
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Master’s Thesis submitted in partial fulfillment of the requirements for the degree

of Master of Science in Technology

New methods for statistical natural

language modeling

Master’s Thesis

Sami Virpioja

Laboratory of Computer and Information Science

Espoo 2005

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Tietotekniikan osasto

Tekijä Päiväys 8. joulukuuta 2005
Sami Virpioja Sivumäärä 4 + 82
Työn nimi

Uusia menetelmiä luonnollisen kielen tilastolliseen mallinnukseen
Professuuri Informaatiotekniikka Koodi T-61
Työn valvoja

Prof. Erkki Oja
Työn ohjaaja

TkT Krista Lagus

Luonnollisten kielten tilastollista mallinnusta ovat jo pitkään hallinneet niin
sanotut N-grammimallit, joissa seuraavan sanan esiintymistä ennustetaan
muutaman edellisen sanan perusteella käyttäen suuresta tekstiaineistosta
laskettuja suurimman uskottavuuden estimaatteja. Mallien ongelmana ovat
parameterien suuri määrä, joka aiheuttaa mallien koon suurta kasvua ja
ylioppimista, sekä kattavan opetusaineiston puute, joka estää estimaattien
löytämisen kaikille sanoille. Tässä työssä tutkitaan erilaisia ratkaisuja näi-
hin ongelmiin.

Toimivaksi osoittautunut menetelmä sanaston koon rajoittamiseen on käyt-
tää sanojen sijasta ohjaamattomasti opittavia morfeeminkaltaisia yksiköitä.
Työssä näytetään, miten kielen esityksen dimensiota pystytään pudot-
tamaan edelleen ohjaamattomasti riippumattomien komponenttien ana-
lyysillä. Saatavaa hajautettua numeerista esitystä pystytään käyttämään
kielen mallinnuksessa esimerkiksi itseorganisoivan kartan avulla.

Suorempia ratkaisuja N-grammimallien koko-ongelmiin ovat yksiköiden tai
niiden sekvenssien ryhmittely, sekä toisaalta posterioritodennäköisyyden
maksimoinnin tai pienimmän kuvauspituuden periaatteen hyödyntäminen
päätettäessä, kuinka paljon parametreja malliin otetaan. Työssä esitetään
eräs ratkaisu sille, miten näitä menetelmiä yhdistämällä voidaan päästä
hyvin rajoitetun kokoisiin kielimalleihin.

Avainsanat

luonnollisen kielen tilastollinen mallinnus, riippumattomien komponenttien
analyysi, hajautetut esitykset, itseorganisoiva kartta, pienimmän kuvaus-
pituuden periaate

ii

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS
Department of Computer Science and Engineering

Author Date December 8, 2005
Sami Virpioja Pages 4 + 82
Title of thesis

New methods for statistical natural language modeling

Professorship Code

Computer and Information Science T-61
Supervisor

Prof. Erkki Oja
Instructor

Krista Lagus, D.Sc. (Tech.)

The area of statistical natural language modeling has been dominated by so
called N-gram models for the last two decades. N-gram models predict the
next word based on a few preceding words, and utilize maximum likelihood
estimates calculated from a large text corpus. Problems related to N-gram
models are the huge number of potential parameters, which causes large
model sizes and overlearning, as well as the lack of extensive training data,
which prevents finding estimates for all words. Different solutions to these
problems are studied in this thesis.

The utilization of morpheme-like units found in an unsupervised manner
instead of words has been proven to work well for restricting the model lex-
icon. In this thesis it is shown how the dimensionality of the representation
of a language can be further reduced using Independent Component Anal-
ysis. The emerging distributed representations for the units can be utilized
in language modeling, e.g. with a self-organizing map.

More direct approaches for the size problems of the N-gram models include
the clustering of model units or sequences of them, and using maximum
a posteriori maximization, or the Minimum Description Length principle,
in order to decide how many parameters will be included in the model.
This thesis gives one example on how these techniques can be combined to
produce models that have a substantially lower number of parameters.

Keywords

statistical language modeling, independent component analysis, distributed
representations, self-organizing map, minimum description length principle

iii

Preface

This thesis has been written in the Laboratory of Computer and Informa-
tion Science (CIS) at Helsinki University of Technology during the years
2004 and 2005. It has been supported by Nokia Research Center and the
National Technology Agency of Finland (TEKES) under the project Search
for Personal Media Content.

I would like to express my gratitude to my instructor Dr. Krista Lagus for
guiding me to the interesting area of language modeling and for the encour-
agement and advice for this research, Professor Erkki Oja for supervising this
thesis, and Mathias Creutz for the huge amount of help given over the years.
I would also like to thank Docent Mikko Kurimo for providing feedback on
the manuscript, Jaakko Väyrynen for help with the Word ICA experiments,
Vesa Siivola for giving his advice and software to use in the language mod-
eling experiments, as well as the whole personnel of the CIS laboratory for
providing an inspiring working environment.

Otaniemi, December, 2005

Sami Virpioja

iv

Contents

Notation and abbreviations 3

1 Introduction 4

1.1 Aim of the thesis . 6
1.2 Structure of the thesis . 7

2 Background on language modeling 9

2.1 N-gram models . 9
2.1.1 Smoothing, back-off and interpolation 10

2.2 Information theory and language models 12
2.2.1 Information and entropy 13
2.2.2 Cross-entropy and perplexity 14
2.2.3 Minimum description length principle 16

3 Dataset and segmentations 18

3.1 Language data and preprocessing 18
3.2 Morpheme segmentation . 19

3.2.1 The Morfessor algorithm 20
3.2.2 Utilizing Morfessor in n-gram modeling 22

3.3 Morph lexicons . 23

4 Distributed latent features for morphs 25

4.1 Introduction to Independent Component
Analysis . 27

4.2 The Word ICA method . 28
4.3 Experiments . 29

4.3.1 Context data and parameters 30
4.3.2 Results . 31

4.4 Discussion . 33

5 N-gram model for classes derived from ICA features 37

1

5.1 Related work . 38
5.2 Method . 38

5.2.1 Deriving binary codes from the ICA features 39
5.2.2 Constructing class-based models from the binary codes 41

5.3 Experiments . 42
5.4 Discussion . 44

6 Modeling n-grams with Self-Organizing Map 47

6.1 Introduction to Self-Organizing Map 48
6.2 A SOM-based N-gram model 49
6.3 Experiments . 51
6.4 Discussion . 53

7 N-gram models based on morph history clustering 55

7.1 Compactness using MAP estimation 56
7.2 Related work . 58
7.3 An N-gram model for clustered histories 59

7.3.1 Model cost . 60
7.3.2 Search algorithm . 61
7.3.3 Experiments . 63

7.4 Building the model incrementally 65
7.4.1 Experiments . 66

7.5 Discussion . 68

8 Conclusions and discussion 71

8.1 How to beat N-gram models? 73
8.2 Future work . 74

Bibliography 75

2

Notation and abbreviations

non-boldface letter scalar, scalar function, relation, or random variable
boldface lowercase vector or vector function
boldface uppercase matrix
wi i:th word of text data
wi

i−n+1 word sequence wi−(n−1) . . . wi

mi i:th morph of text data
C(·) number of occurrences of input pattern
N(·) number of types of input pattern
P (X) Probability of X
P (X | Y) Conditional probability of X given Y
H(X) Entropy of X
L(A) Code length of A
D(q || p) Kullback-Leibler divergence between the two distri-

butions q and p
|G| Size of set G
||x|| Euclidean norm of vector x

BSS Blind source separation
ICA Independent component analysis
KL Kullback-Leibler (divergence)
KN Kneser-Ney (interpolation)
LSA Latent semantic analysis
MAP Maximum a posteriori (solution)
MDL Minimum description length
ML Maximum likelihood (solution)
NMF Non-negative matrix factorization
PCA Principal component analysis
SLM Statistical language modeling
SOM Self-organizing map
SVD Singular value decomposition

3

Chapter 1

Introduction

Statistical language modeling (SLM) is the endeavor for finding models that
can estimate which phenomena are the most probable in a natural language.
More concretely, the goal is to determine the probability distribution P (S)
over text strings S, which are usually sequences of words. [58, 24]

Traditionally natural languages have been studied and modeled by linguists.
Hand-crafted, rule-based models or grammars based on human knowledge
have several problems. Their creation requires human work and is thus ex-
pensive. A complete description of a language in all its richness is never
obtained due to linguistic variation, and it can be argued if there is a di-
vision into grammatical and non-grammatical sentences. “Grammatical” is
not even an adequate level of description: A grammatically correct sentence
may not make any sense semantically, and thus may be very improbable in
a language. A famous example of a grammatically correct but semantically
nonsense sentence1 is “colorless green ideas sleep furiously”, composed by
Noam Chomsky [10].

In the last 25 years, statistical methods of language modeling have become
a main research direction [58]. The amount of data available to train the
statistical models has increased significantly, and computers have become
capable of using it. At the same time, the main applications of SLM, i.e.
speech recognition, information retrieval and machine translation, have be-
come more important, as they are needed to efficiently exploit the amounts
of information available.

Of the three mentioned application problems, the one in which the statistical

1Which is, of course, nowadays quite a probable sentence in certain kind of topics due
to its fame.

4

language models are most often evaluated is speech recognition. A speech
recognition system consists of two models: An acoustic model for determining
which strings are most probable when the given speech signal is given, and
a language model for determining which strings are probable to occur in a
text. For example, without the language model it would be quite impossible
to distinguish whether the speaker said “for” or “four”, as they are pronounced
similarly. If we know that the previous word was “instructions”, the language
model can tell that “for” is much more probable. The part of the system that
combines the acoustic model and the language model is traditionally called
a decoder.

Likewise in machine translation it is quite important to know the most typical
ways of saying things in the target language. We could make word-to-word
translation without language models, but as the word order varies in different
languages, and one word can have several meanings, the result would be quite
confusing. We need to have some kind of model for the target language in
order to eliminate the wrong translation decisions and make the text fluent.

The fundamental problem in statistical language modeling is referred to us-
ing the concept curse of dimensionality, or the sparsity of the data. Curse
of dimensionality, the term first utilized by R. Bellman [3], refers to the ex-
ponential growth of a hyper-volume as a function of dimensionality, whereas
sparsity of the data means that most of the possible phenomena of the mod-
eled signal are never observed in the data.

Let us consider the joint distribution of a sequence of 10 words in a lan-
guage that has a vocabulary of 100 000 words.2 This kind of distribution has
100 00010 − 1 = 1050 − 1 free parameters: The probabilities for each different
sequence, except the last one that has a probability of one minus the sum
of the rest. The number of parameters such as this cannot be estimated
directly.3

The sparsity of the data is a direct consequence of the enormous dimensional-
ity. On the other hand, most possible word sequences are never observed, no
matter how large text or speech corpora we collect. And no sequence should
have zero probability in the model, if we want to be able to use our model for
arbitrary text produced by humans. On the other hand, those sequences that
are observed are easily estimated to be unrealistically probable, i.e., they are
overlearned.

2In English, a vocabulary of 100 000 word types (including inflected word forms) covers
about 99.3% of new text [11].

3Or even stored anywhere: 1050 is roughly the number of the atoms the earth consists
of.

5

The problem of data sparsity may diminish slowly, as we have more and more
text data available in digital form to use for training. However, a model that
uses huge amount of training data and thus gives very good estimates, can
be of little use in practice, if it is so huge that conventional computers cannot
use it due to to the limited size of the available space. Also, if we want to be
able to use the model in on-line speech recognition (in most practical uses
you do not want to wait hours to get the text corresponding to your speech),
it must be so compact that it fits well into the memory of the used device
(e.g. personal computer, or even personal digital assistant) and thus is quick
to use. The quicker it is to get probability estimates of a text sequence, the
more extensive search of possible sequences can be made by the decoder, and
thus compact models can also lead indirectly to better recognition results.

The problems of data sparsity and overlearning are not only confined to
language modeling, but they are fundamental in many other modeling tasks.
However, they make SLM one of the most demanding and interesting tasks.
If efficient methods for conquering the curse of dimensionality can be found
in one area, they are probably applicable also elsewhere.

1.1 Aim of the thesis

A general goal in this thesis, as in most SLM research, is to find methods for
fighting the curse of dimensionality and the sparsity of the language data.
In particular, we focus on language models that should be applicable for any
natural language. The conventional methods, that are mainly developed and
used for English, are not directly suitable to e.g. agglutinative4 and highly-
inflecting5 languages. In these kinds of languages, words (in their inflected
forms) are not suitable units of the model: The vocabulary becomes too large,
and the major part of the possible word forms never occur in the training
data. For some languages, such as Finnish, Hungarian and Turkish, this
is an issue of high concern, for some not as essential but anyhow important
(e.g. all compounding languages including for example German, Swedish and
Greek) [26]. Instead of words we use morpheme-based models. In linguistics,
morphemes are defined as the smallest meaningful units of a language [47].

4“An agglutinative language is a language in which words are made up of a linear
sequence of distinct morphemes and each component of meaning is represented by its own
morpheme.” [47]

5“Inflection is variation in the form of a word, typically by means of an affix, that
expresses a grammatical contrast which is obligatory for the stem’s word class in some
given grammatical context.” [47]

6

Morpheme-like units can be found in an unsupervised manner from a text
corpus, with none or little information on the language concerned.

The starting point of the thesis are numerical representations for the units
of language obtained by a data-driven technique called Independent Com-
ponent Analysis [33]. First, we want to make sure that the technique gives
meaningful results also when utilized for other language units than words,
and is thus applicable to any language. The second aim is to study how well
these representations can be utilized in the task of SLM, and what methods
seem to be most feasible. This thesis includes experiments for two methods:
Classification of the model units based on the representations, and modeling
the numerical signal with the Self-Organizing Map [36].

Also the size of language models is an issue of concern in this thesis. A
common way of reducing the number of parameters in a language model is
to use clustering. Most clustering techniques in language models concentrate
on clustering the units of the model. As we have an already compact set
of units, morphemes, it will presumably be more useful to cluster sequences
of the units. The aim of the last part of this thesis is to study how well
clustering of unit histories and Maximum a Posteriori (MAP) estimation
can be combined to build models that have a smaller number of parameters
than the conventional models.

1.2 Structure of the thesis

The structure of this thesis is the following.

After introducing the topic of the thesis in Chapter 1, some background infor-
mation on language models is covered in Chapter 2. The basics of statistical
language modeling are discussed from the viewpoint of how the models are
conventionally built and how they are evaluated using the concepts of infor-
mation theory. Also the Minimum Description Length (MDL) [55] principle
is presented.

Chapter 3 presents the language data that is used in experiments carried out
in the later chapters. It also describes the algorithm that is used to discover
morpheme-like units of the language. The description of the algorithm will
also serve as an example for using the MDL principle in statistical modeling.
Last, we present the three sets of units that are utilized later in the work.

Chapters 4 – 7 present the methods and experiments that were carried out for
this thesis in chronological order. Each chapter first discusses the ideas that

7

led to the method, then introduces the method that was used, then presents
the experiments that were done, and last discusses their implications.

In Chapter 4, the foundation of latent codes for language units is discussed.
In the following Chapters, 5 and 6, the two different methods of using latent
codes in language modeling are introduced. The first method uses traditional
N-gram modeling and the second is motivated by neural networks. In Chap-
ter 7, however, the latent codes are not used, but generation of similar cluster
models is sought more explicitly, examining the prediction distributions of
morph histories. The approach is based on MAP estimation and MDL style
priors.

Finally, in Chapter 8, conclusions regarding all the experiments in the thesis
are drawn, and directions for future research are outlined.

8

Chapter 2

Background on language

modeling

In this chapter we describe some basic concepts and methods of statistical
language modeling. We start with the so called N-gram language models
[9, 58, 24], which are the most common way of determining the probability
of a text sequence. We also describe several smoothing techniques [9] of N-
gram models, including the current state-of-the-art smoothing that is used
in the N-gram models in our experiments.

The second section covers some information theoretic background on stochas-
tic models and their evaluation. We present the concepts of communication
channel and entropy [59] in the SLM domain, and give the standard evalu-
ation measures of statistical language models, perplexity and cross-entropy
[57]. We also discuss the Minimum Description Length principle [55], a way
of determining compact models of data, that has inspired some of this work.

2.1 N-gram models

N-gram models are simple but efficient models of language. They assume
that the language is constructed by some consistent units (usually words) wi

that occur sequentially, and that the occurrence of a unit is only dependent
on the (n − 1) previous units. The latter is called the n-gram assumption
[24] and formulated as follows:

P (wi |w1 . . . wi−1) ≈ P (wi |wi−(n−1) . . . wi−1) (2.1)

9

For example, a broadly used model for English is a trigram (or 3-gram) model
of words (n = 3). An unigram model (n = 1) corresponds to a probability
distribution of individual words.

Probability of an n-gram wi−(n−1) . . . wi can be estimated from the training
data. If C(wi−(n−1) . . . wi) is the number of occurrences for wi−(n−1) . . . wi in
the training corpus, we can approximate as follows [24]:

P (wi |wi−(n−1) . . . wi−1) ≈
C(wi−(n−1) . . . wi)

C(wi−(n−1) . . . wi−1)
(2.2)

This is called the maximum likelihood (ML) estimate of the probability [48].
It chooses such n-gram distributions that maximize the probability that the
data was generated by the model, i.e. maximizes the likelihood of the data.

