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Abstract. Recent iterated ciphers have been designed to be resistant
to differential cryptanalysis. This implies that cryptanalysts have to deal
with differentials having so small probabilities that, for a fixed key, the
whole codebook may not be sufficient to detect it. The question is then,
do these theoretically computed small probabilities have any sense? We
propose here a deep study of differential and differential trail probabili-
ties supported by experimental results obtained on a reduced version of
PRESENT.
Keywords : differential cryptanalysis, differential probability, iterated
block cipher,
PRESENT.

1 Introduction

Differential cryptanalysis has first been applied to the Data Encryption
Standard (DES) in the early 90’s by E. Biham and A. Shamir [BS91,BS93].
Since then, many ciphers have been cryptanalyzed using differential crypt-
analysis or one of the large family of variants (truncated differential
[Knu94], higher order differential [Knu94], impossible differential [BBS99],
. . . ).

The basic differential cryptanalysis is based on a differential over r

rounds of the cipher.

Definition 1. A r-round differential characteristic
A r-round differential characteristic is a couple (δ0, δr) ∈ F

m
2 × F

m
2 . The

probability of a differential (δ0, δr) is

p∗
def
= PrX [F r

K(X) ⊕ F r
K(X ⊕ δ0) = δr] ,

where m is the input/output size of the cipher and F the round function.



Then, r rounds of the cipher can be distinguished from a random permu-
tation using this differential. To break r + 1 rounds of the block cipher,
we look for differentials on r rounds. Then, for all the possible subkeys
for the last round, the attacker does a partial decryption of the ciphertext
pairs and count the number of time δr appears. For a wrong candidate,
the probability that δr appears is around 2−m and for the correct subkey,
this probability is around p∗+2−m. It is widely accepted that the number
of pairs needed to distinguish those two probabilities is of order p−1

∗
if the

so called signal-to-noise ratio is large enough
(

SN =
p∗

2−m

)

.

Recent ciphers, the Advanded Encryption Standard (AES) for instance,
have been designed to be resistant to the basic differential cryptanaly-
sis. Nevertheless, when a new cipher is proposed, cryptanalysts try to
mount the best possible linear and differential attacks. In the case of
PRESENT[BKL+07], the cipher we used for the experiments, the actual
best published differential attack is the one of Wang [Wan08]. But actu-
ally, there is lacks in the data complexity estimate of this attack. First
of all, an erroneous way of counting the number of subkey hits leads to
a too optimistic signal-to-noise ratio of 17.63 and the use of the formula
of Selçuk [Sel08] for the success probability is not tight in the case of
differential cryptanalysis. We are not going to discuss this here because
it is out of the scope of this paper and it does not challenge the validity
of the attack that still has a very high success rate when taking these
remarks into account. The second point is that the probabilities p∗ of
the differentials may be underestimated because they are obtained taking
into account only one way of going from the input difference to the output
difference. This is discussed in Section 4.

Round keys of the block ciphers are derive from a master key and are
generally not independant. Some work regarding the key dependency of a
differential probability have been done in [DR05]. In this paper the aims
is to show that the difference between the expected value of a differential
and the value obtain by the mean over the keys is small. Here we study
the key dependency of the probability of a differential for reduced version
of PRESENT.

Contributions of this work.
In this work, we first present the cipher we used for experiments in Sec-

tion 2. Then, in Section 3, we focus on differential trails, that is sets of
intermediate differences taken by a pair that matches a differential. The
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classical way of estimating a trail probability relies on some hypotheses
that are not true. Nevertheless, experiments show that this theoretical
probability makes sense as an average of the probability over the keys. In
Section 4 we recall that a differential probability is the sum of the corre-
sponding trail probabilities. Then, we present some experiments about the
key dependency of this differential probability and give a way of under-
standing them. Finally, we conclude in Section 5 and sum-up the results
as well as the problematics left as open questions.

2 PRESENT

To confirm our conjectures, we made experiments on a lightweight ci-
pher presented in 2007 at CHES conference: PRESENT [BKL+07]. The
structure of PRESENT is a Substitution Permutation Network (SPN).

