ⊕ a8a9a10a14 ⊕
a11a14 ⊕ a8a11a14 ⊕ a9a11a14 ⊕ a8a9a11a14 ⊕ a9a10a11a14 ⊕
a8a9a10a11a14 ⊕ a8a12a14 ⊕ a9a12a14 ⊕ a8a9a12a14 ⊕ a10a12a14 ⊕
a8a10a12a14 ⊕ a9a10a12a14 ⊕ a8a9a10a12a14 ⊕ a9a11a12a14 ⊕ a8a10a11a12a14 ⊕
a8a9a13a14 ⊕ a10a13a14 ⊕ a8a10a13a14 ⊕ a8a9a10a13a14 ⊕ a11a13a14 ⊕
a8a9a11a13a14 ⊕ a8a10a11a13a14 ⊕ a9a10a11a13a14 ⊕ a8a9a10a11a13a14 ⊕ a12a13a14 ⊕
a8a12a13a14 ⊕ a9a12a13a14 ⊕ a8a9a12a13a14 ⊕ a10a12a13a14 ⊕ a8a10a12a13a14 ⊕
a9a10a12a13a14 ⊕ a8a9a10a12a13a14 ⊕ a9a11a12a13a14 ⊕ a8a10a11a12a13a14 ⊕ a9a10a11a12a13a14 ⊕
a8a15 ⊕ a9a15 ⊕ a8a9a10a15 ⊕ a8a10a11a15 ⊕ a8a9a10a11a15 ⊕
a8a9a12a15 ⊕ a8a10a12a15 ⊕ a9a10a12a15 ⊕ a8a9a10a12a15 ⊕ a11a12a15 ⊕
a8a11a12a15 ⊕ a8a9a11a12a15 ⊕ a8a9a10a11a12a15 ⊕ a13a15 ⊕ a8a9a13a15 ⊕
a8a10a13a15 ⊕ a11a13a15 ⊕ a10a11a13a15 ⊕ a9a10a11a13a15 ⊕ a12a13a15 ⊕
a9a12a13a15 ⊕ a8a9a12a13a15 ⊕ a10a12a13a15 ⊕ a8a10a12a13a15 ⊕ a9a10a12a13a15 ⊕
a10a11a12a13a15 ⊕ a8a10a11a12a13a15 ⊕ a9a10a11a12a13a15 ⊕ a14a15 ⊕ a8a14a15 ⊕
a8a10a14a15 ⊕ a8a9a10a14a15 ⊕ a11a14a15 ⊕ a8a10a11a14a15 ⊕ a9a10a11a14a15 ⊕
a8a9a10a11a14a15 ⊕ a12a14a15 ⊕ a9a12a14a15 ⊕ a10a12a14a15 ⊕ a8a10a12a14a15 ⊕
a8a9a10a12a14a15 ⊕ a11a12a14a15 ⊕ a9a11a12a14a15 ⊕ a10a11a12a14a15 ⊕ a8a10a11a12a14a15 ⊕
a9a10a11a12a14a15 ⊕ a13a14a15 ⊕ a8a13a14a15 ⊕ a9a10a13a14a15 ⊕ a8a9a10a13a14a15 ⊕
a11a13a14a15 ⊕ a9a11a13a14a15 ⊕ a8a10a11a13a14a15 ⊕ a9a10a11a13a14a15 ⊕ a8a12a13a14a15 ⊕
a9a12a13a14a15 ⊕ a9a10a12a13a14a15 ⊕ a9a11a12a13a14a15