A language model that is estimated using direct maximum likelihood esti-
mates as in Eq. 2.2 does not work well. This is mostly due to two reasons.

First, the word sequences that do not exist in the training data will get no
probability and will not be recognized by the model. Of course, the same
applies also to every individual word that did not exist in the corpus.

Second, when we estimate the probability for a certain rare n-gram using only
a few number of occurrences, it is likely that it is badly overestimated. This
is easy to understand as follows: Think of a large enough text corpus. If the
possible number of different word sequences is very large, all of them cannot
occur in the corpus. For those sequences that have a small probability, some
do exist in the corpus and some do not. Thus the probability mass of those
that do not exist is cumulated to those few that do.

2.1.1 Smoothing, back-off and interpolation

To make up for the always inadequate training data (i.e. sparseness of the
data), a number of smoothing methods has been developed [9]. The idea of
the smoothing is to move probability mass from n-grams that occurred rarely
to those that did not occur at all.

One of the oldest smoothing methods is Laplace’s law, also referred to as
adding one [48]. It applies an assumption that every seen or unseen event
is already seen once. Let us denote wi−(n−1) . . . wi more shortly by wi

i−n+1.
Thus we would estimate the n-gram probability as

P (wi |wi−1
i−n+1) =

C(wi
i−n+1) + 1

C(wi−1
i−n+1) + V

, (2.3)

10

where V is the size of the model lexicon.

Laplace’s law is shown to give too much probability to unseen events [48].
A commonly adopted version is additive smoothing (or Lidstone’s law), in
which we do not add one but some constant 0 < λ ≤ 1 to the frequencies [9]:

P (wi |wi−1
i−n+1) =

C(wi
i−n+1) + λ

C(wi−1
i−n+1) + λV

(2.4)

There are also more sophisticated smoothing techniques, the most important
ones being Good-Turing estimate and absolute discounting [9]. The latter,
first proposed by [50], subtracts a fixed discount D ≤ 1 from each nonzero
count:

P (wi |wi−1
i−n+1) =

{

C(wi
i−n+1

)−D

C(wi−1

i−n+1
)

if C(wi
i−n+1) > D

γwi−1

i−n+1
otherwise

, (2.5)

where γwi−1

i−n+1

is a scaling factor that makes the conditional distribution sum
to one.

Regardless of the smoothing method, we will have some probability mass for
unseen events. A simple, but not very efficient way would be to distribute
the probability uniformly over unseen events. Instead, smoothing is usually
combined either with back-off or interpolation. Both of them try to estimate
the probabilities of those n-grams that did not occur in the training data by
the means of estimating lower order n-grams.

Back-off means that we use the distributions of shorter n-grams for those
words that did not occur in the longer n-gram. A general equation for this
kind of smoothing methods is [9]

Pbo(wi |wi−1
i−n+1) =

{

α(wi |wi−1
i−n+1) if C(wi

i−n+1) > 0
γwi−1

i−n+1

Pbo(wi |wi−1
i−n+2) if C(wi

i−n+1) = 0 , (2.6)

where α(wi |wi−1
i−n+1) is the smoothed ML estimate and γwi−1

i−n+1
is a scaling

factor for the distribution.

Interpolation means that we always interpolate between the shorter and
longer n-gram distributions. The general equation of the n-gram interpo-
lation can be written as

Pinterp(wi |wi−1
i−n+1) = α(wi |wi−1

i−n+1) + γwi−1

i−n+1

Pinterp(wi |wi−1
i−n+2). (2.7)

Again, α(wi |wi−1
i−n+1) is the smoothed n-gram distribution and γwi−1

i−n+1
is a

scaling factor.

11

The current state-of-the-art smoothing technique is modified Kneser-Ney in-
terpolation [35, 9]. The actual smoothing used in Kneser-Ney interpolation is
absolute discounting. The novelty of the method lies on how the lower order
probabilities are constructed. Instead of being proportional to the number
of occurrences of the lower order (n − 1)-gram C(wi

i−n+2), the probability is
set to be proportional to the number of different words that it follows,

N(•wi
i−n+2) = |{wi−n+1 : C(wi

i−n+1) > 0}|. (2.8)

If the number of different words is high, we assume that it will be probable
for the word to occur also with word types that we have not seen before.
Note that by C(x) we denote the number of occurrences of an item x, and
by N(•x) the number of context types in which x occurs. Similarly we will
define

N(•wi−1
i−n+2•) =

∑

wj

N(•wi−1
i−n+2wj) = |{(wi−n+1, wi) : C(wi

i−n+1) > 0}|.

(2.9)
Using this notation, the Kneser-Ney back-off probability is

PKN(wi |wi−1
i−n+2) =

N(•wi
i−n+2)

N(•wi−1
i−n+2•)

. (2.10)

The modified Kneser-Ney interpolation [9] differs from the original Kneser-
Ney smoothing [35] in that in it the discount parameter D is optimized
separately in the cases where the number of occurrences C(wi

i−n+1) is one,
two, and three or more. The modified KN interpolation has been shown
to outperform other smoothing methods especially when high-order n-grams
are used [24].

2.2 Information theory and language models

The field of information theory originates from Claude Shannon’s work in
the 1940s [59]. He worked with the problem of maximizing the amount of
information that can be transmitted over a noisy communication channel, e.g.
a phone line. He derived theoretical limits for both the data compression and
the transmission rate.

In the information theoretic approach we will think of a sequence of words as
information that is sent over a communication channel. Figure 2.1 illustrates
the approach. First there is an information source which generates language

12

Noisy channel
P (X) Decoder

îi

Original
message

Decoded
message

P (o | i)

Encoded
message

o

Figure 2.1: Noisy channel model in SLM.

using some stochastic model. We denote that as P (X). Then we have a
noisy channel that can modify the information i generated by P (X). The
output of the channel is o, the information modified according to the channel
probability P (o | i). In order to decode the message, we want to find the most
likely i given the encoded message o [48]:

î = arg max
i

P (i | o) = arg max
i

P (i)P (o | i)
P (o)

= arg max
i

P (i)P (o | i). (2.11)

The first equality follows from the Bayes’ theorem, and the next from the
fact that P (o) is constant when we choose i.

As an example, in speech recognition we could think that the original mes-
sage i was what the speaker wanted to say, and the noisy channel includes all
his speech organs that encode that message into speech, sounds of the envi-
ronment that mix to the speech, distortion produced by the microphone, and
so on. In order to decode the message, we must have a model for both the
original message (P (i)) and the channel (P (i | o)). The former is a language
model, and the latter is an acoustic model.

2.2.1 Information and entropy

Let X be a random variable that varies over a discrete set of symbols X .
The probability distribution of X is denoted by P (X). The entropy [59] of
the variable is

H(X) = −
∑

x∈X

P (x) log P (x). (2.12)

Entropy measures the amount of information in a random variable; in con-
sequence it is sometimes also called self-information. The amount of in-
formation is the average length of the message needed to transmit an out-
come of the variable: An optimal (or least redundant) code sends each x in
L(x) = log2

1
P (x)

bits, and any other coding has a longer mean length [59].
Thus entropy can be seen as the expectation of the optimal code lengths.

13

Normally the base of the logarithm in entropy is also 2, and entropy thus
measured in bits.

We can see that H(X) ≥ 0 always. Moreover, H(X) = 0 in the case when
P (x) > 0 for only one x and zero for the others.1 Thus, if the X is determi-
nate, it contains no information: Then we already know the exact content of
a message generated by P (X).

On the other hand, the entropy is highest when the distribution P (X) is
uniform [59]. Then H(X) = −∑

V
1
V

log 1
V

= − log 1
V

, where V is the number
of the symbols. In this case a message generated by P (X) cannot be encoded
very efficiently, i.e., it contains much information.

If we have two distributions for the same variable, P1(X) and P2(X), we
can calculate the relative entropy of the distributions [48]. It is also called
Kullback-Leibler divergence and defined as

D(P1 ||P2) =
∑

x∈X

P1(x) log
P1(x)

P2(x)
, (2.13)

where 0 log 0
p

= 0 and p log p

0
= ∞. It measures how different the two dis-

tributions are, and corresponds to how many bits are wasted if we encode
events from distribution P1 with a code based on P2.

2.2.2 Cross-entropy and perplexity

Entropy is a property of a random variable, and to calculate it, we need
the correct probability distribution of the variable. In statistical language
modeling, we can think that a text corpus is generated by such a distribution,
where the set of discrete symbols is the vocabulary of the language. However,
we do not know the correct distribution of the language, P (X), but try to
build a model PM(X) that is as close to it as possible.

How to measure the closeness of P (X) and PM(X)? If we knew P (X), we
could for example calculate the relative entropy (Eq. 2.13) of PM(X) with
regard to P (X). We do not, so our measure must be based on a new data
sample D = {D1, D2, . . . , Dn} generated by P (X). In practice, what we can
do is to calculate the likelihood of the D given the model PM(X), that is

Likelihood(D |M) =
n

∏

i=1

PM(Di). (2.14)

1In order to be able to use Eq. 2.12 also with zero probabilities, it is typical to define
that 0 log 0 = 0.

14

A more feasible measure, average log likelihood, is calculated by taking the
logarithm of the product and normalizing with the number of sample points:

Average-Log-Likelihood(D |M) =
1

n

n
∑

i=1

log PM(Di). (2.15)

The complement of the average log likelihood can be viewed as an empirical
estimate of a measure

HM(X) = −
∑

x∈X

P (x) log PM(x), (2.16)

which is called cross-entropy of the distribution P (X) with regard to the
model distribution PM(X) [58]. Cross-entropy can be interpreted as the
average number of bits needed to encode messages generated by P (X) using
the compression algorithm associated with the model M . It is worth to note
that cross-entropy measures both the complexity of the language and the
performance of the model for the language. Later, when we speak of cross-
entropy (or just entropy) of a language model, we mean its empirical estimate
based on some fixed evaluation data.

Traditionally the performance of the language models is reported in perplex-
ity, which is closely related to the (empirical) cross-entropy:

PerpM(D) = (
n

∏

i=1

PM(Di))
− 1

n = 2HM (D). (2.17)

Perplexity can be interpreted as the geometric average of the branching factor
of the language according to the model. It has been suggested that cross-
entropy reflects the word-error rates of a speech recognition system more
closely than perplexity [24], and thus we have decided to use cross-entropy
instead.

One should note that the cross-entropy values for a language model depend
on several matters: Model, language, evaluation data, and the units that the
language model is based on. In order to compare models that use different
units, it is possible to normalize the cross-entropies. If we divide the sum
of logarithms of probabilities of data points by the number of words in the
evaluation data WD, instead of the number of data points n, we get the word
based cross-entropy estimate

HW
M (D) =

1

WD

n
∑

i=1

log PM(Di) =
1

WD

log PM(D). (2.18)

15

2.2.3 Minimum description length principle

Information theory gives a measure of the information on an initially assumed
distribution P (X). However, in practical problems we seldom know the
distribution that we are working with. Instead we have some observed data
generated by P (X), and in statistical modeling the goal is to discover the
regularities in the data. The Minimum Description Length (MDL) principle
[55] is one method of inductive inference, i.e. inferring general rules from
examples [1], presented in the terms of data compression.

Today there are many versions of MDL, and also methods closely related to
it but called with different names. The common idea, in addition to the uti-
lization of the idea of data compression, is the tendency towards objectivity.
The version of MDL that depends least on prior belief is called Ideal MDL
[64]. It is based on Kolmogorov complexity, also called algorithmic complex-
ity. In Ideal MDL the goal is to find the shortest possible Turing machine,
i.e. a computer program, that prints the desired data sequence, and then
halts. The length of the program code (in bits) is its Kolmogorov complexity
d, and the probability of the data is (1

2
)d = 2−d accordingly.

Ideal MDL is of little practical use, since it has been shown that it is im-
possible to design an algorithm that computes the Kolmogorov complexity
of a given data set [64]. In practice the coding scheme must be selected to
be something less general than a programming language. The most widely
adopted way to do that is probably the two-part coding scheme, introduced
in [55]. When we are later referring to the MDL principle, we are actually
using the two-part coding scheme.

In the two part coding scheme, we first select a model class that can describe
data given the model parameters θ. The goal is to describe and send a
set of data, x, that is assumed to be generated by a model of the decided
class, with the minimum number of bits possible. As the receiver does not
know the parameters that we choose, also they must be sent. Denote L(θ)
as the description length needed to encode the parameters, and L(x | θ) as
the description length needed to encode the data when the parameters are
known. Thus we need to minimize the total code length L(x, θ):

L(x, θ) = L(θ) + L(x | θ) (2.19)

The more accurately we describe the parameters, the more L(θ) increases,
but at the same time L(x | θ) decreases. Thus the chosen θ must make a
compromise between the two parts.

In statistical modeling, the model class includes a probability distribution

16

P (X | θ), and a distribution for the parameters, P (θ). Using the result of
optimal coding by Shannon [59], we know that the minimum code length for
data x is log 1

P (x | θ)
, and similarly the minimum code length for the parameters

is log 1
P (θ)

. The total minimum description length is accordingly

min
θ
{− log P (x | θ) − log P (θ)}, (2.20)

assuming that the optimal codes can be used. The maximum likelihood
estimates used in N-gram models maximize the likelihood of the data given
the model, P (x | θ), and thus minimize only its description length, excluding
the length of the model. We will discuss the problems of that approach later
in this thesis, in Section 7.1. Before that, we will see one example application
of the MDL principle in language modeling in the next chapter.

17

Chapter 3

Dataset and segmentations

In this chapter we present the language data that we have used in our exper-
iments, and the method we have used to produce a compact set of language
units for the data. The method is called Morfessor [12, 15, 16]. Morfessor
finds a compact set of word fragments that can be used to compose all the
possible words. These fragments often resemble morphemes, the smallest
meaningful units of which the words are composed. The smaller number of
basic units leads to constructing efficient N-gram models for languages where
the number of possible word forms is enormous. We are using such a lan-
guage in our experiments, and consequently we shall take advantage of the
Morfessor approach.

3.1 Language data and preprocessing

All the language modeling experiments done in this work use Finnish text
data. As mentioned in Section 1.1, Finnish is one of the most problemati-
cal languages for conventional models due to its rich morphology1. That is
exactly one of the reasons why we are using it: If we can construct a model
that is suitable for Finnish, it should work also for “easier” languages such as
English.

Our data consisted of books, magazines and newspapers from the Finnish
IT Center of Science (CSC) and short newswires from the Finnish National
News Agency (STT). A 16 million word subset of that set of corpora, includ-
ing parts from all the data sources, was used in every phase of the training:
Training the morpheme segmentation, determining the latent codes in chap-

1I.e. words tend to have a rich internal structure [47].

18

ters 4 – 6, and training the language models in chapters 5 – 7. A different
subset of the same data, total 50 000 words, was used for calculating cross-
entropy for the estimated models. Most of the data were newswires from
STT (about 50%) and newspapers from CSC (about 40%).

As preprocessing, we removed punctuation, numbers and other special char-
acters, as well as case distinctions, from both subsets. Neither did we include
any sentence, chapter, or other breaks, but concatenated the all parts of the
subsets into continuous text corpora.

3.2 Morpheme segmentation

The traditional way of constructing statistical language models has been to
estimate the probabilities of word sequences. This is adequate if the language
concerned is such that possible inflections of the words are quite restricted
and if compound words are rare. As this applies to English, the language on
which the SLM research has concentrated, most new language models still
have words as the basic units of the model.

We want to build language models for Finnish, which is one typical exam-
ple of a highly-inflecting language as mentioned in Sec. 1.1. In Finnish, a
word stem can have several suffixes and even some prefix. In addition, two
or even more words including affixes can form one compound word. E.g.
“ikkunansirpaleet” (shards of window), consists of two stems both followed
by a suffix: ikkuna + n + sirpalee + t. The first suffix denotes posses-
sive form of “ikkuna” (window), the second plural form of “sirpale” (shard).
Using the stems and affixes as the units of a language model instead of the
words can clearly reduce the lexicon size.

This kind of word segmentation can be seen as segmentation to morphemes,
the smallest meaningful units of a language. Segmentation to grammatically
correct morphemes requires a lot of human work, so some research has been
carried out on unsupervised learning of morphology. Result of such an algo-
rithm may not be such morphemes that linguistics use, but suitable for many
automatic tasks. In linguistics a morph means a (phonetic) realization of a
morpheme [47], so later on we shall refer to the found morphemic segments
as morphs.

19

3.2.1 The Morfessor algorithm

The morpheme segmentation used in this work is based on an algorithm
by Creutz and Lagus [13]. It makes no assumptions on how the words are
formed, but just tries to find a compact representation for the text data using
the Minimum Description Length (MDL) principle. In [15] the model was
formulated using (equivalent) maximum a posteriori (MAP) estimation, and
the model named “Morfessor Baseline”. Later the algorithm was improved
by adding stem, prefix and affix categories, and the new version was named
“Morfessor Categories” [14, 12].

Next we shortly describe the Morfessor Baseline algorithm in the MDL frame-
work. A more detailed presentation can be found in [13] or [26], or slightly
modified, using the MAP framework, in [15].