2.1 Reduced version of PRESENT: SMALLPRESENT-[s]

For the experiments to be meaningful, we need to be able to exhaustively
compute the ciphertexts corresponding to all possible plaintexts for all
possible keys. That is the reason why we chose to work on a reduced
version of PRESENT named SMALLPRESENT-[s] [Lea10]. The family
of SMALLPRESENT-[s] has been designed to be used for such exper-
iments. The value of s indicate the number of Sboxes per round. The
Sboxes of PRESENT are all the same and are defined in F

4
2. This trans-

formation is described in Table 1. The size of the message is then 4s.
In this article we make experiments on SMALLPRESENT-[4] that is the
version with 4 Sboxes. The full version of PRESENT has 16 Sboxes. One
round of SMALLPRESENT-[4] and PRESENT are respectively depicted
in Figure 8, Figure 9 (Appendix A).

2.2 Different key schedules for SMALLPRESENT-[4]

The problem with the reduced cipher presented in [Lea10] is the key sched-
ule. Actually, in the whole PRESENT, most of the bits of a subkey are di-
rectly used in the subkey of the next round. Since for SMALLPRESENT-
[s], the number of key bits is always 80 but the state size is only 4 ·s, this
is not true anymore for a small s. We decide to introduce two additional
key schedules for our experiments.

1. Same key: The cipher has a master key that has the same size as
the state and each subkey is equal to this master key. Therefore
SMALLPRESENT-[4] is parameterized by a 16 bits master key.
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2. 80-bits: This key schedule is the one used in the full version of PRESENT
and proposed in [Lea10].

3. 20-bits: a homemade key schedule used with SMALLPRESENT-[4]
similar to the one of the full version.
The master key is represented as K = k19k18 . . . k0. At round i the
16-bits round key Ki = k19k18 . . . k4 consists in the 16 left-most bits
of the current content of register K. After extracting the round key
Ki, the key register is updated as follows:
(a) [k19k18 . . . k1k0] = [k6k5 . . . k8k7]
(b) [k19k18k17k16] = S[k19k18k17k16]
(c) [k7k6k5k4k3] = [k7k6k5k4k3] ⊕ roundcounter
The key is rotated by 13 bit positions to the left, the left most four bits
are passed through the PRESENT Sbox, and the roundcounter value
is exclusive-ored with bits k8k7k6k5k4. We keep the 5-bits counter
version. But we only study less than 7 rounds of SMALLPRESENT-
[4] so the counter can be represented in 3 bits.

3 Differential trail probability

3.1 Notation

Let us denote by K the master key. The round subkeys derived from K

are denoted by K1,K2, . . . ,Kr. Let FKi
: F

m
2 7→ F

m
2 be a round function

of a block cipher. We will denote by F r
K the application of r rounds of

the block cipher.
F r

K = FKr ◦ FKr−1
◦ · · · ◦ FK1

.

In this section, we focus on differentials that have been defined in
Definition 1. In general, there is not one but many ways to go from the
input difference to the output difference of a differential characteristic.
Such a way is called differential trail.

Definition 2. Differential trail
A differential trail of a cipher is a (r+1)-tuple (β0, β1, · · · , βr) ∈ (Fm

2 )r+1

of intermediate differences at each round. The probability of a differential
trail β = (β0, β1, · · · , βr) of a fixed key is

PrX
[

∀i F i
K(X) ⊕ F i

K(X ⊕ β0) = βi

]

.

Computing the exact value of a trail probability is not possible for
real ciphers since it need to encipher the whole codebook for all possible
keys. The classical way of estimating a trail probability is to chain trails
on 1 round. This approach is based on a formalism introduced by Lai,
Massey and Murphy [LMM91].
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Assumption
The sequence of differences at each round output forms a Markov chain.

Assuming this, the theoretical probability of a trail β = (β0, β1, · · · , βr)
is computed as follow

pt
β =

r
∏

i=1

PrX [FKi
(X) ⊕ FKi

(X ⊕ βi−1) = βi] .

But actually, this assumption is not true (at least for SPN ciphers). We
give a counter example in the following subsection and focus on the key
dependency of the probability of a trail.

3.2 Key dependency of a trail

The main difficulty in the pre-computation phase is the search of good
differential trails. The computed value of the probability of a differential
trail relies on the widely used aforementioned assumption. Thus, in some
case the theoretical value of the probability of a differential trail does not
match with reality. For one round it is easy to see that the theoretical
value corresponds to the real one. But for more than one round it seems
legitimate to wonder what does this theoretical probability mean.
As we see below, the probability of a differential trail can be influenced by
the choice of the master key used to encipher samples. Thus, we override
the previous definition of a differential trial probability with the following
one.

