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Abstract Sequence segmentation is a well-studied problem, where given a se-
quence of elements, an integer K, and some measure of homogeneity, the task
is to split the sequence into K contiguous segments that are maximally homo-
geneous. A classic approach to find the optimal solution is by using a dynamic
program. Unfortunately, the execution time of this program is quadratic with
respect to the length of the input sequence. This makes the algorithm slow for
a sequence of non-trivial length. In this paper we study segmentations whose
measure of goodness is based on log-linear models, a rich family that contains
many of the standard distributions. We present a theoretical result allowing
us to prune many suboptimal segmentations. Using this result, we modify the
standard dynamic program for one-dimensional log-linear models, and by do-
ing so reduce the computational time. We demonstrate empirically, that this
approach can significantly reduce the computational burden of finding the
optimal segmentation.

Keywords segmentation, pruning, change-point detection, dynamic program

1 Introduction

Sequence segmentation is a well-studied problem, where given a sequence of
elements, an integer K, and some measure of homogeneity, the task is to split
the sequence into K contiguous segments that are maximally homogeneous.

An exact solution for segmentation with K segments can be obtained by
a classic dynamic program in O(L2K) time, where L is the length of the
sequence (Bellman, 1961). Due to the quadratic complexity, we cannot apply
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segmentation for sequences of non-trivial length. In this paper we introduce a
speedup to the dynamic program used for solving the exact solution. Our key
result, given in Theorem 1, states that when certain conditions are met, we
can discard the candidate for a segment border, thus speeding up the inner
loop of the dynamic program.

We consider segmentation using the log-likelihood of a log-linear model
to score the goodness of individual segments. Many standard distributions
can be described as log-linear models, including Bernoulli, Gamma, Poisson,
and Gaussian distributions. Moreover, when using a Gaussian distribution,
optimizing the log-likelihood is equal to the minimizing the L2 error (see Ex-
ample 1).

The conditions given in Theorem 1 are hard to verify, however, we demon-
strate that this can be done with relative ease for one-dimensional models. The
key idea is as follows: Consider segmenting the sequence given in Figure 1(a)
into 2 segments using the L2 error. Assume a segmentation [1, 100], [101, 200].
Figure 1(b) tells us that this segmentation is not optimal. In fact, the optimal
segmentation with 2 segments for this data is [1, 70], [71, 200].
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Fig. 1 Toy sequence and the L2 cost of a segmentation [1, k − 1], [k, 200] as a function of
k. In this paper we propose a necessary condition for a segmentation to be optimal. This
condition allows us to prune suboptimal segmentations, such as [1, 100], [101, 200]

Sequence values around 101 have a particular characteristic which we can
exploit to speedup the optimization. In order to demonstrate this, let us define

X =
{ 1

101− j

100∑
i=j

Di | 1 ≤ j ≤ 100
}

and

Y =
{ 1

j − 100

j∑
i=101

Di | 101 ≤ j ≤ 200
}
,

that is, X contains the averages from the right side of the first segment and Y
contains the averages from the left side of the second segment. Let us define
r1 = minX, r2 = maxX, l1 = minY , l2 = maxY . We see that r1 ≈ −1,
r2 ≈ 1.8, l1 ≈ −1.8, and l2 ≈ 1. That is, the intervals [r1, r2] and [l1, l2]
intersect. We will show in such case that not only we can safely ignore the
segmentation [1, 100], [101, 200] but we also will show that even if we augment
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the sequence with additional data points, index 101 will never be part of the
optimal segmentation with 2 segments. This pruning allows us to speedup the
dynamic programming.

In general, if the extreme values of averages [r1, r2] and [l1, l2] computed
from neighboring segments intersect, we know that the segmentation is subop-
timal. On the other hand, the optimal segmentation with 4 segments for data
in Figure 1(a), [1, 70], [71, 100], [101, 130], [131, 200], uses index 101. We do not
violate our condition since the extreme values of averages [r1, r2] computed
only from the second segment and extreme values of averages [l1, l2] computed
only from the third segment no longer intersect.

Using this idea, we will build an efficient pruning technique for segment-
ing data using one-dimensional log-linear models. We empirically demonstrate
that this approach can reduce the computational load by several orders of
magnitude compared to the standard approach.