The task is to find a segmentation for language from a corpus of raw text, x,
in an unsupervised manner. The parameters of the segmentation, θ, consist
of a morph lexicon, i.e. a set of unique morphs, where each morph is a string
of characters. In addition, each morph has a probability of occurrence. In
the MDL framework, we can imagine that we have a sending and a receiving
party, and the sender tries to transmit the corpus x to the receiver using the
shortest possible code. That includes sending the segmentation model with
L(θ) bits and the corpus coded using the model with L(x | θ) bits. Thus we
want to find such θ that the sum of the lengths is minimized:

arg min
θ

L(x, θ) = arg min
θ

{L(x | θ) + L(θ)} (3.1)

The coding length of the model parameters include coding of the morph
lexicon, i.e. a text string and a probability for each morph. As the probability
is a maximum likelihood estimate based on the training corpus, we do not
need to use floating point numbers. Assume that we have N morph tokens
in the corpus, and they are of M types. We first send N and then for each
morph its number of occurrences, fµi

. A positive integer C can be encoded
using the following number of bits [55]:

L(C) ≈ log c + log C + log log C + log log log C + . . . , (3.2)

where the sum includes all positive iterates and c is a constant, about 2.865.

We can get an even more compact code if we do not send each fµi
sepa-

rately. As
∑

i fµi
= N , and there are

(

N−1
M−1

)

ways of choosing M positive
integers that sum up to N , so we only need to send which one of the possible
combinations is used. That requires log

(

N−1
M−1

)

bits.

20

reopen+ed open+minded

re+open mind+ed

re open mind ed

Figure 3.1: Hypothetical splitting trees for two English words. [15, 26]

Then we need to code the morph strings. Assume that the letters are drawn
independently of each other from a probability distribution that is known
both to the sender and the receiver. The letters, plus a boundary character
that is used to distinguish where one morph ends and the next begins, form
an alphabet. Each character of the alphabet, α, has an unique code. Optimal
codes, also known to the both parties, are derived from the probabilities, so
that L(α) = − log P (α). The code length of the model is thus

L(θ) =
(

M
∑

j=1

length(µj)
∑

k=1

− log P (αjk)
)

+ L(N) + log

(

N − 1

M − 1

)

, (3.3)

where αjk is the kth character of the jth morph in the lexicon.

When the parameters of the segmentation model are known, we can encode
the corpus using it. Each morph µi is represented by a code of log P (µi) bits,
i.e. using the optimal coding. Each word in the corpus can be rewritten as
a sequence of morphs, so the code length of the corpus is

L(x | θ) =

W
∑

j=1

nj
∑

k=1

− log P (µjk | θ), (3.4)

where j runs over the W words in the corpus and k over nj morphs in each
word.

The search algorithm of the Morfessor Baseline utilizes a greedy search. In
the initial stage each word in the corpus is a morph of its own. The algorithm
uses a data structure where each distinct word form in the corpus has its own
binary splitting tree. The leaf nodes of the tree represent the morphs that
are present in the current morph lexicon. An example of such trees is shown
in Figure 3.1. Only the leaf nodes contribute to the code length of the model,
whereas higher-level nodes are used only in the search.

The algorithm tries to split words in random order into two parts, and calcu-
lates the resulting total code length L(x, θ) for each possible split. The one

21

that yields the lowest code length is selected, presuming that it is lower than
the model with no split. In case of a split, the algorithm recursively tries
to split the two new parts. After all words have been processed once, they
are shuffled by random and the splitting is sought for each word again. The
algorithm stops when the total code length does not decrease significantly
from one epoch to the next.

3.2.2 Utilizing Morfessor in n-gram modeling

The whole process of estimating language models for morphs when using
Morfessor is shown in Figure 3.2. Note that instead of the corpus as a
whole we give to the algorithm only the distinct word forms of the corpus.
This results in smaller morph lexicon, since the data part of the code length
is also smaller, and the algorithm needs to find a balance between them.
The ability to find good morphs still remains, as they occur many times in
different combinations with other morphs to form the words.

Morph lexicon
+ probabilities

word forms
Distinct

Text with words
segmented into

morphs model
Language

Text corpus

Train
n−gramssegmentation

Viterbi

segmentation
MorphExtract

vocabulary

Figure 3.2: The steps in the process of estimating a language model based
on statistical morphs from a text corpus. [26]

When the morph lexicon and probabilities are determined, the Viterbi algo-
rithm [20] can be used to segment any text of the same language to morphs.
The Viterbi algorithm finds efficiently the most probable segmentations for
the words.

When the text is segmented into morphs, we can use morph n-grams in-
stead of word n-grams in statistical models. In order to distinguish the word
boundaries, we usually add into the lexicon a special “morph” that denotes
a word break.

N-gram language models based on the statistical morphs produced by Morfes-
sor have been compared to traditional word-based models and models based

22

on grammatical morphs. The prediction performance of N-gram models for
Finnish has improved compared to words [26]. In speech recognition sys-
tem for Turkish [25] and Finnish [26], statistical morphs are shown to reduce
word error rate when compared to either words or grammatical morphs. Thus
there should be no reason for staying with words based models if models of
large or unlimited vocabulary are needed.

3.3 Morph lexicons

As discussed in Sec. 1.1, we segmented the text into morpheme-like units.
The segmentations for the words were obtained using the baseline algorithm
of the Morfessor software [15], introduced originally in [13]. It produces a
segmentation model from the training data, and the model can be used to
segment new corpora to a set of induced morphs. (See Sec. 3.2 or referred
papers for the details of the algorithm.)

Using the basic settings for the Morfessor, the training data was segmented
to nearly 24 million morphs of 89 368 types. From now on, this segmentation
model and morph lexicon is referred to as MorphSetA.

For more complex models we also wanted a segmentation with a smaller
lexicon. That was obtained by training the segmentation with a corpus
vocabulary where the least frequent words (less than 20 occurrences) were
filtered out. This way we got a lexicon of 10 528 of morphs, referred to as
MorphSetB.

We had also a segmentation to grammatical morphs, fragments that are lin-
guistically correct realizations of morphemes. It was obtained with Hutmegs
(Helsinki University of Technology Morphological Evaluation Gold Standard)
[17, 16] package, based on hand-made lexicon and rule set. However, this
kind of method cannot analyze words that are unknown to it (e.g. many
foreign names and misspelled words), so language models based on it will
have a limited vocabulary. Grammatical morphs were used only in the first
experiments of finding latent features for morphs, presented in Chapter 4.

Table 3.1 shows the segmentations of a Finnish sentence taken from the eval-
uation corpus. Compared to a grammatical segmentation, both MorphSetA
and MorphSetB make mistakes. The former tends to keep some common
inflected forms in one piece (e.g. “maailmassa”, which means in the world),
while the latter makes some excess segmentation to more rare words. For
example, “amerikasta” (from America) has been segmented to a single “a”,
“meri” (sea), and “kasta” (imperative of dunk). In addition, both statistical

23

Table 3.1: An example phrase from the evaluation corpus segmented using
different models. The phrase, “Etelä-Amerikasta on tullut luonnon mon-
imuotoisuuden symboli koko maailmassa”, translates to “South America has
become a symbol of the diversity of the nature in the whole world”. Word
breaks are marked with the symbol #.

Model Segmentation
MorphSetA etelä # amerika sta # on # tullut # luonnon #

monimuoto isuuden # symboli # koko # maailmassa #
MorphSetB etelä # a meri kasta # on # tullut # luonnon #

moni muoto isuuden # symboli # koko # maailma ssa #
Grammatical etelä # amerika sta # on # tul lut # luonno n #

moni muotois uude n # symboli # koko # maailma ssa #

segmentations kept very common inflected forms such as “tullut” (perfect
form of become) and “luonnon” (possessive of nature) intact.

24

Chapter 4

Distributed latent features for

morphs

In this chapter we discuss a method of finding distributed latent represen-
tations for words or their parts. The features are latent in the way that
their values are not obtained from the word itself but from their usage in the
language. That the features are distributed means that the representation is
not just a single symbolic unit, but arises from combined activity of several
units.

The motivation for looking for such features comes from the research con-
nected to Latent Semantic Analysis (LSA) [19, 44]. It was first introduced as
a tool for information retrieval, where it is known as Latent Semantic Index-
ing (LSI). The underlying idea is that the contexts where a given word does
and does not appear in, provide information on determining the similarly
of words and sets of words. In LSA, singular value decomposition (SVD)
is used to decompose a co-occurrence matrix of words and documents to a
product of three other matrices, which project both documents and words to
a number of latent topics.

Latent Semantic Analysis has proved to work in many tasks that require some
conceptual knowledge of a language. In addition to information retrieval,
these include synonym tests [45, 63], semantic priming [44], emulation of
expert essay evaluations [45] — and statistical language modeling [2].

A well-known problem in LSA is that the latent presentations found by it
often do not have any meaningful interpretations for humans: They are
more like mixtures of features. Recent research has shown that at least
in some cases, Independent Component Analysis (ICA) [33] performs better
than LSA. In a research by Väyrynen and Honkela [65], ICA and SVD (i.e.

25

LSA) were compared in the task of finding linguistic categories (such as verb,
noun, adjective, comparative, past tense) for English words. The conclusion
was that the ICA based features corresponded to the human intuitions much
more closely than the SVD based features in both visual inspection and sys-
tematic comparison.

If traditional linguistic features and categories (such as part-of-speech tags)
can be found in an unsupervised manner, as illustrated by [65], it may notably
help speech recognition of several languages. There is evidence that combi-
nation of category-based and word-based models remarkably helps speech
recognition [52], and automatically derived categories often work better than
part-of-speech categories tagged by hand [51].

How does LSA, and possibly ICA, help with the curse of dimensionality? If
we think of a large vocabulary of words, including inflected and compound
forms, our linguistic intuition clearly tells that there is a lot of structure in
the relationship among words. That none of the structure is utilized, results
in a large number of parameters. Dimension reduction methods such as LSA
can find the structure, and map the words to a space that has much lower
dimensionality [58].

We can also consider the feasibility of distributed features from a quite prac-
tical point of view. If words or other units of a language are considered only
as strings, i.e. sequences of letters, in many tasks the actual strings are irrel-
evant apart from the fact that they separate different words from each other.
Two words that consist of nearly equal letters can mean totally different
things (“scream”, “cream”) and synonyms might not have any resemblance to
each other (“holiday”, “vacation”).

The problem of homographs, words that have the same spelling but different
meaning [47], remains whether we use distributed features or stay with the
strings. If we do not have the means of separating the meanings, the latent
feature must be such that the feature of a word can include several, possibly
independent, meanings.

Of course, the irrelevance of the strings is not true when we do tasks like find-
ing allomorphs (complementary morphs that manifest the same morpheme
in its different morphological or phonological environments [47]) or consider
inflections of words. In most statistical language modeling these issues are
anyway neglected, and the vocabulary of the model is but a very large set of
unrelated entries: Words could as well be replaced by some other arbitrary
identification strings or numbers. From this perspective, changing to any
representation that gives more relevant information on the similarity of the
units could be useful.

26

4.1 Introduction to Independent Component

Analysis

Independent Component Analysis (ICA) is a data-driven signal-processing
technique that attempts to find the latent components that generated an
observed data set. It has been used to separate mixed signals or find hidden
factors for example in financial, biomedical, telecommunications and image
data. [33]

Recently ICA has also been applied to natural language data to find lin-
guistic representations for words or morphemes of a language [28, 41]. The
representations were found to code some syntactic categories, thematic roles
or semantic properties of the used units. In earlier research, ICA has been
used in finding topics in text documents or Internet chats [38, 5].

Independent Component Analysis is one type of method for blind source
separation (BSS) problem. In BSS, we know that our data matrix X is
generated by some unknown sources S that are somehow mixed. Usually it
is assumed that the mixing is linear, i.e. X is a product of a mixing matrix
A and the source matrix S. The problem is blind source separation when
we know neither S nor A. However, if we want to be able to do anything at
all, some assumptions of the unknown matrices must be made.

In ICA it is assumed that the sources in S are statistically independent of
each other. This may not be the real case, but the assumption, whether
entirely correct or not, leads to efficiently estimated solutions and often also
to meaningful and useful results. The independence is usually gained by
maximizing the nongaussianity of the distributions. There are also other
methods for the task (e.g. maximum likelihood estimation or minimization
of mutual information), but maximizing is both simple and intuitive [33].

The maximization of the nongaussianity often leads to super-Gaussian, or
sparse, distributions [33, 29]. A sparse distribution is characterized by the
fact that it takes very small (absolute) values and very large values more
often than a Gaussian distribution. In the extreme case this means that a
variable is always either “active” (has some large value) or “passive” (zero),
and never something in between. These kind of variables are easy for humans
to interpret, and there is some evidence that the brain processes information
similarly at least in the visual cortex [21].

27

4.2 The Word ICA method

The Word ICA method by Honkela et al. [27, 28, 29] creates automatically
syntactic and semantic features based on analyzing words in contexts.

The Word ICA papers used English text as the extraction data. A set of com-
mon words were selected for which the features are created. These are called
focus words. Another set of words, context words, were used to calculate
context information for the focus words. The information was collected into
a context matrix C, in which cij denotes the number of occurrences where
i:th focus word was followed by jth context word with no words between.

The word-context matrix C is fed to the FastICA algorithm [32], in such
a way that each column was considered one data point, and each row one
random variable. Before that, a logarithm of the number of occurrences
(increased by one to keep the zeros unmodified) was taken in order to reduce
the effect of the most common words, and each row normalized to unit length.

The FastICA algorithm is divided to three consecutive steps. First, the di-
mension of the data is reduced using Principal Components Analysis (PCA).
PCA is a classic technique for data analysis, feature extraction and data
compression, based on finding largest eigenvalues of correlation matrix. Af-
ter the potential dimension reduction, the data is whitened, i.e. variances
of the variables are normalized. Last step is the actual ICA rotation, that
finds the most independent components. A good description of the ICA and
related methods is found in the book by Hyvärinen et al. [33].

The result of ICA is two matrices, the mixing matrix A and the source matrix
S. In this case, the features of the words are found in the columns of A. In
the Word ICA papers [27, 28, 29] the dimension of the feature vector was
reduced to 10. The found features were both syntactic and semantic, such as
“adjective”, “plural form of noun” or “being a science or scientific discipline”.

In more recent research of Word ICA, there are slight differences in the
method [65]. Instead of a word-context matrix, a context-word matrix is
collected. Thus, the column number of the matrix corresponds to the focus
word, and row number to the context word. This is analogous e.g. to the
temporal versus spatial domain analysis with fMRI data, where both produce
similar results [54].

The context-word matrix, X, is assumed to be generated by independent
features of the focus words: X = AS, where the features are the column
vectors of the matrix S and A is the mixing matrix. For a single word wj ,

28

feature

fe
at

ur
e

co
nt

ex
t

word

word

co
nt

ex
t

wj

wj

x·,j

s·,j

A SX

Figure 4.1: Illustration on using Independent Component Analysis to find
latent features for words. Context vectors of the words are collected to the
columns of X, and the features emerge in columns of S.

the context vector x·,j is thus generated as follows:

x·,j = As·,j =

n
∑

i=1

aisi,j (4.1)

Figure 4.1 illustrates the factorization of X into the product of A and S.
Note that we call the columns of the matrix S features, and rows of the
matrix S components. Component number refers to the row number of the
corresponding component. The component i of the word j, i.e., value of the
component number i of the feature of the word j, refers to the element si,j.

4.3 Experiments

We had three goals in our experiments: First, to see that the Word ICA
method is applicable to the case where we study smaller segments than words.
I.e., instead of English words we derive the latent features for morphs of
Finnish text. Second, to study what kind of latent features are found in this
case, and whether we can find meaningful interpretations for them. Third,
to study how the features and their interpretations change if we use longer
contexts in the input data.

We have made two sets of experiments to achieve these goals. The first
experiments were done with grammatical morphs given by Hutmegs (see
Sec. 3.3 and [17]). The results of the those experiments are described also in
[41]. After that we moved to use the statistical morphs found by Morfessor

29

(see Sec. 3.2 and [15]). In the second experiments we also use longer contexts
than just the following morph in the context-word matrix X .

Analogously to the words in Word ICA, we call the morphs for which we
collect the context information and derive the latent features as focus morphs,
and those morphs that counted as context as context morphs.

The latent features can be interpreted by studying the columns of the mixing
matrix A. When we have a single-morph context, each row of the matrix
correspond to one context morph. Thus we examine which context morphs
had the most effect on the component, i.e. had the largest values in the
corresponding column of the mixing matrix A.

When the context is longer than one word, interpretation of the components
becomes a little more burdensome, but is otherwise similar: Each context
morph can occur in several positions, and each combination of a position and
a morph corresponds to one row of the matrix A. Thus we must examine
which of these combinations make the component active. Intuitively, a typical
combination might be that the previous morph is word break and the next
morph is a locative suffix (active for e.g. places), or that the previous morph
is a word break and the one preceeding it is an adjective suffix (active for
noun stems), or that the previous morph is something else than a word break,
and the next morph is either a word break or a suffix (active for suffixes).

In order to help the interpretation, we could of course see which focus morphs
were the most active ones for each component. Activities of the focus morphs
are found in the matrix S.

4.3.1 Context data and parameters

We used the text corpus described in Sec. 3.1 to collect the statistical data for
the morphs. We chose a large set of morphs which we used as focus morphs,
and another, smaller set that was used as context morphs.