Definition 3. Differential trail probability
The probability of a differential trail β = (β0, β1, · · · , βr) is defined by

pβ
def
= PrX,K

[

∀i F i
K(X) ⊕ F i

K(X ⊕ β0) = βi

]

.

We now take into account the choice of the master key in the variable
we use. For a r-round differential trail β = (β0, β1, · · · , βr), let us define

TK
def
=

1

2
#{X ∈ F

m
2 |F i

K(X) ⊕ F i
K(X + β0) = βi ∀ 1 ≤ i ≤ r},

T [j]
def
= #{K|TK = j}. (1)

Let nk be the number of bits of the master key. The real value of the
trail probability is

pβ = 2−m−1
∑

K∈F
nk
2

TK = 2−m−1−nk

∑

j

T [j] · j.

To motivate these new notation, we give an example where the key de-
pendency is obvious.
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Example of a trails with experimental probability not equal to
the theoretical one
We illustrate this phenomena by a differential trail over 3 rounds on

SMALLPRESENT - [4]: β = (0x1101, 0xdd, 0x30, 0x220) (see Figure 1).

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

j 0 8 16

T [j] 131072 524288 393216

Fig. 1. Trail β = (0x1101, 0xdd, 0x30, 0x220) and the corresponding T [j]’s

First, we are going to compute the theoretical probability of this trail.
Assuming that the rounds of SMALLPRESENT-[4] are independent we
can easily compute the theoretical value of this differential trail.

– Round 1 3 S-boxes with input difference 0x1 and output difference
0x3.

– Round 2 2 S-boxes with input difference 0xd and output difference
0x2.

– Round 3 1 S-box with input difference 0x3 and output difference 0x6.

We have 6-Sboxes with transition probability 2−2 therefore pt
β = 2−12.

This means that the number of plaintext such that (X,X ⊕ 0x1101)
follows this trail for a fixed key should be 216−1 · 2−12 = 23. We made
experiments to check this assumption. For a fixed key we computed the
number of plaintexts that follows this trail. In Figure 1 are given the
values taken by T [j] for all keys in F

20
2 using the 20-bit key schedule. We

can see that there are three kinds of key leading to three different values
of T [j]. We found many of such trails on 3 rounds that split the space of
keys.

Experiments on this trail show that for a fixed key, the theoretical
probability of a differential trail do not always match with the real value
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of this trail probability. Experiments also show that for some keys the
trail can be impossible. This can be of real significance because such
phenomenon is also existing on 3 rounds of PRESENT. That means that,
maybe, some differential trails used in a differential cryptanalysis may
not have the expected probability for most of the keys.

Averaging the probabilities over the keys, we see that the effective
probability of this differential trail is 2−11.6 (the theoretical one is 2−12).
This difference between real and theoretical probabilities may weaken
(or strengthen) some attacks. Does a lot of trails have such a difference
between their theoretical value and the average probability? In the next
subsection we will show that, most of the times, the theoretical value of
a differential trail is close to the effective one (averaged over the keys).

3.3 Theoretical probability and average probability of a trail
over the keys

To understand this phenomenon, we made some experiments on PRESENT.
We observed that the theoretical probability is likely to be the average
of the trail probability over all the possible keys. We make experiments
on SMALLPRESENT-[4] with different key schedules. Let us recall that
the theoretical probability of the differential trail β is denoted by pt

β and
the effective one (averaged over the keys) is denoted by pβ. In Figure 2,
Figure 3 and Figure 4, we have computed the difference between log(pt

β)
and log(pβ) for 500 random trails.

– In Figure 2 we assume that the round subkeys are derived from the
20-bits key schedule. We average the probabilities over the whole set
of 220 keys to obtain the value pβ.

– In Figure 3 we assume that all the round subkeys are the same. We
average the probabilities over the whole set of 216 keys to obtain the
value pβ.

– In Figure 4 we assume that the round subkeys are derived from the 80-
bits key schedule. Since we cannot average probabilities over the 280

possible master keys, the computed value is obtained by an average
over 220 keys.