The remaining paper is organized as follows. In Section 2 we give prelimi-
nary notation and define the segmentation problem. In Section 3 we give the
key result which allows us to prune segments. Sections 4–5 are devoted to a
segmentation algorithm. We present our experiments in Section 6 and related
work in Section 7. Finally, we conclude the paper with discussion in Section 8.

2 Segmentation for log-linear models

In this section we give preliminaries and define the segmentation problem.

A sequence D = (D1, . . . , DL) is a sequence of real vectors of length M ,
Di ∈ RM . A segment I = [b, e] consists of two integers such that 1 ≤ b ≤
e ≤ L. We will write k ∈ I whenever b ≤ k ≤ e for an integer k. We define
D[b, e] = (Db, . . . , De) to be the subsequence corresponding to that segment.
A segmentation P is a list of disjoint segments that cover D, that is, P =
(I1, . . . , IK) such that the first segment I1 starts at 1, the last segment IK
ends at |D| and Ik = [a, b] begins right after Ik−1 = [c, d], that is a = d+ 1.

Our goal is to find a segmentation that maximizes the likelihood of a log-
linear model of each individual segment. By log-linear models, also known as
exponential family, we mean models whose probability density function can
we written as

p(x | r) = q(x) exp
(
Z(r) + rTS(x)

)
,

where S : RM → RN is a function mapping x to a vector in RN , r ∈ RN is the
parameter vector of the model, and Z(r) is the normalization constant. Many
standard distributions are log-linear, for example, Poisson, Gamma, Bernoulli,
Binomial, and Gaussian (both with fixed or unknown variance). We will argue
later in this section that using a Gaussian distribution with a fixed variance
is equivalent to minimizing L2 error.
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Assume that we are given a segmentation P and for each segment I ∈ P ,
we have a parameter vector rI . Let us now consider the log-likelihood

log
∏
I∈P

∏
k∈I

p(Dk | rI) =
∑
I∈P

∑
k∈I

log q(Dk) + Z(rI) + rTI S(Dk)

=

|D|∑
k=1

log q(Dk) +
∑
I∈P

∑
k∈I

Z(rI) + rTI S(Dk),

for this segmentation of D. Note that the first term in the right-hand side
does not depend on the parameters nor on the segmentation. Consequently,
we can ignore it. In addition, note that we can safely assume that S(x) =
x. If this is not the case, we can always transform sequence D into D′ =
(S(D1), . . . , S(DL)). From now on we will assume that S(x) = x.

For notational simplicity, let us define

c(D) =

|D|∑
i=1

Di and av(D) =
c(D)

|D|

to be the sum and the average of data points in D. If D is clear from the con-
text, we will often write c(i, j) and av(i, j) to mean c(D[i, j]) and av(D[i, j]).
As shorthand, we write av(j) and c(j) to mean c(1, j) and av(1, j).

We define the score of a single segment given a parameter vector as

sc(D | r) = |D|Z(r) + rT c(D) .

We define the score for a segmentation P as

sc(P ;D) =
∑
I∈P

sc(D[I]) , where sc(D) = sup
r

sc(D | r) ,

that is, sc(P ;D) is a sum of the optimal scores of individual segments. We
see that optimizing sc(P ;D) is equivalent to maximizing likelihood of the log-
linear model.

We are now ready to state our optimization problem.

Problem 1 Given a sequence D, a log-linear model, and an integer K, find
a segmentation P with K segments maximizing sc(P ;D).

Example 1 Let us now consider a Gaussian distribution with identity covari-
ance matrix. This distribution is log-linear since we can rewrite

(2π)−M/2e−0.5‖x−µ‖
2

as e−0.5‖x‖
2

(2π)−M/2e−0.5‖µ‖
2+µT x .

The log-likelihood of a Gaussian distribution for a segmentation P is

log
∏
I∈P

∏
x∈D[I]

(2π)−M/2e−0.5‖x−µI‖2

=
∑
I∈P

∑
x∈D[I]

−M/2 log 2π − 0.5 ‖x− µI‖2

= −|D|M/2 log 2π − 0.5
∑
I∈P

∑
x∈D[I]

‖x− µI‖2 .
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The optimal value for µI is an average of data points in D[I]. The first term
of the right-hand side is constant while the second term is the L2 error. Con-
sequently, selecting a segmentation that maximizes log-likelihood is equivalent
to finding a segmentation that minimizes the L2 error, a typical choice for an
error function.