The choosing criteria for adding a morph in the focus or context morphs was
the frequency of the morph in the corpus. We had two thresholds for the
two sets: F-limit is the threshold for in how many contexts a morph must
occur in order to be chosen as a context feature, and M-limit threshold for
how many times a morph must occur in order to be chosen as a focus morph.
One special “morph” was added to represent word breaks. Morphs that did
not exceed the F-limit were additionally used as a cumulative “rare morph”
feature.

We had also parameters for which positions we collect the context morphs

30

from: The simplest possibility is to use the immediate position on either the
left side (CL) or the right side (CR) of the focus morph. Then our feature
vector has a corresponding value for each context morph. To use more of
the data, we used the further positions on either side and concatenated the
result vectors (e.g. in CR3 we use three nearest positions on the right side
of the focus morph) and as well concatenate the two sides (e.g. in CB2 we
use the two nearest positions on both sides of the focus morph, so that the
total length of the vector is four times the number of context morphs).

As mentioned, in the first experiment we used grammatical morphs (see
Sec. 3.3 for details). The data was the same as described in Sec. 3.1, but
here we used a larger subset of the data, total 30 million words. Our context
was only the following morph (CR). The F-limit was 320 and the M-limit 604,
resulting in 506 context morphs and 3759 focus morphs. Using this input
data, we obtained 50 first independent components and interpreted them by
visual inspection.

In the second experiment we used the 16 million word subset of the corpus,
and statistical morphs in MorphSetA (again, see Sections 3.1 and 3.3). As
context we had the two nearest morphs at the both sides of the focus morph
(CB2), and the F-limit was 5600, resulting in 250 context morphs. The M-
limit was zero, i.e. we calculated the latent features for each of the 89 368
morphs. The number of components for visual inspection was chosen to be
80.

4.3.2 Results

In the first experiment we analyzed 50 components for grammatical morphs,
using immediate right context. Using the inspection scheme described before,
16 of the components seemed particular to verbs, 12 to inflected forms of
nouns, 5 to locations and persons, 4 to adjective stems. Some components
where harder to interpret, and some were not specific enough to indicate just
one syntactic category. Figure 4.2 shows the feature vectors of three common
nouns. More examples are found in the paper [41].

The results from the first experiment was that the latent features found for
morphs were indeed quite meaningful and easy to interpret, and resembled
those that were found for English words by Honkela et al. Thus the Word ICA
method seems to be suitable for finding latent distributed representations for
many kinds of units of any language.

In the second experiment we studied how the features formed when the con-
text was longer than the immediate right (or left) position. Instead of denot-

31

isä (father)

ystävä (friend) metsä
(forest)

12: Ownership, beneficiary, locative
 (-llä, -ltä, -lle, ...: e.g., ystävällä, ystävältä, ystävälle; by, from, to a friend)
23: Possessive suffixes (-ni, -si, -nsä, …: e.g., my, your, his, her etc. friend)
24: Adjectival derivation (-llinen, -llis, -llise, …: e.g., friendly, fatherly)
30: Common case endings for front vowels (-ä, -nä, -än, -ön, …)

 8, 19: Compound (e.g., forest work, forest land)
35, 37: Locative
 (-ssä, -stä, -än: e.g., in, out of, into the forest)

12

23
24 23

24

8

19

35 37

14 14 14

1237

37
30

30

Figure 4.2: The ICA features for three sample morphemes, ystävä (friend),
isä (father) and metsä (forest), along with some interpretations. Component
12 appears to code change and maintenance of the state ownership and 23
the owner. 24 codes for adjectival role; note for “friend” this component is
strong (friendly), for “father” weaker (fatherly) and for “forest” nonexistent
(*forestly). [41]

ing which kind of morphs follow (or precede) the morph, values in context-
feature matrix (A) form patterns of context morphs. Nine context patterns,
randomly chosen from total 80 components, are described in Table 4.1. The
patterns vary by which context morph positions they are affected: Some may
use only preceeding morphs, some following morphs, some both. Some pat-
terns mix similar suffixes that have different meaning (e.g. in component 20,
“si” is both possessive suffix for nouns and tense suffix of verbs), but most
patterns result in a very homogeneous set of active morphs.

Major part of the components seem to be largely affected by the following
(right) context. Of the 80 components, just 2–3 are active on suffix morphs.
This is quite natural. The left context of a suffix usually varies much, and
the right context is mostly word breaks and other suffixes. The most distinct
suffix component, 51, is mainly affected by the right context. It collects
nearly all of the suffixes, which is seen if we sort the morphs by their activity
of the component 51: The 15 most active morphs — nut, sti, ttiin, taan, tti,
isesti, ivat, vat, vät, itten, nsa, än, ssa, neet, tään — are all clearly suffixes.
Any other component that inspected the right context for word breaks would
be quite dependent on the component 51, and thus ICA does not come up

32

with another suffix component.

Figure 4.3 shows some actual component values of morphs. The shown com-
ponents are the same that are described in Table 4.1. Note that activity of
a feature may show either in large positive or large negative value. Besides,
in order to make sense which value is large and which is not, the values of
the different components of the same feature vector should not be compared
to each other, but the values of the same component for different morphs.
Variance of each component is one, but the mean values vary (as well as the
higher order statistics).

It is moderately easy to see why the selected morphs have high activity
in those components that they do: Morph “vähintä” has a large value in
component 58, as “vähintään” (at least) is a very common word. “Valitti”
and “arveli” have large values in component 8, as they often occur in patterns
such as “Räikkö nen <w> arveli” (Räikkönen thought) or “hän <w> valitti”
(he complained). “Veto” occurs often in possessive form (component 20).
“Vetosi” (your bet) is also a past tense of “vedota” (plead). Also “arveli”
has some activity in component 20, which is due to the conditional form
“arvelisi” (would suppose). “Saari” and “tikka” are nouns that are base forms
for Finnish family names Saarinen and Tikkanen. “Tikkailla”, inflected form
of “tikkaat”, means “on the ladder” and thus also component 44 has some
activity in the latter morph. “Vanho” and “kuolle” have both plural stems
that can be followed by plural locative suffixes “ista” (component 18), “ille”
and “illa” (component 44). “Kuolle” has also a high activity in component
38, as “kuolleet” (the dead) and “kuolleen” (of the dead) are common forms.
“Yleis” inflects similarly to “yleiset” (general) and “yleisen” (of the general).

As these examples show, using a context larger than the following or preced-
ing morph results in finding longer context patterns, instead of activities of
individual context morphs. The patterns tell in which kind of contexts the
active morphs occur. E.g., morphs that refer to actions made by humans
often occur so that the previous word is a personal pronoun or a name of a
person (component 8 in Table 4.1). We also see that the features are still
distributed: Different, independent meanings or uses of the morphs are coded
in different components.

4.4 Discussion

Our experiments show that the Word ICA method is straight-forward to
utilize in order to find latent features also for morphs. The features are

33

quite equally easy to interpret whether we use English words, grammatical
morphemes of Finnish, or statistical morphemes for Finnish. Thus, it seems
probable that the method gives sensible results for any language, using a
suitable set of language units.

These sensible, easily interpreted features are the major advantage of the
ICA method compared to Latent Semantic Analysis. The latent concepts
found by LSA rarely have a meaningful interpretation for humans [27]. It
is promising to see that the interpretations for the ICA components do not
become much harder even when we have units not so clear to our intuitions
as words.

The Word ICA method has still a couple of unanswered questions. Whether
it is useful to utilize context on both sides of the focus morph is unclear and
probably depends on the application. Right context seemed to be of more
use than left context: Major part of the both-side context patterns used the
following morphs more clearly than the preceeding ones.

Neither we still have a systematic way of determining an optimal number of
ICA components. In the first experiments, where only one context position
was used, we concluded that 20 components seemed too few, while 50 was
still not excessive. For 5-gram contexts (two positions to both sides of the
focus morph) 80 components is not too many. At least there seemed not to be
any “noisy” components. Instead it seems that the more components we get,
the more detailed the corresponding context patterns become. Of course, at
some point they must become too detailed, even so that one component will
model one individual type of context.

34

Table 4.1: Some of the 80 context patterns formed by ICA when context
was two nearest positions to both sides. <w> means word break and _ is
the position of the focus morph. Parentheses and vertical lines inside denote
a number of alternative morphs in the position. In the third column there
are some example morphs that have a high activity in the corresponding
component.

No. Context pattern Examples of focus morphs
7 <w> _ in <w> vieti (take away, “vietiin” = was taken),

turv (safety, “turvin” = by means of),
vasto (anti, “vastoin” = contrary to)

8 (nen | hän) <w> _ <w> keskeytti (aborted), kuvaili (depicted)
muisteli (recalled)

18 <w> _ ista <w> tavall (common, “tavallista” = usual),
vanho (old, “vanhoista” = of the old),
kuolle (die, “kuolleista” = of the dead)

20 _ (si | ni | nsa) <w> painal (push, “painalsi” = pushed), val-
men (coach, “valmensi” = coached),
surma (death, “surmasi” = slew)

26 <w> _ (nen | sen) <w> suho, korho, räikkö (common Finnish
names, e.g. “Räikkösen” = Räikkö-
nen’s)

36 _ (n | <w> | a | t | . . .) muisto (memory), iso (large), varjo
(shadow)

38 _ (et | en | ten | . . .) <w> keskinäis (mutual), yksittäis (one-off),
eläkeläis (retired)

44 _ (ille | illa | . . .) <w> ulottuv (extend, “ulottuvilla” = within
reach), vanho (old, “vanhoille” = to the
old), entis (past, “entisille” = to the for-
mer)

58 _ (än | ssä | nsä | . . .) <w> selvittämä (settle, “selvittämänsä” =
settled by her), viemä (bring, “vie-
mään” = to bring), käymä (visit, “käy-
mässä” = visiting)

35

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
vähintä

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
valitti

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
arveli

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
veto

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
saari

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
tikka

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
vanho

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
kuolle

7 8 18 20 26 36 38 44 58
−10

−5

0

5

10
yleis

Figure 4.3: Nine selected ICA components of nine moderately common
morphs: vähintä (inflected form of least), valitti (complained), arveli (sup-
posed), veto (a bet or a pull), saari (island), tikka (woodpecker, dart, or a
stem form of ladder), vanho (plural form of old), kuolle (inflected form of
dead) and yleis (a prefix translating to general). The context patterns of the
same nine components were studied in Table 4.1.

36

Chapter 5

N-gram model for classes derived

from ICA features

In Chapter 4 we made experiments with Word ICA, an unsupervised method
for extracting latent features for words. As the method resembles Latent Se-
mantic Analysis, which is shown to work well in statistical language model-
ing [2], we interested ourselves in finding methods to use also our ICA-based
method in SLM. Moreover, the Word ICA method is also shown to give more
intuitive features than LSA [65], resembling linguistic categories. These re-
sults were supported also by our own experiments. In addition, we saw that
the method works well on statistical morphs, and thus fits to our tendency
towards modeling methods that work for any language.

How to use the distributed latent features in language modeling? As we have
a feature vector for each unit of the language, one simple way would be to
use it as a distance criterion between the units. And when we can measure
distances, we can also do clustering.

As mentioned in Chapter 4, combining category-based and word-based mod-
els has been successfully applied to N-gram language models and especially
speech recognition [24, 52]. Using categories instead of individual word forms
in N-gram models significantly reduces the number of parameters in the
model, and thus helps with the data sparsity problem. Encouraged by these
results, our first try was to use the latent features for clustering of the morphs.

Thus, the purpose of this study is to examine whether the latent feature
vectors can be utilized for clustering the morphs into equivalence classes in
order to reduce the size of the N-gram model. In addition, we are interested
on how the length of the context used in deriving the features, and also the
length of the feature vector itself, affect the results.

37

5.1 Related work

When constructing a class-based model for a language, we actually confront
several, in some cases separate, questions. One is naturally how to find the
clusters for the units of the model. Others discuss how to build models that
can best make use of the classes.

The basic class-based N-gram model was presented in [7], often referred as
IBM model or clustering. In later research, some improvements have been
proposed. Goodman [24] proposes a generalization of IBM clustering, full
IBM clustering, that utilizes clusters of previous words together with the
predicted cluster to predict the next word. He also explores some more
variants, where word-based and cluster-based estimates are combined. He
concludes that the IBM clustering works consistently very well. Full IBM
clustering works clearly better with large training corpora, but has problems
with a smaller training corpus.

A traditional way of finding clusters for words is to maximize the average mu-
tual information of adjacent clusters [7], which leads to symmetric clustering.
In asymmetric clustering [22], different clusters are found for the cases where
word is in the history (conditional cluster), and the case when the word is
predicted (predicted cluster). This is usually done by minimizing the per-
plexity of the training data for bigrams of the form P (wi |Wi−1) (conditional
clusters) and P (wi−1 |Wi) (predicted clusters), where Wj denotes the cluster
of word wj. The asymmetric cluster model by [22] worked significantly better
than the basic cluster model.

Of course, the language modeling based on LSA is also closely related to this
work. Bellegarda [2] uses LSA to find latent space of words and documents.
When predicting, pseudodocument of the text seen so far is used to find those
words that have occurred in the similar documents. The LSA information
is combined with standard N-gram modeling, and the hybrid model gives
perplexity reduction of 20% compared to 3-gram model alone. However, the
analysis of word-document co-occurrences is not in the scope of modeling
short span dependencies, and neither we are aware of other work utilizing
LSA in modeling n-grams of restricted length.

5.2 Method

In SLM, we wanted a model that gives a probability distribution for a se-
quence of text. The probability can be split into a product, where we multi-

38

ply the probabilities of the unit wi of the sequence given the preceding units
w1, . . . , wi−1. From Sec. 2.1 we have the n-gram assumption

P (wi |wi−1
1) = P (wi |wi−1

i−n+1). (5.1)

This puts the histories that have the same (n − 1) last words into the same
equivalence class.

In a similar manner we can make more equivalence classes. If we have a set
of W clusters so that each wi belongs to one cluster, denoted by Wi, we can
have the equivalence

P (wi |wi−1
1) = P (wi |W i−1

i−n+1). (5.2)

Now the model has theoretical maximum of V ·W n−1 parameters instead of
V n, where V is the size of the vocabulary. More, is we first predict the next
cluster instead of next unit, and assume that the next unit depends only on
its cluster, we get the equation

P (wi |wi−1
1) = P (wi |Wi) · P (Wi |W i−1

i−n+1). (5.3)

Now the maximum number of parameters is V +W n. This type of class-based
N-gram model is the IBM model mentioned in previous section.

In order to apply the latent features for the IBM model, we need to get the
clusters from the feature vectors of the morphs. In the next two subsections
we first describe how the clusters were achieved and then how the N-gram
model was estimated using them.

5.2.1 Deriving binary codes from the ICA features

There are many quite simple and fast methods to do clustering, e.g. hierar-
chical clustering or K-means algorithm. For each of them, we need to make at
least two decisions: What is the metric that is used to measure the distances
between the units, and how many clusters do we want. As we have already
made quite a many similar decisions when calculating the latent features, it
would be very convenient if the number of clusters would be implicitly based
on how accurate features do we have.

Remember from Section 4.1 that the components of the features (i.e. rows
of matrix S in Fig. 4.1) are sparse. In the extreme case this meant that
the component is either active or passive for each unit. If we assume this,
we can discretize the components to binary vectors, so that each item of
the feature vector of a morph is either one (active) or zero (passive). The

39

−2

0

2

4

6

8

10
Values of one component of the ICA codes

Morph

C
om

po
ne

nt
 v

al
ue

Figure 5.1: Example of one component of the features produced by FastICA.
Solid black line is the component mean. Dashed black line is the mean plus
variance, which is used as a boundary value for the binarization.

binarization leads to a case where those morphs that have similar activities
of the components will get identical vectors. The less components we have,
the less there are different binary vectors available, and thus the number of
non-identical vectors of the morphs will also be smaller.

The values returned by FastICA are in a region on both sides of zero. Large
values in the other, significant side correspond to the activity of the compo-
nent, and values in the other side passivity. When we look at the values of
one component, there is some noise near zero (with noise mean usually in
the passive side) and high spikes on the significant side. Figure 5.1 shows an
example for values of a component for 5 000 morphs.

A simple solution for determining the significant direction is to find the di-
rection of the distribution’s distortion. The significant side can be set to the
positive direction according to that. There are several methods for calculat-
ing the distortion, and the results did not seem to vary much. We decided to
calculate the dispersion of the values for both sides of the component median:
Larger dispersion indicates the significant side.

40

Last, we need a boundary for the activity. We found no mathematical basis
for the boundary value, and by visual inspection we chose to use component
mean plus variance. Due to the whitening of the signals, the latter is always
one.

After the binarization we have 2C possible binary vectors (later referred as
codes) for the morphs, where C is the number of the independent components.
However, as the coding is sparse, only a fraction of those are actually used.
At least there are less utilized code types than there are morphs which we
have taken as focus morphs. The utilized code types, i.e. the states in which
an unknown morph can be, will be our clusters.