Remark:
We can see that the phenomenon is not the same depending on the

key schedule. Indeed, in Figure 3 when the same key is taken over the
5 rounds the dependency of the round key is more important than in
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Fig. 2. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails

on 5 rounds and the 20-bits key schedule

Figure 4 where the 80-bits key schedule is used implying that all the key
bits are used only once (on average). This remark has motivate the 20-
bits key schedule we use in the following experiments that seems to be
the most appropriate.

Experiments show that the average proportion of pairs satisfying a
differential trail is close to the theoretical probability. We can observe
that this behavior is getting worse as the probability is decreasing.
Nevertheless, it seems to be some symmetry what leads to the idea that
taking enough trails will correct this and give better results.

3.4 Automatic search of differential trails

In order to find the best trails probabilities, we use a recursive algorithm.
Let B a bound on the probability of the trails we want keep. We build
the tree of each possibles difference. The root of the tree is the input
difference and the leaves are the differences after r rounds. In each node
of the tree we store the probability to come from the input difference to
this difference using the trail between the root and the node. The trick of
this algorithm is to stop the branches of the tree before the end depending
of the probability we want to obtain. To do that we compute a table with
the best probabilities for each rounds: [q1, q2, · · · , qr]. In order to keep ony
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Fig. 3. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails

on 5 rounds and the same subkey for all rounds
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Fig. 4. Number of trails as a function of log(pβ) − log(pt
β) with a sample of 500 trails

on 5 rounds and 220 keys using the 80-bits key schedule

trail with probability greater than B on r rounds, at level i, we only keep
trails with probability p such that p + qr−i ≥ B.
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4 Differential probability

4.1 Differential probability and trail probabilities

The first thing to say here is that the probability of a differential is the
sum of the probabilities of the corresponding differential trails.

Lemma 1. Let (δ0, δr) be a r-round differential characteristic. Then the
probability p∗ of this differential is

p∗ =
∑

β=(δ0,β1,...,βr−1,δr)

pβ.

Proof. This is essentially due to the fact that a pair that matches a trail
cannot match any other (they are disjoint events) and thus Pr [∪iAi] =
∑

i Pr [Ai].

For a large number of rounds, it is impossible to compute the proba-
bility of a differential (δ0, δr) because there is too much differential trails
that go from δ0 to δr. Actually, in differential cryptanalysis, one uses a
lower bound on the probability of the differential (δ0, δr) by considering
the sum of the likeliest trail probabilities.

In Section 3, we saw that the effective trail probability may not match
with the theoretical one. Nevertheless, it seems to be some symmetry what
leads to the idea that the sum of theoretical trail probabilities may give
a good estimate of a differential probability (averaging over the key).

We made some experiments on 5 rounds of SMALLPRESENT-[4] with
the 20 bits key schedule to see how many trails are required to get a good
estimate of a differential probability. We computed the sum of the theo-
retical probabilities of many trails corresponding to the same differential
characteristic. Since the cipher is small we also have computed the ef-
fective value of the differential by averaging over all plaintexts and all
keys. In Figure 5 we have plotted the difference between both values for
20 differential characteristics. We can see that taking many trails give a
better estimation of the differential probability.

Looking at the results in Figure 5 we can wonder whether it is possible
to determine the number of trails to consider for estimating a differential
probability. In this example we see that taking 27 trails seems to be suf-
ficient but when we look at the whole cipher it is obviously not enough
(see the following paragraph).
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Fig. 5. Convergence of the sum of trails probabilities to the real value of the differential
characteristic

Remark on Wang’s paper [Wan08]
In [Wan08], the target is the whole PRESENT (64 bits). The differential

used is

(d0, d14) = (0x0700000000000700, 0x0000000900000009)

on 14 rounds obtained by iterating 3 times a differential trail on 4 rounds
and by adding one more round at the beginning and at the end.

We observe some things about this trail.

– This trail on 4 rounds is not one of the best since it has a probability
equal to 2−18 and we found a lot of differential trails with probability
2−12. Nevertheless, it is the best iterative differential on 4 rounds.

– There exists lots of differential trails on 14 rounds with probability
2−62 and using algorithm given in Section ?? 2−62 seems to be the best
value of the probability of a differential trail over 14 rounds. Therefore
the trail taken by Wang is one of the best.