The optimal segmentation can be found with a dynamic program (Bellman,
1961). In order to see this, let P = (I1, . . . , IK) be the optimal segmentation
with K segments. Let c be the last index of IK−1. Then (I1, . . . , IK−1) is the
optimal segmentation for D[1, c]. We can find the optimal segmentation with
K segments by first computing the optimal segmentation with K−1 segments
for each D[1, c] and then testing which segment of form (c, |D|) we need to
add to produce the optimal segmentation with K segments. This leads to an
algorithm of time complexity O(K|D|2). The goal of this paper is to provide
an optimization of this dynamic program.

3 Necessary Condition for Optimal Segmentation

In this section we give a key result of this paper. This result allows us to prune
candidates that will not be included in the optimal segmentation and hence
speedup the dynamic program.

In order to do so, let V be a set of vectors in RN . We say that V is a
cover if for any y ∈ RN , there is a v ∈ V such that yT v ≥ 0. See Figure 2
for an example. Given two sequences D and E we define diff (D,E) to be the
difference set for D and E as

diff (D,E) = {av(D[k, |D|])− av(E[1, l]) | 1 ≤ k ≤ |D|, 1 ≤ l ≤ |E|} .

x1

x2

u

(a) non-cover

x1

x2

x3

(b) cover

Fig. 2 An example of a non-cover and a cover. In Figure 2(a) {x1, x2} is not a cover since
u is outside the half-planes induced by x1 and x2. In Figure 2(b) {x1, x2, x3} is a cover

We are now ready to state the key result of the paper. For readability, we
postpone the proof to Appendix A.1.
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Theorem 1 Let P be a segmentation. There is a segmentation P ′ such that
sc(P ′) ≥ sc(P ) and diff (D[I], D[J ]) is not a cover for any two consecutive
segments I and J in P ′.

4 Segmentation for one-dimensional models

In the previous section we saw a necessary condition for optimal segmentation.
This involves checking whether the difference set of consecutive segments is
a cover. In this section and the next section we show that we can efficiently
check this condition if our linear model is one-dimensional, that is, if data
points Di are real numbers.

In order to show this, let D be a sequence. We define a left interval to be
an interval

intL(D) =
(

min
1≤i≤|D|

av(1, i) , max
1≤i≤|D|

av(1, i)
)

of extreme values of av(1, i). Similarly, we define a right interval to be

intR(D) =
(

min
1≤i≤|D|

av(i, |D|) , max
1≤i≤|D|

av(i, |D|)
)

.

We can now express the condition using these intervals.

Theorem 2 Assume two sequences, D and E and let S be a one-dimensional
statistic. Then diff (D,E) is a cover if and only if the intervals intR(D) and
intL(E) intersect.

Proof Let intR(D) = (x, y) and intL(E) = (u, v). diff (D,E) is a cover if
and only if there are a, b, c, and d such that av(D[a, |D|]) ≤ av(E[1, b]) and
av(D[c, |D|]) ≥ av(E[1, d]). This is equivalent to x ≤ v and y ≥ u, which is
equivalent to intR(D) and intL(E) intersecting. �

We can now use this result to design an efficient algorithm. Assume that
we already have computed for each j the optimal segmentation with K − 1
segments, say Pj covering D[1, j]. We now want to find an optimal segmenta-
tion with K segments covering D[1, i]. In order to do so we need to augment
each Pj−1 for j ≤ i with a segment [j, i], and pick the optimal segmentation.
Assume that the intervals intL(D[j, i]) and intR(D[c, j − 1]) intersect, where
c is the starting point of the last segment in Pj−1. Then Theorems 1 and 2
imply that we can safely ignore the segmentation Pj−1 augmented with [j, i].
Moreover, if the intervals intersect when segmenting D[1, i], they will also in-
tersect when segmenting D[1, k] for k > i. Hence, as soon as intL(D[j, i])
and intR(D[c, j − 1]) intersect, we can ignore j as a candidate for the starting
point of the last segment. We present the pseudo-code for this approach as
Algorithm 1.