5.2.2 Constructing class-based models from the binary

codes

As mentioned, our class-based model is a simple extension to the standard
N-gram language model, similar to one proposed by Brown et al. [7]. The
model is estimated as follows:

Let there be morphs mi that have binary codes with values bi
k (for each

morph i = 1, . . . , M and component k = 1, . . . , C). We construct an nth
order Markov Model for them. The model has Q states, each corresponding
to unique vector qt = [qt

1 . . . qt
C], where each qi is either one or zero. Thus

there could be total 2C states. However, only the ones for which there exists
one or several morphs with an equal code are used. As in the IBM model in
Eq. 5.3, we have the transition probabilities between the states (i.e. clusters),
P (qt | qt−n . . .qt−1), and the emission probabilities from states (clusters) to
morphs, P (mi | qt).

Emissions are estimated from the training corpus as maximum likelihood
(ML) estimates. A state may produce only those morphs that have equal
active components (bi

k = qt
k ∀k), the most common morph being the most

probable.

Respectively we must estimate the transition probabilities. It can be done
as in standard N-gram models. As a smoothing method we used modified
Kneser-Ney interpolation, which is a state-of-the-art smoothing technique
producing good estimates also for high-order n-grams [9].

41

5.3 Experiments

We used MorphSetA (details in Sec. 3.3) for the experiments. Thus we had
a lexicon of 89 368 morphs, and both the training and evaluation corpus
segmented to them. The latent features were calculated for all of the morphs,
using training corpus as described in 4.3. After that we clustered the morphs
using the binarized codes, and last estimated class-based N-gram models
from the training data. The estimation of the class n-gram probabilities was
carried out with SRI toolkit [62], utilizing modified Kneser-Ney interpolation.
As a baseline language model we had a morph-based N-gram model using
modified Kneser-Ney interpolation, estimated also with the SRI toolkit.

We calculated cross-entropy of the models over the test data. As we are
comparing models that use the same set of units, we did not calculate the
normalized word-based entropies. Thus the cross-entropies reported later are
not comparable with e.g. ones counted with word-based models.1

In addition to the entropies we can consider sizes of the models. In standard
ARPA format N-gram models are presented one n-gram per line, so the num-
ber of lines is one measure that is not affected by the naming of the classes.
In our class models there are less units, so the length is smaller with short
n-grams; on the other hand with longer n-grams more class combinations
may be found.

In Figure 5.2 there are entropy against size curves for three class-based N-
gram models and the baseline model. We see that the class-based N-gram
models get very near to the standard N-gram models, regardless of the n-gram
length, as both the context length used in extracting the ICA components
and the length of the resulting code increases.

The properties of the estimated models are presented in Table 5.1 in more
details. The various parameters of the models are presented in the table as
follows: In the N-gram model, Q is the number of transition classes in the
model. Context definitions and F- and M-limits defined earlier in section
4.3.1 are concatenated to present the feature extraction parameters (e.g.
CR2 F1080 M1 means that context positions are two nearest on the right
side, feature morphs must have occurred 1 080 times and all units are taken
to focus morphs). The length of the counted context feature vector was about

1The word-based entropy of our baseline 5-gram model was 14.11 bits. In [26], same
kind of morph-based language models got similar entropies for harder evaluation data (a
book), and a little below 13 bits for easier (broadcast news). However, there they used
over twice as much training data and different preprocessing for the text.

42

0 2000 4000 6000 8000 10000 12000
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7
Entropy vs. size (n = 2 ... 5)

Size (x1000 transtion n−grams)

E
nt

ro
py

 (
bi

ts
)

CR F505 M1, C = 80
CR F505 M1, C = 150
CB F3210 M1, C = 80
CB F3210 M1, C = 150
CB2 F5600 M1, C = 80
CB2 F5600 M1, C = 150
Baseline

Figure 5.2: The entropies and model sizes for some N-gram models of order 2–
5. Baseline is a standard N-gram model. For explanation for the parameters
of the class based models, see text.

1 000 for all parameter settings.2 C is the number of extracted independent
components. Finally, n is the maximum n-gram length used in model.

From Table 5.1 we can see the reason for the proximity of the baseline N-
gram models and those class-based models in which more context information
was used in the clustering. Upper in the table there are figures for models
which had less context information for the extraction of the latent features.
The first one, CR F505 M1, has only context information on the nearest
morph on the right. That resulted in about 26 000 and 33 000 clusters after
the binarization, for component numbers 80 and 150, respectively. As we
move down, the context information increases, and at the same time the
number of classes, Q, increases close to the total number of morphs, 89 368.

2I.e., for CR F505 M1, there were 1 000 context morphs, but for CB2 F5600 M1 only
quarter of that, 250, for they were examined in four different positions.

43

All common morphs start to get unique binary vectors and thus their own
classes. If each morph had its own class, the model would totally converge
with the corresponding morph-based model.

We also tried to interpolate our class-based models with standard N-gram
models to see if they would help. For interpolation coefficients small enough
(0.1 and below for the class-based model) some marginal tweak could be
gained, but the decrease was below one percent in perplexity and thus indis-
tinguishable in entropy. This confirms further that the models are close to
each other.

To answer the questions presented at the beginning of this chapter, we have
seen that the there are no problems in using the latent features in clustering.
In addition, we have one special clustering method, i.e. binarization, that is
suitable only for sparse codes such as the ICA components. From Table 5.1 we
can see that both increasing the context used in deriving the latent features
and increasing the number of components give more fined-tuned features and
result in better predictions for the model. However, the five most accurate
settings, CR2 with 150 components, CB2 with 80 and 150 components and
CB3 with 80 and 150 components, give results that are very near to each
other. The main reason for this is probably that the number of clusters
starts to reach its limit, the number of morphs.

5.4 Discussion

Experiments considered in this chapter were quite preliminary. The presented
class-based model uses similar methods as standard N-gram models; thus it
is natural that the results are close to each other. We lose some accuracy
due to the clustering of the morphs, but also save a little space.

Recent research on several different class-based N-gram models [22] includes
a similar class-based model as ours, the IBM model. The results of that
model compared to traditional word trigram models, with clustering based
on maximizing the average mutual information, were also similar: Perplexity
vs. size was worse in the class model, except for the smallest models. Thus
the reason of our quite poor results might be more influenced by the model
than the clustering method.

The same research gives best results for an asymmetric cluster model, which
includes two different clustering: One for the predicted words (predicted
clusters), and one for the words in the history (conditional clusters). We
could use the ICA based clusters also for that model, by calculating two

44

different latent features for each morph. A natural idea would be to calculate
predicted clusters based on the left context data, and conditional clusters one
based on the right context data.

However, a more essential result from this chapter is that when we have
already a compact set of language units (morphs), no noteworthy unit clusters
seemed to emerge from distributed features based on analysis of the co-
occurrence distributions. I.e., when we (1) use a feature vector that is long
enough so that essential information can be included, (2) do not restrict the
input matrix to include information only on the occurrences of the nearest
one or two morphs, and (3) consider only the morphs for which we have a
good amount of context information, each morph will have a cluster of its
own. Thus, if we trust that the PCA3 compress the contextual information
well, reducing only noise, it seems that there is nothing to cluster. Of course,
that does not mean that the features would not be of use. It only means that
hard clusters based on the full set of components are not useful.

If we do not reduce the number of model parameters by clustering of the
morph lexicon, is there something else to cluster? The answer is, of course,
yes. In the next chapters we start to develop methods for clustering sequences
of morphs.

3Remember from Sec. 4.2 that the dimension reduction part of the method is based on
PCA.

45

Table 5.1: Details of the estimated N-gram models. As the context informa-
tion increases, number of clusters (Q) in class-based models approaches the
number of the morphs, and entropies come close to those of the morph-based
N-gram model.

Morph-based n-gram model

n = 1 n = 2 n = 3 n = 4 n = 5
Q = 89 368 8.35 6.29 5.76 5.60 5.59

Class-based n-gram models

CR F505 M1
n = 2 n = 3 n = 4 n = 5

C = 80, Q = 25 976 6.61 6.33 6.22 6.24
C = 150, Q = 33 444 6.52 6.19 6.07 6.09

CB F3210 M1
n = 2 n = 3 n = 4 n = 5

C = 80, Q = 29 987 6.43 6.10 5.98 6.00
C = 150, Q = 42 084 6.32 5.92 5.78 5.77

CR2 F1080 M1
n = 2 n = 3 n = 4 n = 5

C = 80, Q = 47 137 6.36 5.94 5.79 5.88
C = 150, Q = 56 648 6.30 5.85 5.70 5.68

CB2 F5600 M1
n = 2 n = 3 n = 4 n = 5

C = 80, Q = 71 747 6.31 5.86 5.71 5.69
C = 150, Q = 76 446 6.29 5.83 5.68 5.66

CB3 F7910 M1
n = 2 n = 3 n = 4 n = 5

C = 80, Q = 81 920 6.30 5.85 5.70 5.68
C = 150, Q = 82 298 6.29 5.83 5.68 5.66

46

Chapter 6

Modeling n-grams with

Self-Organizing Map

In Chapter 4 we binarized the latent features found by ICA to a discrete
space. To some extent the binarization can be grounded by the sparseness of
the components: Sparse distribution has little values that are “in between”.
However, it is clear that some information is lost in the process (i.e. how
strongly one component is active for a certain morph). And on the other
hand, most natural data is not nominal, and (written) language is one of
the rare exceptions. If we can project language data to a real-valued space,
we have many general algorithms and methods developed for other kinds of
natural data available. The latent feature vectors are one possibility for this.

Consider a morph sequence (n-gram) (mi−n+1, . . . , mi). If we have a C-
dimensional vector sj for each morph mj , and we replace each morph by its
vector, we will have a C-dimensional time series of length n. If we could
learn how to predict the vector of mi using the concatenated history vector
(si−n+1, . . . , si−1), we would have a model for the language.

A problem like this is called multivariate time series prediction. Prediction
methods are usually based on assumption of some local smoothness properties
[4]. This means that small changes in the previous signal values results only
in small changes in the prediction. Neural networks and Gaussian mixture
models are some common tools used for the task.

In this chapter we use a neural network algorithm called Self-Organizing Map
[36] to predict morphs using the feature vectors of the preceding morphs. The
Self-Organizing Map has been effectively used for a wide range of applica-
tions, including some problems of natural language modeling. We will see
that our method can be though as a clustering of the morph histories to a

47

set of prototypes, which for their part predict the next morph.

The application of self-organizing maps in language modeling is also inter-
esting from the view of neuroscience. There are evidence on representations
resembling these artificial neural maps in areas of the brain cortex that pro-
cess sensory perceptions [36]. We may well assume that similar learning
principles are used within the whole brain, thus also in the areas related to
language processing [40]. Modeling data with models resembling those by
which it is generated should have its benefits.

6.1 Introduction to Self-Organizing Map

The Self-Organizing Map (SOM, Kohonen map) is a type of neural network
that is widely adopted for several reasons: It is computationally efficient,
easy to understand, and it creates visualizations of the data that are clear to
humans. In this section we describe the basic SOM algorithm according to
the book Self-Organizing Maps by Kohonen [36]. Refer to it for an extensive
depiction of the algorithm and its applications.

A Self-Organizing Map is usually constructed as a two dimensional one layer
network. Each neuron of the network, or map unit, is connected to ad-
jacent map units thus forming its neighborhood. The map is adapted to
multidimensional data using competitive learning and co-operation of the
neighborhoods.

Let x be a data point in d-dimensional space; x = [x1, x2, . . . , xd]
T . Ev-

ery map unit (neuron) i has a corresponding d-dimensional weight vector
wi = [wi1, wi2, . . . , wid]

T , i = 1, 2, . . . , l. In competitive learning we choose
so called winner neuron or best matching unit (BMU) for each data sample
x:

c = arg min
i=1,...,l

||x − wi|| (6.1)

After choosing the winner neuron, it and its neighborhood is moved towards
the data point in such way that the further a map unit is from the BMU, the
less it is moved. The neighborhood function is usually set to be Gaussian:

hci = exp(−||rc − ri||2
2σ2

), (6.2)

where rc and ri are the location vector of map units c and i in the map array.

To stabilize the adaptation of the map, a learning-rate factor 0 < α(t) < 1
is needed. It is reduced after each update round t. Also the neighborhood

48

parameter σ2 can be changed during the learning. For example, first one
may use a large value so that the map quickly moves to the dense areas of
the data cloud, and next a small value so that the map spreads out better.

Using these definitions, the update rule for the map units is the following:

wi(t + 1) = wi(t) + α(t)hci(t)(x − wi(t)), i = 1, 2, . . . , l (6.3)

The training can be done in batch mode, which means that the changes
are first calculated for all samples of the training data (one epoch) and the
weights are updated after it.

6.2 A SOM-based N-gram model

The basic Self-Organizing Map algorithm was not developed for nominal
(symbolic) data, but there are several methods to project the symbols to
numerical values [37], e.g. by Latent Semantic Analysis [19] or random pro-
jection. As described in the beginning of this chapter, we will start with
the idea of predicting language signal that is formed by distributed latent
features of the morphs.

Using latent features presented in Chapter 4, each morph has its own C-di-
mensional vector sj . A morph n-gram (mi−n+1, . . . , mi) can thus be mapped
into matrix S(i−n+1,i) = S(i;n) = (si−n+1, . . . , si), where columns are different
latent components and rows follow time, i.e. positions of the morphs in
the sequence. These matrices can be collected from the training corpus by
first extracting the different n-grams and then replacing each morph by its
numeric representation.

The SOM algorithm uses only [d × 1] dimensional data points, i.e. vectors.
If we make the decision that each value of the matrix S(i;n) is initially as
important as the others, we can reshape the matrix into concatenated vector
u(i;n), where u

(i;n)
C×j+i = S

(i;n)
ij . Each vector u(i;n) (for a fixed n and varying i)

is a data point for training the SOM. If size of the map is Mx ×My, it forms
the same number of prototype vectors for the n-grams. We will denote the
prototypes (map units) by ck, k = 1, 2, . . . , Mx × My, each associated with a
d-dimensional weight vector wk, where d = nC. Based on training procedure
described in previous section, they will try to move into the places where the
data points are dense. Self-Organizing Maps trained with this kind of vectors
made by concatenating vectors of successive words are usually called semantic
or contextual maps [36].

After the SOM is trained, we can directly use it for predicting the feature

49

vector of the next morph when we know the feature vectors of the history.
We can find a set of best matching map units (BMUs) for the history, in the
subspace of (n−1)×C first dimensions. Then each of the BMUs would give
us one prediction for the feature of the next morph.

If we want to use the information contained in longer n-grams, but either
give less weight to further morphs or just reduce the dimension to less than
n × C, we can calculate average of the k first morph features and use that
vector for the first C dimensions. Of course the vector of the last morph (the
one to predict) should be left as it is, as well as the previous one (as it is the
most important for the prediction).

Let us say that we find K BMUs for the vector u of a seen morph history
h, each corresponding to one n-gram prototype ck. Next we need prediction
distributions for the prototypes. Two ways of estimating them were tested.
After the estimation, we have a full generative model

P (m | h) =
∑

k∈BMUs(u,K)

P (m | ck)P (ck | h), (6.4)

where P (ck | h) can be simply 1/K for all k ∈ BMUs(u, K).

Figure 6.1 illustrates the training procedure. Steps (1) and (2) are done first,
then the emission distributions P (m | ck) are estimated either by method (3a)
or (3b). The first method is simply to calculate distances from prototypes to
morphs in the last C dimensions of the SOM space (denoted by superscript
[d − C + 1, d]), as those correspond to the last morph of the n-gram. The
nearer the morph is, the more probable it will be. We chose the inverse
Euclidean distances to be proportional to the probabilities, i.e.

P (mi | ck) =
||si − w

[d−C+1,d]
k ||−1

∑

j ||sj − w
[d−C+1,d]
k ||−1

, (6.5)

We tried also a more explicit estimation of emission distributions. After
the SOM was trained and positions of the prototypes determined, we went
through the training n-grams again, and estimated the emission distributions
for the prototypes directly as smoothed ML estimates. Smoothing was done
using one of the simplest methods, additive smoothing [9]. Thus the estimate
was

P (mi | ck) =
C(mi, ck) + λ

C(ck) + Mλ
, (6.6)

where C(ck) is the number of times ck was chosen for BMU for the histories
of the training n-grams, C(mi, ck) is the number of times ck was chosen for

50

(mi−n+1, ..., mi−1, mi)

(sT
i−n+1, ..., s

T
i−1, s

T
i)

1
P (m2|ck)

1
P (m3|ck)1

P (m1|ck)

s3

s2

s1

ck

(2) Train the SOM

(1) Map n-gram to vector

(3a)

(3b)

Training n-grams:

(3) Estimate morph emissions

BMUs

c1

c4

c5

c3

c2

(sT
i−n+1 . . . sT

i−1)
+mi

+mi

+mi

. . .c1 c2 c3

Figure 6.1: Building the SOM model. Training n-grams are mapped to
vectors using the distributed features for morphs. Then the map is trained.
Last, the emission distributions from map units is either estimated using
distances from units to single morph vectors, or trained explicitly using the
training data.

BMU when the last morph of the training n-gram was mi, M is the number
of the morphs, and λ is a parameter that tells how much weight is given to
the prior belief that all morphs are of equal probability.

6.3 Experiments

We did a set of experiments in order to find out whether time series prediction
of the morph features, and especially with the Self-Organized Map applied to
the task, could be used to model n-grams, and how well this kind of simple
approach could make it compared to standard N-gram models.