– We have theoretically computed all differential trails with input dif-
ference d0, output difference d14 and probability greater than 2−73.
We have sum-up the results in Figure 6. By taking the sum of the
probabilities of the 2k best trails, we observe that the probability of
the differential characteristic (d0, d14) is greater than 2−57.53.
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Fig. 6. Probability of the differential characteristic presented in [Wan08]as a function
of the logarithm of the number of trails

4.2 Key dependency of a differential probability

We now consider a differential (δ0, δr) that is to be used in a differential
cryptanalysis. The attacker will get some samples enciphered with a fixed
master key. Depending on this key, the real probability of the differential
will be smaller/equal/larger than the theoretically computed value.

For a fixed key K, let us denote by DK the number of pairs of plain-
texts with input difference δ0 that lead to an output difference δr. Since
we do not want to count a pair twice, we introduce a 1

2 coefficient.

DK
def
=

1

2
#{X|F r

K(X) + F r
K(X + δ0) = δr}.

We are going to study the distribution of DK ’s.

D[j]
def
= #{K|DK = j}.

Previous experiments showned that the theoretical value of a differen-
tial probability (δ0, δr) obtained by summing the theoretical probabilities
of the corresponding trails is a good estimate of the proportion of pairs
matching this differential averaged over the keys. Then, an intuitive way
of looking at this problem is the following.

We look at the set of couples (X,K) ∈ F
m
2 × F

nk

2 . The proportion of
pairs (X,K) such that

F r
K(X) ⊕ F r

K(X ⊕ δ0) = δr (2)
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is p∗ that we estimate summing the theoretical probabilities of the trails.
Then, fixing a key can be seen as taking simultaneously and at random
2m pairs. In this setting, the number of pairs fulfilling (2) is a random
variable that follows an hyper-geometric distribution with parameters
(2m, p∗, 2

m+nk). Since for cryptographic applications, m = O(nk) ≫ 1,
this distribution can be approximated by a binomial law of parameters
(2m, p∗).

We made some experiments on 5 rounds of SMALLPRESENT-[4] to
check this. Using the 20-bits key schedule we computed the repartition of
the DK ’s. In Figure 7, we see that the DK ’s seems to follow a binomial
distribution as the intuition we got suggested.

0

50000

100000

150000

200000

0 5 10 15 20

D
[j

]

j

Fig. 7. Distribution of D[j]’s for 8 differentials over 5 rounds of SMALLPRESENT-[4]

This observation should be taken into account when computing the
success probability of an attack. Let us denote by pt

∗
the theoretical prob-

ability of the differential characteristic used in a cryptanalysis. We recall
that nk is the number of key bits. For K ∈ F

nk

2 , the effective probability
of the differential is DK

2m−1 where DK is a random variable that follows a
binomial distribution of parameters (2m−1, pt

∗
). If we denote by PS(p∗)
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the success probability of a differential cryptanalysis using a differential
with effective probability p∗ (see [Sel08,BGT10]). Then the success prob-
ability of a differential cryptanalysis using a differential with theoretical
probability pt

∗
is

PS =

2m−1
∑

i=0

PS

(

i

2m−1

)

·

[

(pt
∗
)i(1 − pt

∗
)2

m−1
−i

(

2m−1

i

)]

. (3)

5 Conclusion

We have presented lots of experiments on differential cryptanalysis. The
main teaching of this work is that claimed complexities of differential
cryptanalyses on recent ciphers may be under/over-estimated.

The first point is the fact that estimating a differential probability
with the probability of its main trail is really not suitable. To illustrate the
first point, we estimated the probability of a differential used in [Wan08]
to 2−57.53 while the author only takes into account the best trail and
provides an estimate of 2−62.

The second point is the key dependency of a differential probability.
The theoretical probability of a differential makes sense if we average
effective probabilities over the keys. But, an attacker uses a differential
to attack a cipher parameterized by a fixed key. Then, the fact that the
differential probability depends on the key has to be taken into account.
In Section 4, we propose a way to understand this dependency based on
the hyper-geometric distribution and give a new formula for the success
probability of a differential cryptanalysis.

This work give some elements for understanding differential cryptanal-
ysis but it still remains some open questions. The two main problematics
that seems to be of great interest are the following.

– The theoretical probability of a trail seems to be less meaningful as
this probability decreases. How far does this theoretical value make
sense?

– How can we get a good estimate of a differential probability without
finding all the corresponding differential trails?
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Fig. 9. 1 round of PRESENT
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