We used the reduced set of morphs, MorphSetB, for the experiments. Thus
the lexicon consisted of 10 528 morphs. (See Chapter 3 for details of the
corpora and segmentations.) Again, we calculated modified Kneser-Ney in-
terpolated N-gram models for comparison, and calculated cross-entropies of

51

all the models on the evaluation corpus.1

There are quite a number of parameters that must be set when training
the language model, e.g. n-gram length, number of components in morph
features, map size, training parameters of the map, and number of BMUs
to use. As training and evaluation of the full models is not fast, we did not
want to try the effect of every parameter, but made reasonable decisions for
those we could, and kept to them. For morph feature vectors we used the
ICA extraction setting CB2 F11255 M1 (see Sec. 4.3.1) and 80 components.
Tested map sizes were 100 × 60 and 120 × 75. Number of the BMUs was
mainly kept to 20, but also 10 and 50 were tried. For model order, 2-, 3- and
4-grams were tested (4-grams also with averaged first two feature vectors).

The details of the results are presented in Table 6.1. Results of the standard
N-gram model trained with the same units and data is presented first. In
SOM-based models, emission column means which of the two methods pre-
sented in the previous section was used for emissions from BMUs to morphs.
The last model was trained with 4-grams so that the vectors of the first two
morphs were averaged.

The SOM-based models that used distance based emission distribution for
map units (Eq. 6.5) gave quite rough estimates. The evaluation results of a
4-gram model, morph entropy of 7.34 bits, were slightly better than standard
morph unigram model (entropy 7.96 bits) but worse than bigram (5.62 bits).
SOM trained with bigrams managed to the entropy of 7.59 bits. Linear
interpolation of the SOM-based and standard N-gram models did not work
any better.

We got somewhat better cross-entropy from the models where the emission
distributions were estimated directly from the training data as smoothed ML
estimates (with smoothing parameter λ = 0.01). The best result was 6.00
bits for a 4-gram model where vectors of the first two morphs were combined
to one average vector. However, if any of the SOM models with ML estimates
were interpolated with the N-gram model of the same order, no benefit was
gained. Entropy started to increase as soon as coefficient of the SOM model
was set above zero.

1Again, we use the unnormalized (i.e. morph-based) entropies. This time the word-
based cross-entropy for the baseline 5-gram model was 13.98 bits, i.e. little less than what
was obtained with MorphSetA used in Chapter 5.

52

Table 6.1: Entropies of the SOM-based models. The first emission method
(dist.) gives results that are not much better than a standard unigram model.
The second method (MLE) gives somewhat better results, but increasing the
n-gram length over 3 starts to degrade the entropy. Averaging the values of
the furthest components prevents the degrading (last model in the table).

Kneser-Ney interpolated N-gram model

n = 1 n = 2 n = 3 n = 4 n = 5
7.96 5.62 4.97 4.65 4.63

SOM-based models

n Emission Map size K Entropy
2 Dist. 100 × 60 10 7.66
2 Dist. 100 × 60 20 7.63
2 Dist. 100 × 60 50 7.59
4 Dist. 120 × 75 10 7.38
4 Dist. 120 × 75 20 7.34
4 Dist. 120 × 75 50 7.38
2 MLE 100 × 60 20 6.13
3 MLE 100 × 60 20 6.11
4 MLE 120 × 75 20 6.18

4 (av) MLE 100 × 60 20 6.00

6.4 Discussion

The presented method for SOM-based n-gram modeling did not work very
well. It gave reasonable results when ML estimation was used in emissions,
but then the estimates were near those given by standard N-gram models,
and interpolation was of no use.

However, neural networks should have something to give to the language
modeling problem. N-gram models are really “dumb” models compared to
what human does when dealing with language: Definitely humans do not save
lots and lots of probabilities of sequences of text fragments in their memory.
Meanwhile in particular the neural network algorithms have taken ideas from
how the brain works.

A highly relevant paper for neural network language models is one by Bengio
et al. [4]. They managed to build a 5-gram neural model that worked

53

better than conventional state-of-the-art 5-gram models. They used a multi-
layer network which had the distributed features of previous words as input
vector and probability for each possible word for output vector. The multi-
layer perceptron network and the distributed representations were learned
simultaneously. They reported that computational requirements for training
the network grow only in a linear fashion relative to the size of the model.
Regardless of that, the training phase took over 3 weeks using 40 CPUs.

Another experiment in neural network language modeling is done by Xu and
Rudnicky [68]. They did not use any distributed coding for the words, but
the inputs and outputs had both one connection for one vocabulary item.
To make the task computationally feasible, they restricted the experiment to
small vocabulary (1200 words and word classes) and bigram modeling. Also
they reported somewhat better perplexity for the neural network model than
for Kneser-Ney interpolated bigram model.

As seen from these two examples, a major problem in using neural networks
in language modeling is in the computational complexity of the learning
algorithms. Compared to the multi-layer perceptrons that were used in the
research mentioned above, Self-Organizing Map is very fast to learn even
when large datasets are used. It has been successfully used in language
technology for text retrieval and mining (e.g. the WEBSOM method [37, 42]),
but apparently not much in statistical language modeling. One exception is
the research by Kurimo and Lagus [39, 43], where Self-Organizing Map was
successfully used to adapt conventional N-gram model to different topics.
Our experiment shows that SOM can be used also directly to model the
n-grams, but the conventional algorithm seems to be too restricted. Some
ideas could probably be adopted from the SOM extensions used in time series
prediction.

54

Chapter 7

N-gram models based on morph

history clustering

In Chapter 6 we tried to cluster morph histories encoded as latent features
obtained using ICA, using Self-Organizing Map to the task. One major
problem in the approach was that two histories that precede same kinds of
morphs may not look alike at all, when examining the morphs of which they
are compounded of.

For example, consider English phrases “regardless of” and “in spite of”. Their
meaning is nearly the same, and in most cases one could be replaced by
another. However, if we replace each morph by a distributed latent feature,
“regardless” and “spite” have probably somewhat different vectors. At least
they should have, as they mean different things.

There might well be some histories that would be worth to cluster. Benefits
of the successful clustering should be both better estimated parameters (due
to their reduced number) and a smaller size of the model. However, thinking
of the former examples, the clustering method should be insensitive to the
history lengths.

Thus, if we combine the features of the fragments of the history, we should
somehow be able to normalize the result. Taking an average of the fragments
is not a good idea, as the result will then contain information which will
actually predict the events inside or even before the history (depending on
how the features are obtained). Separating that from the relevant information
is not simple. In our morph-based models, it will be easier if the clusters are
not produced by examining the individual morphs in the history, but by
examining the morphs that are followed by it.

55

In addition to clustering n-gram histories to equivalence classes, we use Max-
imum A Posteriori (MAP) estimation in order to make decisions on which
histories are put into the same cluster. Like the MDL principle presented
in 2.2.3, also the MAP framework can be used to produce models that are
compact in size.

In the following section we will introduce the background on the MAP esti-
mation, and see how it is related to MDL. After that we discuss a few works
on language models that resemble our model either due to the usage of MDL
principle or similar history clustering. Then we present the two models that
we experimented with, and finally discuss the results.

7.1 Compactness using MAP estimation

Let us think of how N-gram models are usually built. From the training
corpus we collect all different n-grams and their frequencies. Probability for
the n-gram wi−(n−1)...wi is estimated by the following ratio of occurrences:

C(wi−(n−1)...wi)

C(wi−(n−1)...wi−1)
, (7.1)

which is then smoothed, giving some probability mass to unseen events as
well. Those n-grams that do not occur in the training data will have a zero
probability and back-off weight one.

If we try to reduce both entropy and the size of a model, it might not be a
good idea to add every found n-gram to the model with its own parameters.
We might have a history wi−(n−1)...wi−1 that has the same prediction dis-
tribution as a bigram history wi−1, or an n-gram history that has the same
prediction history as some other n-gram. In the first case, n-gram could well
be dropped out of the model. In the second case, we could make a model
in which the two histories would have the same prediction distribution and
estimate it using the occurrences of the both.

In a bit more general level, traditional N-gram models are based on maximum
likelihood (ML) estimates (such as Eq. 7.1), i.e., they try to find a model
GML that maximizes the likelihood of the data O:

GML = arg max
G

P (O |G) (7.2)

If the data is coded by the model GML, we know from the information theory
that the minimum number of bits needed in the coding is

L(O |GML) = − log2 P (O |GML). (7.3)

56

Thus, if we maximize the likelihood P (O |G) we minimize the coding length
of the data given the model. But this is not what we really want. If the model
is flexible enough, it will overlearn the training data, and not generalize it.1

An extreme example is that our model G could just include all the data O,
declare that P (O |G) = 1 if and only if O is the training data, and thus
predict it perfectly. But then every other data O′ that differs from O would
have a zero probability.

Instead of maximizing P (O |G), what we are interested in, is to find the
model G that is the most probable when we know the data O that it has
generated. Using the Bayes rule

P (G |O) =
P (G)P (O |G)

P (O)
, (7.4)

we get
GMAP = arg max

G

P (G |O) = arg max
G

P (G)P (O |G), (7.5)

as the prior probability P (O) is not affected by the G. This estimate is called
Maximum A Posteriori (MAP) estimate [23].

With a suitable prior probability P (G), MAP estimation has a direct con-
nection to the Minimum Description Length (MDL) principle described in
Sec. 2.2.3. This is easiest to see by taking logarithm of the MAP product:

GMAP = arg max
G

P (G)P (O |G)

= arg min
G

[− log2 P (G)P (O |G)]

= arg min
G

[− log2 P (G) − log2 P (O |G)]

= arg min
G

[L(G) + L(O |G)], (7.6)

where L is the length of the optimal coding. Now we see that we must not
code only the data, but also the the model. In our language model example,
it is not anymore worthwhile to include all the n-grams of the training data
in the model, but only those that are most useful in the prediction of the
data. A good introduction to the connection between Bayesian and MDL
frameworks is found in Stanley F. Chen’s PhD thesis [8].

1N-gram models, even if based on strict ML estimates, do not totally overfit, because
of the n-gram assumption they cannot express full histories of a training corpus that is
longer than n. However, they do overlearn quite a lot, as discussed in Sec. 2.1.

57

7.2 Related work

Ristad and Thomas [56] utilize the Minimum Description Length principle as
a model selection criterion in their non-monotonic extension model. Their ap-
plication is character -based language modeling: Model predicts the following
character given the previous characters. The model is a Markov model and
thus resembles N-gram models, but there are some differences. The model
does not include all the n-grams in the training data, but utilizes greedy
heuristics to add the most profitable extensions first. Extension is a relation
between histories and predicted characters, and for each existing extension
there is a corresponding probability value. They use a smoothing technique
that follows PPM data compression scheme by Moffat [49] and resembles the
better known Witten-Bell smoothing [9].

A word-based N-gram model utilizing MDL in model estimation is studied
by Siivola and Pellom [60, 61]. They build the model incrementally, starting
with a unigram model and adding new n-grams in sets. The new n-grams
are accepted if the change is total code length is negative. They also ap-
ply interpolated Kneser-Ney smoothing for the distributions. The reported
size vs. entropy results were better than for baseline N-gram models. The
growing model also outperformed entropy pruned models. Entropy pruning
is a method where one starts with a full N-gram model and drops out those
n-grams that affect least the cross-entropy for some trimming data.

We will use the model presented in [61] (referred later as growing n-gram
model) to compare the results with our own models.2

To our knowledge, there is not much research done on models where n-gram
histories would be clustered into equivalence classes in a similar manner that
we will do. Goodman [24] mentions the idea in his section that concerns
clustering, but solely states that there are many difficult issues to solve in
it. One exception is the work by Xu and Jelinek [66], where Random Forests
(randomly grown Decision Trees) were used to construct a language model.
They also applied a smoothing similar to interpolated Kneser-Ney smoothing
to the model. The results were promising: Their model outperformed tra-
ditional KN-smoothed N-gram model in both perplexity (i.e. cross-entropy)
and word error rate (percentage of incorrectly recognized words in speech
recognition).

2Thanks to Mr. Siivola for giving the related software and instructions for using it.

58

7.3 An N-gram model for clustered histories

The models presented in this chapter utilize hard clustering of n-gram his-
tories. As touched in the beginning of this chapter, a natural way of clus-
tering is to consider the prediction distributions of the histories, and to put
those histories that have similar ones into the same equivalence classes. Each
equivalence class, or cluster, will then share the same distribution over the
predicted words.

We start with collecting all morph n-grams (for a selected n) and their fre-
quencies from the training data. Using those, we can calculate a ML predic-
tion distribution for each (n−1)-gram (i.e. n-gram history) as in Eq. 7.1. Let
us mark the predicted morph as mi (i = 1, . . . , M) and each history type as
hj (j = 1, . . . , H). We try to find a set of clusters of histories ck (k = 1, . . . , C)
so that each history belongs to one cluster. In addition, we assume that the
next morph depends only on the cluster of the history, not the history itself.
When predicting the next morph m for the known history h, we get:

P (m | h) =
∑

k

P (m, ck | h)

=
∑

k

P (ck | h)P (m | ck, h)

=
∑

k

P (ck | h)P (m | ck)

= P (m | c(h)), (7.7)

where c(h) is the cluster of the history h. For this kind of model to work
in practice, those histories that belong to the same cluster should have as
similar prediction distributions as possible.

The similarity of the distributions can be measured by several methods. We
use the information radius, which is based on Kullback-Leibler divergence of
distributions. KL-divergence of the distribution p from the distribution q is

D(p || q) =
∑

x

p(x) log
p(x)

q(x)
(7.8)

and it measures how much information is lost if distribution q is assumed
when the correct distribution is p. Information radius between the distribu-
tions p and q is

IRad(p || q) = D(p || p + q

2
) + D(q || p + q

2
). (7.9)

59

We can see that it is symmetric regarding the distributions, and corresponds
to how much information is lost if an average distribution is used instead of
both distributions.

If the observed full history h is not known in the model, we can try to drop
the first morphs away until we find histories of the model that have the
same last morphs. Then we can calculate the distribution by averaging over
distributions of those histories. If we save the counts of the history types in
the model, we can weight the average accordingly.

Using ML estimates for emission distributions P (m | ck) is of course a bad
idea, because we need a probability above zero for all events. Thus we will
smooth the distributions using additive smoothing as in Eq. 6.6.

7.3.1 Model cost

In order to get a compact model, we try to find a MAP solution such as in
Eq. 7.6. In our set of models G, each has a number of parameters that are
the same for a given training data. Those are the set of the morphs (size M)
and the histories in the training data (hj, total H) and their counts (C(hj),
∑

j C(hj) = N). The varying parameters are number of the clusters (C),
mapping from the histories to the clusters, and prediction distributions of
the clusters.

When considering the changes in the MAP probability, the static parameters
of the model may be skipped. The following are taken into account:

1. Probability of the model

(a) Number of the clusters
If we do not limit the number anyhow, it can be encoded using
the following number of bits [55]:

L(C) ≈ log c + log C + log log C + log log log C + . . . , (7.10)

where the sum includes all positive iterates and c is a constant
(about 2.865). The corresponding probability is P (C) = 2−L(C).

(b) Clusters of the histories
Let us assume that the first history is in cluster c1. The rest
H − 1 histories are divided up to C clusters. There are CH−1

possible combinations, and if we give an equal probability for each

60

combination, P (clustering) = (CH−1)−1. The corresponding code
length is

L(clustering) = − log P (clustering) = (H − 1) log C. (7.11)

(c) Frequencies of the clusters
Frequencies of the histories are our non-variant information, and
together with the cluster combination above we can get the cluster
frequencies without additional coding bits.

(d) Prediction distributions
We know the frequency of each cluster, so for every one we need to
code M non-negative integers that sum up to the frequency f(c).
Giving an equal probability to each distribution,

P (distributions) =
∏

c

(

f(c) + M − 1

M − 1

)−1

(7.12)

and

L(distributions) =
∑

c

log

(

f(c) + M − 1

M − 1

)

. (7.13)

2. Probability of the data given the model

Probability of the data given the model can be calculated as a proba-
bility of any sequence of text:

P (O |G) =
∏

i

P (mi | hi, G) (7.14)

and thus
L(O |G) =

∑

i

− log P (mi | hi, G). (7.15)

Note that we assume that the n-grams from which the model is built are
always the same, and thus their histories are not included into the model
length. Similarly conventional N-gram models include all the n-grams of the
training data. For now we only try to find a good clustering for the n-grams,
not to find which n-grams are worth to include into the model.

7.3.2 Search algorithm

The following algorithm was designed in order to find a set of clusters that
maximizes the posterior probability:

61

1. Start with each history in its own cluster. Count prediction distribu-
tions for each using ML estimates.

2. Join those clusters that have exactly equal distributions. This is fast as
long as the number of non-zero emission probabilities is small. Larger
clusters may well be skipped, as it is anyway improbable that there
would be equal distributions in those.

3. Sort the clusters by their frequencies. Collect K largest to a list L, so
that the largest is the first (list index zero). Initialize a counter t = 0.

4. Calculate the information radius between distribution of cluster indi-
cated by L(0) and each other cluster in the list. Choose the cluster
with smallest radius (list index j) and calculate the change in posterior
probability if it is merged with L(0).
If the probability increases, go to step 5, otherwise to step 6.

5. Merge the cluster L(0) to the cluster L(j) and remove it from the list.
Add the next largest cluster to the list: If K has been increased, add
to the beginning of the list, otherwise to the end. If there is no more
clusters outside the list, decrease K by one. Set t to zero. Continue
from step 4.

6. Move L(0) from the beginning of the list to the end. Increase t by one.
If t < K, continue from step 4.
If t = K, check if there are more clusters left outside the list. If there
are, increase K by one, add the next largest cluster to the beginning
of the list and continue from step 4. Otherwise stop.

Of course, there is no guarantee that the algorithm will find a global maxi-
mum for the posterior probability. It is greedy in a sense that it tries to merge
the history clusters that are most alike, i.e. have the smallest information
radius. However, it is not greedy in a way that it would make those linkages
first that would increase the posterior probability most. The greediness is
indirect for three reasons: An extensive search of the cluster pairs cannot be
done, sometimes the largest gain to the probability comes from merging two
large clusters even if they are not much alike, and calculating the probability
change is slower than calculating the information radius.

The parameter K controls how extensively the clusters are compared in order
to find the minimum information radius. Small values make the algorithm
faster, and as the size will increase if needed, we could start with the smallest
possible value, two.

62

It may seem strange that the clustering of the histories is started from the
ones with the largest frequencies. There is a good reason for this: Merging
two small clusters often increases the probability even if they are not at all
alike, since the data cost increases only marginally. As K cannot be very
large because of the the efficiency reasons, if we started from the smallest
clusters, we would start by combining to each other those histories that we
know little of.

Instead, when we first compare the two most frequent histories, it is very
likely that they are unlike and the merging would decrease the posterior
probability as errors in their distributions affect the data probability much.
Thus we actually start by increasing the K so much that we start to find
some genuinely similar distributions.

7.3.3 Experiments

We constructed morph 2-gram, 3-gram, and 4-gram models using the same
training corpus as in previous chapters. The set of morphs was MorphSetB
as in Chapter 6, and thus the lexicon size was 10 528. They were evaluated
by calculating cross-entropy for the 50 000 word corpus in different phases of
the training: First before the clustering was started, then couple of times in
the middle of the training, and last when the training algorithm was stopped.

The entropy results are in Table 7.1. For each order of cluster model, the
first row is for starting phase (no clustering done) and the last row for end-
ing phase (algorithm had stopped). Results are not even near to those of
the standard N-gram model (second column of the table) but nevertheless
interesting.

The entropy of the bigram model increases the more histories are clustered.
The change is largest at the beginning, then evens out, which is natural as
the most frequent histories are clustered first (as explained in Sec. 7.3.2).

The trigram model starts with the smallest entropy, 5.70 bits. As the first
third of the clusters are gone, entropy has increased to 5.94 bits. After that
the entropy starts to decrease, and as the algorithm clusters most distribu-
tions it reaches 5.85 bits. The last 10 000 clusters can be merged without
any more increment.

The highest tried order, 4-gram, behaves again differently. It starts with a
high entropy (more that that of trigram), first increases a bit, but then de-
creases almost 10% to six bits. Entropy stays at that level until the algorithm
starts to cluster the last 1 000 distributions, then increases 2 percent to 6.13

63

Table 7.1: Entropies of history cluster models. In all models, entropy starts
to increase immediately as the clustering is started. In 2-gram model it keeps
increasing all the time and reaches asymptotically 6.12 bits. In 3-gram and
4-gram models the entropy starts to decrease soon after more histories are
clustered. In the 4-gram model the entropy even comes to a lower level than
where it started. However, the best entropies were obtained with the 3-gram
model, which implies that the model has major problems with high order
n-grams.

n-gram Baseline Number of Entropy
length entropy clusters
2 5.62 10 198 5.78
2 9 000 5.95
2 7 000 6.05
2 1 000 6.12
2 269 6.12
3 4.97 168 027 5.70
3 100 000 5.94
3 10 000 5.85
3 1 000 5.85
3 300 5.85
4 4.65 1 257 253 6.62
4 1 000 000 6.65
4 100 000 6.02
4 10 000 6.01
4 1 000 6.01
4 143 6.13

bits.

At intermediate stage of the algorithm, merging of the clusters reduced en-
tropy in all experiments. From that fact we might draw the conclusion that
the clustering is worthwhile, but we do not have good enough method for it.
Of course, it is also possible that at the beginning the algorithm made some
severe mistakes, i.e. put together common histories that had very different
emission distributions, and later adding new histories to this mixed cluster
evens out the prediction errors.

64

7.4 Building the model incrementally

The model presented in Section 7.3 has some drawbacks. If we wanted to use
longer n-grams, the number of histories that we start with would grow very
fast. Building the 4-gram model took a couple of weeks; building a 5-gram
model would be many times slower. Another problem is that we cannot back-
off or interpolate with smaller N-gram models as we do in standard N-gram
models, as the cluster model includes only the histories of the maximum
length. Consequently it must also include all of those in order to be able to
calculate correct estimates for unseen histories.

Another way of constructing a similar model is to start with shorter n-grams
and add to the model only those that increase the posterior probability of the
model. First we estimate an unigram model, and then start to add bigrams.
For each bigram history we calculate the maximum likelihood prediction
distribution. For each history we have three possibilities: Either add it to
the model using a new history cluster, add it to an existing history cluster,
or leave it out. For each option we estimate the posterior probability of the
model, and choose the option that has the best value.

The static parameters of the model are the set of M morphs and the uni-
gram distribution of the morphs. (It is useful to keep an accurate unigram
distribution in order to have correct estimates for the situations where we do
not know any history, and thus it is kept separately.) The following MDL
style priors are used for the varying parameters:

1. Number of the histories in the model (N)
Rissanen’s prior:

L(N) ≈ log c + log N + log log N + log log log N + . . .

P (N) = 2−L(N) (7.16)

2. Morphs of the histories
We do not know the history lengths. We could make probabilities for
them first, but another possibility is to draw random numbers from
M + 1 choices, one for each morph and one for end of the sequence.
Let us assume that o(h) is the length of the history h. Thus

P (histories) =
∏

h

(
1

M + 1
)o(h)+1. (7.17)

3. Frequencies of the histories
If our training corpus had N0 morphs, each frequency is at the most

65

that much. An integer between one and N0 can be drawn from uniform
distribution and coded using log N0 bits.

P (history freqs) = (
1

N0
)N (7.18)

4. Number of the clusters (C)
Rissanen’s prior as in Eq. 7.16.

5. Clusters of the histories
Lets assume that the first history is in cluster c1. The rest N − 1
histories are divided up to C clusters. As before,

P (clustering) =
1

CN−1
. (7.19)

6. Prediction distributions
We know the frequency of each cluster, so for every one we need to code
M non-negative integers that sum up to the frequency f(c). Giving an
equal probability to each distribution,

P (distributions) =
∏

c

(

f(c) + M − 1

M − 1

)−1

. (7.20)

When we use the model, if we encounter a history that is not included in
the model, we need to back-off. This time we do not need to calculate back-
off distributions by averaging over full-length histories, but only find if the
shorter n-gram exists in the model, and if not, back-off more, up to the
unigram distribution if needed. Naturally we need also to smooth the cluster
emission distributions, and for that we used the additive smoothing as before.

7.4.1 Experiments

We built a morph model using the incremental method described above and
calculated cross-entropy for new data. The morpheme segmentation was
done using MorphSetB , and the corpora were as defined in Chapter 3. We
also trained Kneser-Ney interpolated baseline N-gram models and growing
n-gram models (see 7.2 and [61]) for comparison.

In order to be able to compare the models both in entropy and size, we
need some estimate for the size of the models. In the baseline N-gram model
and the growing model, a clear measure of size is the number of n-grams

66

in the model. For each n-gram, there is at least one associated floating
point number, the probability of the last morph of the n-gram given the rest.
(There are also the back-off or interpolation weights, but we leave those out
from this calculation.) In order to get a comparable number for the model
of clustered histories, we sum up the number of histories in the model (each
is associated with a integer that indicates its cluster), and for each cluster
the number of morphs that have direct probability estimates for emission.
Thus, if the model has 500 000 histories in 1 000 clusters, and clusters have
estimates for 1 000 morphs on average, the number of parameters would be
500 000 + 1 000 × 1 000 = 1 500 000.

In Table 7.2 we show the number of histories, clusters and parameters in
the model after training with 2-grams and 3-grams, alongside with the cross-
entropies. We started with an unigram model with no histories or clusters.
When bigrams were added, the model took in almost all of the observed
histories, 9 010. (Number of bigram history types in the training data was
the same as the number of morph types, 10 528.) They were clustered into
543 clusters, which is about twice as much as in the former model (Table 7.1),
but still in the same order of magnitude.

As the order was increased to 3-gram and 551 415 new histories (i.e. 2-gram
types) of the training data given to the model, most of them were left out.
The number of histories doubled to almost 18 000 and the number of clusters
increased to 824. Cross-entropy dropped from 6.01 to 5.71 bits. Both 2-gram
and 3-gram entropies are better than the final entropies of the models in Sec.
7.3, so at least we can say that using the shorter n-grams alongside with the
full-length n-grams (as done before) is more efficient than keeping all of the
full-length n-grams in the model (as done now) in terms of entropy.

Compared to the baseline N-gram model, the cluster model was left behind
in entropies. However, the size of the model trained with 2-grams was 41%
smaller, and for 3-gram already over 82% smaller. It seems that the growth
of the cluster model as the function of training n-grams is very controlled,
just as we would like it to be.

Figure 7.1 shows entropy against size curves for the baseline models (n-gram
lengths 1 – 3), the model of clustered histories (after training with 1-, 2-, and
3-grams), and the growing N-gram model. There is no reasons to restrict the
growing model to some n-gram length, so we have varied the coefficient of
model description length in order to get models of various sizes.

We see from Fig. 7.1 that the growing model is superior to the others. It
has the advantage that instead of short n-grams that do not weight much
in entropy, it can include common long n-grams in the model. The smallest

67

Table 7.2: Comparison of the evaluation results of the incrementally built
history cluster model with baseline N-gram model. Training of the cluster
model was started with a unigram model, then bigrams from the training
data were added, and last trigrams. Adding of the trigrams doubled the
model size and decreased entropy more than 5%. In the baseline N-gram
model, the corresponding decrease was 11.5%, but the number of parameters
(n-grams) almost multiplied by ten.

n N-gram model Clustered model
n-grams Entropy Histories Clusters Parameters Entropy

1 10 528 7.96 0 0 10 528 7.96
2 551 415 5.62 9 010 543 325 257 6.02
3 4 264 183 4.97 17 980 824 745 868 5.71

growing model (excluding unigram model) was 4-gram, and the largest 6-
gram. As the allowed size increases, the baseline model gets closer, and
finally there would be a point where the models converge (unlimited n for
baseline model and zero model cost for growing model).

The clustered model makes steeper drops than the baseline model, but does
not get as low entropies. The behavior of the clustered model for longer
n-grams is unclear, as we could not yet calculate longer than a 3-gram model
due to the slowness of the algorithm.

7.5 Discussion

The incrementally built cluster model had a very restricted size, but the
cross-entropy stayed above the baseline model. One clear explanation for
the higher entropy is the worse smoothing method. The relative drop of in
entropy when adding 3-grams to the model was 10% for the baseline model
and 5% for the clustered model. The different is not so large when compared
to how much more the model size increased (670% for the baseline and 129%
for the clustered model).

So it seems that to get good prediction results for the n-gram history cluster
model, applying the idea behind the Kneser-Ney smoothing would be strongly
recommended. We would also need a more efficient way of constructing this
kind of models, since our incremental algorithm started to be too slow even
for 4-grams.

68

0 1 2 3 4 5

x 10
6

4.5

5

5.5

6

6.5

7

7.5

8

Size (parameters)

E
nt

ro
py

 (
bi

ts
)

Entropy vs. size

Baseline (n = 1 ... 3)
Growing (varigram)
Clustered (n = 1 ... 3)

Figure 7.1: Cross-entropies against model sizes. Measurement points of the
growing model correspond to different parameter values. For the baseline
N-gram model and the clustered model they are maximum n-gram lengths.

The main constraint on the efficiency of the search algorithm is that each
history that might be added to the model, must be compared to all existing
clusters in order to find the one that has the nearest emission distribution.
For every distribution one must go through every morph that it can emit.
Thus the vocabulary size of the model affects the efficiency substantially.
Using even less than ten thousand morph types might speed up the search,
although that means that more history types will be found. Another possi-
bility could be to apply some dimension reduction method (e.g. PCA, ICA)
to the distributions, in order to quicken the calculation of distances.

There is one more issue that requires some consideration. In all tested models
of clustered histories, the number of clusters at the end of the algorithm was
just between one hundred and one thousand. That is a surprisingly small
number, even if the n-gram length was not very high. The reason is found
in the prior probability of the model.

The prior of prediction distributions of the clusters was such that every pos-
sible combination has the same prior probability (Eq. 7.12). It may seem to
be as objective a prior as possible. However, it actually favors large clus-
ters. Using Stirling’s approximation n! ≈ (n/e)n

√
2πn, we can calculate the

69

derivative of the logarithm of the number of combinations with respect to
the size of the cluster:

∂

∂f
L(distrib.) =

∂

∂f
log

(

f + M − 1

M − 1

)

=
∂

∂f
log

(f + M − 1)!

(M − 1)! f !

≈ ∂

∂f
log

((f + M − 1)/e)f+M−1
√

2π(f + M − 1)

((M − 1)/e)M−1
√

2π(M − 1)(f/e)f
√

2πf

=
∂

∂f
log

(f + M − 1)f+M−1
√

f + M − 1

(M − 1)M−1
√

M − 1f f
√

2π
√

f

=
(

1 + log(f + M − 1)
)

+
1

2

(1

f + M − 1

)

−
(

1 + log f
)

−1

2

(1

f

)

= log(f + M − 1) − log(f) − 1

2

(1

f
+

1

f + M − 1

)

(7.21)

Now we see that the change in code length reaches asymptotically zero as f
increases, and thus the larger the cluster already is, the smaller the increase
in code length (i.e. decrease in model probability) will be. In consequence,
if the nearest cluster is large enough, the new history is very likely to be
added in it. The cost of adding a new cluster is much higher, and those
new histories that do have a large cluster near are more likely to be skipped.
Large clusters grow larger, and new clusters are created rarely.

Thus it seems that we would need a cleverer prior probability or coding
scheme for the emission distributions. If we think how we would actually
save the emission frequencies in a computer, a natural scheme would be to
first write the number of morphs that have a frequency above zero, and
then list those together with their frequencies. Due to the sparseness of the
data, most frequencies should be zero. An example prior that takes that into
account is to first give the number of non-zero frequencies according to some
distribution, then select a random permutation of that many morphs, and
last give equal probability to all combinations of frequencies, as before, but
only for the selected subset of morphs.

70

Chapter 8

Conclusions and discussion

In this thesis, various ways of modeling short span dependencies of a natural
language were studied. All of the language models were based on statistical
segmentation of words to morphs, and applied the n-gram assumption, i.e.
that the next morph depends only on the n − 1 previous morphs.

In addition, all the methods, even if introduced from different points of view,
applied clustering to the problem in order to fight the curse of dimensionality.
A general equation for all of the models is

P (mi |mi−1
i−n+1) =

∑

k∈G(mi−1

i−n+1
)

P (mi | ck)P (ck |mi−1
i−n+1), (8.1)

where mi−1
i−n+1 is the morph history, mi predicted morph, ck (k = 1, . . . , C)

is a set of clusters, and G a relation that maps a history to a subset of the
clusters.

Clustering leads to a more compact model. In addition to the benefit of
saving space and memory, one can hope that the decrease in the number
of parameters helps avoiding overlearning. On the other hand, a clustered
model is usually less accurate than a conventional N-gram model, that has
very reliable estimates for frequent events. The rarest events are very hard
both with or without the clustering: If the data is insufficient for a reliable
direct estimate, it is probably insufficient also for determining the cluster.
So, it is the middle cases that we hope to be able to improve.

In the class-based N-gram model presented in Chapter 5, it was assumed
that each morph belongs to one cluster, and that G(mi−1

i−n+1) equals G(ci−1
i−n+1)

and P (ck |mi−1
i−n+1) equals P (ck | ci−1

i−n+1), i.e. that the selected cluster depends
only on the clusters of the morphs in the history. We sought the clustering by

71

finding latent features for the morphs using a method based on Independent
Component Analysis. When examining the cross-entropy versus size of the
models, we noticed that the class-based models were somewhat smaller but
clearly worse than standard N-gram models. When the length of the latent
features was increased, and longer context information was added to the
input matrix of ICA, the models got very close to the baseline models, as
most morphs were left in their own clusters.

In Chapter 6, our model was based on the Self-Organizing Map. We pro-
jected the morphs to latent features obtained by the ICA method. SOM was
used to cluster morph histories into map units, and a prediction distribution
from map units to morphs was estimated using a couple of ways. In this
approach, G(mi−1

i−n+1) equals BMUs(mi−1
i−n+1, K), where K is the number of

best-matching map units to select for a given history, and ck:s are the map
units. This is neither soft nor hard clustering, but something in between:
Each history belongs to exactly K clusters, where K is larger than one but
much smaller than the total number of clusters. SOM-based models did not
reach low cross-entropies, but the main problem might not be in the model
itself, but in that the concatenation of the latent features of the morphs does
not lead to history features that could be efficiently utilized by the model.
We might want to find latent features directly for the morph histories in-
stead of morphs, or cluster n-grams based on just the feature vector of the
last morph.

Our last model proposed clustering of morph histories based on their predic-
tion distributions. We utilized hard clustering, in which case G is a many-
to-one function and sum of Equation 8.1 reduces to a single product. MAP
estimation of the number of the clusters for a 4-gram model suggested that
less than a thousand clusters could be enough, instead of the hundreds of
thousands of observed histories. A different set of priors for the model might
however make a less extravagant result. The full potential of the model of
clustered histories is unclear until we have a faster training algorithm and
utilize a more trustworthy smoothing technique. It seems to be worth study-
ing more: The proposed kind of clustering is intuitive, reduces the number of
parameters clearly, works with an already compact set of model units such
as statistical morphs, and maximum a posteriori estimation assures that the
frequent events do not lose too much accuracy.

72

8.1 How to beat N-gram models?

None of the models presented in this work could outperform standard N-
gram models. Those that do, usually do it by using information on the
global or long-span properties of the text (e.g. LSA models such as [2]),
developing models that are more compact but still based on maximum likeli-
hood modeling of n-grams (e.g. the growing model in [61]), or otherwise are
computationally much more heavy (e.g. neural network model in [4]).

If we think of language models based strictly on the n-gram assumption (with
moderately small n), can we do better than N-gram models? One answer
is given by Brill et al. [6], who studied whether humans could improve
results given by an N-gram model in speech recognition by post-processing.
In the experiment, human subjects where given a list of 10 sentences, that
were the most probable according to the recognizer, to choose from or edit
if needed. On average, human sophistication improved the results clearly
enough, even if not relatively very much. They also studied what kind of
information was used by the subjects, and concluded that there were many
linguistic proficiencies that appear to be solvable also without (interactive)
human aid.

Also Rosenfeld [58] emphasizes the importance of injecting human knowl-
edge of language into the models. Furthermore, he proposes two ways of
doing this. In interactive modeling, human knowledge and decision making
would improve data-driven optimization, and vice versa. Regarding more
direct ways for inserting human sophistication, he proposes that linguistic
theories should be preferably encoded into the process as Bayesian priors.
This way the human knowledge, often overstated, would be applied mostly
to phenomena for which there is not sufficient amount of data.

Instead of inserting human made linguistic theories in to the language mod-
els, a more aspiring goal would be to find methods for discovering statisti-
cal equivalents of such theories from the data in an unsupervised manner.
Whether this is possible, and to what extent, is an issue that is under de-
bate in the field of linguistics [40]. The research direction that speaks for
an unsupervised learning approach is cognitive linguistics, where one major
hypothesis is that the knowledge of language emerges from language use [18].
The Word ICA method [27, 28, 29] discussed and utilized in Chapter 4 clearly
supports this kind of approach. However, Honkela et al. [29] suggest also
that for a more realistic language learning simulation it would be necessary
to include other kinds of context, such as visual perceptions, actions and
activities associated with linguistic expressions, along with the text.

73

8.2 Future work

In the discussions of the previous chapters, we have proposed a number of
new experiments. Clusters derived from ICA features might work better in
class-based N-gram models if a model utilizing asymmetric clustering was
used. For a SOM-based model, one might need some SOM variant developed
for multivariate time series prediction instead of the basic SOM algorithm, or
the features of the histories should be constructed otherwise. For the model
for clustered histories, one might need a more efficient search algorithm, more
sophisticated priors, and probably utilization of Kneser-Ney smoothing.

In addition, there is one more interesting direction where Equation 8.1 leads
us. Clustering histories by successor distributions, as done in Chapter 7,
is intuitive, but hard clusters are often too restrictive and do not generalize
much. It would be better to leave the last step in Equation 7.7 out (i.e. apply
Eq. 8.1 so that G always returns every cluster). This way the prediction
distribution of a history h would be a mixture of some latent distributions
P (m | ck):

P (mi | hj) =
C

∑

k=1

P (ck | hj)P (mi | ck) (8.2)

How is it possible to find this kind of latent distributions? By some con-
sideration we can see that this is a blind source separation (BSS) problem.1

However, now the assumptions of the unknown parameters are such that
Independent Component Analysis does not give a desired answer: We want
strictly non-negative values, and and columns of source matrix and rows of
mixing matrix that sum up to one. Instead we could use a variant of Non-
Negative Matrix Factorization (NMF) [46], an algorithm that tries to find
non-negative solutions for BSS problems. NMF has previously been used
e.g. in language model adaptation [53] and document clustering [67].

Sparseness of the signals has been shown to be an important part of pro-
cessing information in the visual cortex of brains [21, 34]. Sparseness of the
signals was also essential in the Word ICA method, resulting in latent fea-
tures that were more practical than the non-sparse features calculated using
only SVD [65]. So it seems promising to apply the endeavor for sparse coding
also to the problem of language modeling. Thus a suitable variant of NMF
could be something resembling the algorithm derived by Hoyer [30, 31].

1Assume that we have estimates for n-gram probabilities collected to a matrix V so
that the element vij is the probability of the morph i given the history j. Denoting
wik = P (mi | ck) and hkj = P (ck |hj) we get V =

∑

k w·khkj = WH. (Cf. to Eq. 4.1
and Fig. 4.1.)

74

Finally, we want to emphasize that most of the experiments of this thesis
were preliminary work. The conventional N-gram models and their class-
based variants have years of research in their background. Neural networks
and data-driven methods such as ICA may have a lot to give to the field
of statistical language modeling, but the models that would outperform the
N-gram models are also likely to need a lot of serious work. This thesis has
hopefully given some insight on where to start.

75

Bibliography

[1] D. Angluin and C. H. Smith. Inductive inference: Theory and methods.
ACM Computing Surveys, 15(3):237–269, 1983.

[2] J. R. Bellegarda. Exploiting latent semantic information in statistical
language modeling. Proceedings of the IEEE, 88(8), 2000.

[3] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton
University Press, 1961.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilis-
tic language model. Journal of Machine Learning Research, 3:1137–1155,
2003.

[5] E. Bingham, J. Kuusisto, and K. Lagus. ICA and SOM in text docu-
ment analysis. In Proceedings of the 25th annual international ACM SI-
GIR conference on Research and Development in Information Retrieval,
pages 361–362, 2002.

[6] E. Brill, R. Florian, J. C. Henderson, and L. Mangu. Beyond n-grams:
Can linguistic sophistication improve language modeling? In Proceed-
ings of COLING/ACL 1998 Conference, volume I, pages 186–190, Mon-
treal, Canada, 1998.

[7] P. F. Brown, V. J. DellaPietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479, 1992.

[8] S. F. Chen. Building Probabilistic Models for Natural Language. PhD
thesis, Harvard University, 1996.

[9] S. F. Chen and J. Goodman. An empirical study of smoothing techniques
for language modeling. Computer Speech and Language, 13(4):359–393,
1999.

76

[10] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

[11] R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue. Survey
of the State of the Art in Human Language Technology. Cambridge
University Press, 1996.

[12] M. Creutz and K. Lagus. Unsupervised models for morpheme segmen-
tation and morphology learning. ACM Transactions on Speech and Lan-
guage Processing. Accepted for publication.

[13] M. Creutz and K. Lagus. Unsupervised discovery of morphemes. In
Proc. Workshop on Morphological and Phonological Learning of ACL’02,
pages 21–30, Philadelphia, Pennsylvania, USA, 2002.

[14] M. Creutz and K. Lagus. Induction of a simple morphology for highly-
inflecting languages. In Proc. 7th Meeting of the ACL Special In-
terest Group in Computational Phonology (SIGPHON), pages 43–51,
Barcelona, July 2004.

[15] M. Creutz and K. Lagus. Unsupervised morpheme segmentation and
morphology induction from text corpora using Morfessor. Technical Re-
port A81, Publications in Computer and Information Science, Helsinki
University of Technology, 2005. http://www.cis.hut.fi/projects/

morpho/.

[16] M. Creutz, K. Lagus, K. Lindén, and S. Virpioja. Morfessor and Hut-
megs: Unsupervised morpheme segmentation for highly-inflecting and
compounding languages. In Proceedings of the Second Baltic Conference
on Human Language Technologies, pages 107–112, 2005.

[17] M. Creutz and K. Lindén. Morpheme segmentation gold standards for
Finnish and English. Technical Report A77, Publications in Computer
and Information Science, Helsinki University of Technology, 2004.

[18] W. Croft and D. A. Cruse. Cognitive Linguistics. Cambridge Textbooks
in Linguistics, 2004.

[19] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Hashman. Indexing by latent semantic analysis. Journal of the Amer-
ican Society for Information Science, 41(6), 1990.

[20] G. D. Forney. The Viterbi algorithm. In Proceedings of the IEEE,
volume 61, pages 268–278, 1973.

77

[21] P. Földiák and M. P. Young. Sparse coding in the primary cortex.
In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Net-
works, pages 895–898, Cambridge, Massachusetts, 1995. The MIT Press.

[22] J. Gao, J. T. Goodman, G. Cao, and H. Li. Exploring asymmetric clus-
tering for statistical language modeling. In Proc. 40th Annual Meeting
of the ACL, pages 183–190, Philadelphia, Pennsylvania, USA, 2002.

[23] J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for mul-
tivariate gaussian mixture observations of markov chains. IEEE Trans-
actions on Speech and Audio Processing, 2(2):291–298, 1994.

[24] J. T. Goodman. A bit of progress in language modeling — extended
version. Technical Report MSR-TR-2001-72, Microsoft Research, 2001.

[25] K. Hacioglu, B. Pellom, T. Ciloglu, O. Ozturk, M. Kurimo, and
M. Creutz. On lexicon creation for Turkish LVCSR. In Proc. Eu-
rospeech’03, pages 1165–1168, Geneva, Switzerland, 2003.

[26] T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Virpioja, and
J. Pylkkönen. Unlimited vocabulary speech recognition with morph
language models applied to Finnish. Computer Speech and Language.
Accepted for publication.

[27] T. Honkela and A. Hyvärinen. Linguistic feature extraction using inde-
pendent component analysis. In Proceedings of IJCNN 2004, Interna-
tional Joint Conference on Neural Networks, pages 279–284, 2004.

[28] T. Honkela, A. Hyvärinen, and J. Väyrynen. Emergence of linguis-
tic representations by independent component analysis. Technical Re-
port Publications in Computer and Information Science, Report A72,
Helsinki University of Technology, 2003.

[29] T. Honkela, A. Hyvärinen, and J. Väyrynen. Emergence of linguistic
features: Independent component analysis of contexts. In Ninth Neural
Computation and Psychology Workshop: Modeling Language, Cognition
and Action, Plymouth, England, Sep. 8-10 2004.

[30] P. O. Hoyer. Non-negative sparse coding. In Neural Networks for Signal
Processing XII (Proc. IEEE Workshop on Neural Networks for Signal
Processing), pages 557–565, Martigny, Switzerland, 2002.

[31] P. O. Hoyer. Non-negative matrix factorization with sparseness con-
straints. Journal of Machine Learning Research, 5:1457–1469, 2004.

78

[32] A. Hyvärinen. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks, 10(3):626–
634, 1999. http://www.cis.hut.fi/projects/ica/fastica/.

[33] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Anal-
ysis. John Wiley & Sons, 2001.

[34] A. Hyvärinen, P. O. Hoyer, J. Hurri, and M. Gutmann. Statistical
models of images and early vision. Proceedings of the Int. Symposium on
Adaptive Knowledge Representation and Reasoning (AKRR’05), 2005.

[35] R. Kneser and H. Kney. Improved backing-off for m-gram language mod-
eling. IEEE Transactions on Acoustics, Speech, and Signal Processing,
1:181–184, 1987.

[36] T. Kohonen. Self-Organizing Maps. Springer, 1995.

[37] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero,
and A. Saarela. Self organization of a massive document collection.
IEEE Transactions on Neural Networks, 2000.

[38] T. Kolenda, L. K. Hansen, and J. Larsen. Signal detection using ICA:
application to chat room topic spotting. In Proceedings of ICA2001,
the Third International Conference on Independent Component Analysis
and Signal Separation, pages 540–545, 2001.

[39] M. Kurimo and K. Lagus. An efficiently focusing large vocabulary lan-
guage model. In International Conference on Artificial Neural Networks
(ICANN’02), pages 1068–1073, Madrid, Spain, 2002.

[40] K. Lagus. Miten hermoverkkomallit selittävät kielen oppimista? In
A. M. Korpijaakko-Huuhka, S. Pekkala, and H. Heimo, editors, Kielen
ja kognition suhde. Puheen ja kielen tutkimuksen yhdistyksen julkaisuja
37, Helsinki, 2005.

[41] K. Lagus, M. Creutz, and S. Virpioja. Latent linguistic codes for mor-
phemes using independent component analysis. In Ninth Neural Com-
putation and Psychology Workshop: Modeling Language, Cognition and
Action, Plymouth, England, Sep. 8-10 2004.

[42] K. Lagus, S. Kaski, and T. Kohonen. Mining massive document collec-
tions by the WEBSOM method. Information Sciences, 163(1–3):135–
156, 2004.

79

[43] K. Lagus and M. Kurimo. Language model adaptation in speech recog-
nition using document maps. In IEEE Workshop on Neural Networks
for Signal Processing (NNSP’02), pages 627–636, Martigny, Switzerland,
2002.

[44] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to latent
semantic analysis. Discourse Processes, 25:259–284, 1998.

[45] T. K. Landauer, D. Laham, and P. W. Foltz. Learning human-like
knowledge by singular value decomposition: A progress report. In M.
I. Jordan, M. J. Kearns and S. A. Solla (Eds.), Advances in Neural
Information Processing Systems, 10:45–51, 1998.

[46] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[47] E. E. Loos, S. Anderson, D. H. Day, P. C. Jordan, and J. D. Wingate,
editors. Glossary of linguistic terms. SIL International, 2004. http:

//www.sil.org/linguistics/GlossaryOfLinguisticTerms/.

[48] C. D. Manning and H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cambridge, MA, 1999.

[49] A. Moffat. Implementing the PPM data compression scheme. IEEE
Transactions on Communications, 38(11):1917–1921, 1990.

[50] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependen-
cies in stochastic language modeling. Computer Speech and Language,
8:1–28, 1994.

[51] T. R. Niesler, E. W. D. Whittaker, and P. C. Woodland. Comparison of
part-of-speech and automatically derived category-based language mod-
els for speech recognition. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol-
ume 1, pages 177–180, 1998.

[52] T. R. Niesler and P. C. Woodland. Combination of word-based and
category-based language models. In Proceedings of ICSLP-96, pages
220–223, 1996.

[53] M. Novak and R. Mammone. Use of non-negative matrix factorization
for language model adaptation in a lecture transcription task. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), volume 1, pages 541–544, Salt Lake City,
UT, USA, 2001.

80

[54] K. Petersen, L. Hansen, T. Kolenda, E. Rostrup, and S. Strother. The
independent components in functional neuroimages. In Proc. Int. Work-
shop on Independent Component Analysis and Blind Source Separation
(ICA2000), pages 251–256, 2000.

[55] J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15.
World Scientific Series in Computer Science, Singapore, 1989.

[56] E. S. Ristad and R. G. Thomas. New techniques for context modeling.
In Proceedings of the 33rd annual meeting on Association for Computa-
tional Linguistics, pages 220–227, Cambridge, Massachusetts, 1995.

[57] R. Rosenfeld. A maximum entropy approach to adaptive statistical
language modeling. Computer Speech and Language, 10:187–228, 1996.
Longer version: Carnegie Mellon Tech. Rep. CMU-CS-94-138.

[58] R. Rosenfeld. Two decades of statistical language modeling: Where do
we go from here? Proceedings of the IEEE, 88(8), 2000.

[59] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656, 1948.

[60] V. Siivola. Building compact language models incrementally. In Proceed-
ings of the Second Baltic Conference on Human Language Technologies,
Tallinn, Estonia, 2005.

[61] V. Siivola and B. L. Pellom. Growing an n-gram language model. In
Proceedings of Interspeech, Lisbon, Portugal, 2005.

[62] A. Stolcke. SRILM – an extensible language modeling toolkit. In Pro-
ceedings of the 7th International Conference on Spoken Language Pro-
cessing (ICSLP), pages 901–904, 2002. http://www.speech.sri.com/

projects/srilm/.

[63] P. D. Turney. Mining the Web for synonyms: PMI-IR versus LSA on
TOEFL. Lecture Notes in Computer Science, 2167:491–502, 2001.

[64] P. M. B. Vitanyi and M. Li. Minimum description length induction,
Bayesianism, and Kolmogorov complexity. IEEE Transactions on In-
formation Theory, 46(2):446–464, 2000.

[65] J. Väyrynen and T. Honkela. Comparison of independent component
analysis and singular value decomposition in word context analysis. In
Proceedings of the International and Interdisciplinary Conference on
Adaptive Knowledge Representation and Reasoning (AKRR’05), 2005.

81

[66] P. Xu and F. Jelinek. Random forests in language modeling. In Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2004.

[67] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-
negative matrix factorization. In SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 267–273. ACM Press, 2003.

[68] W. Xu and A. Rudnicky. Can artifical neural networks learn language
models? In Proceedings of the 6th International Conference on Spoken
Language Processing (ICSLP), 2000.

82