Let us next analyze the time and memory complexity of Algorithm 1. Let L
be the maximal size of C. It is easy to see that we can compute sc(D[j, i]) and
intL(D[j, i]) in constant time by keeping and updating the sum c(j, i) for every



Fast Sequence Segmentation using Log-Linear Models 7

Algorithm 1: Segment(s, r,D) builds the optimal K-segmentation for
D using optimal segmentations with K − 1 segments
input : scores s for optimal segmentation with K − 1 segments, corresponding

right intervals r, sequence D
output : scores u for optimal K-segmentation, right intervals v for optimal

K-segmentation
1 C ← ∅;
2 foreach i = 1, . . . , |D| do
3 add i to C;
4 foreach j ∈ C do
5 update l(j) to be intL(D[j, i]);
6 if r(j − 1) and l(j) intersect then
7 delete j from C;

8 c← arg maxj∈C s(j − 1) + sc(D[j, i]);
9 u(i)← s(c− 1) + sc(D[c, i]);

10 v(i)← intR(D[c, i]);

11 return u, v;

j ∈ C. The only non-trivial part of Algorithm 1 is computing the right interval
intR(D[c, i]). In the next section, we will show how to compute the right
interval in amortized O(L) time, hence the execution time of the algorithm
is in O(L|D|). Moreover, we will show that the total memory requirement for
computing the right interval is in O(|D|) which will make the memory usage
of the algorithm O(|D|).

5 Computing the Right Interval

In this section we show how to compute the right interval, as needed in Al-
gorithm 1. We will focus on how to compute the maximal value of the right
interval; we can compute the minimal value using exactly the same framework.

5.1 Computing the Borders

Our first goal, given a sequence D and integer i, is to find j such that av(j, i) is
maximal. Naturally, if we have to do so from scratch, we have no other option
but to test every 1 ≤ j ≤ i. However, since segmentation needs the maximal
average for every i we can use information from previous scans to find the
optimal j more quickly.

We will now present the main results by Calders et al (2007) in which the
authors considered efficiently finding the maximal average from a stream of
data points. In the next section we will modify this approach to make it more
memory-efficient.

Given a sequence D we say that 1 ≤ i ≤ |D| is a border if there is a
(possibly empty) sequence E such that if we define F to be D concatenated



8 Nikolaj Tatti

with E, then

av(F [i, |F |]) = max
1≤j≤|F |

av(F [j, |F |]) .

We define borders(D) to be the sorted list of border points of D.

Let D be a sequence. Further, Let 1 ≤ i ≤ j ≤ |D| and let (b1, . . . , bM ) =
borders(D[i, j]). Whenever D is clear from the context, we define borders(i, j)
to be (b1 + i− 1, . . . , bM + i− 1). Further, we will write borders(i) instead of
borders(i, |D|).

The following theorem states that a maximal average can be found by
simply taking the largest border.1

Theorem 3 (see Calders et al, 2007) Assume a sequence D. Let j =
max borders(D). Then

av(j, |D|) = max
1≤k≤|D|

av(k, |D|) .

We can describe the borders using the following theorem.

Theorem 4 (see Calders et al, 2007) An integer i is a border for D if and
only if there are no a and b, a < i ≤ b such that av(a, i− 1) ≥ av(i, b).

Example 2 Assume that we are given a sequence D = (2, 0, 1, 2, 1, 1, 9, 2, 5, 0),
and that S(x) = x. According to Theorem 4, index 3 /∈ borders(D), since
av(1, 2) = 1 = av(3, 3). The borders are (1, 4, 7) = borders(D).

Our next step is to revise the algorithm given by Calders et al (2007) for
constructing borders(1, i) from borders(1, i− 1). The key idea for update is
given in the following theorem.

Theorem 5 (see Calders et al, 2007) Let us assume a list of borders
(b1, . . . , bM ) = borders(1, i− 1). Define bM+1 = i. Define N , 2 ≤ N ≤M + 1,
to be the maximal integer such that av(bN−1, i) < av(bN , i). If such N does
not exist, we set N = 1. Then, (b1, . . . , bN ) = borders(1, i).

The update algorithm (given as Algorithm 2) starts with the previous
borders (b1, . . . , bM ) = borders(1, i− 1) and adds i as a border. Then the
algorithm tests whether the average of the second last border is larger than
the average of the last border. If so, then the condition in Theorem 5 is violated,
and we remove the last border and repeat the test. The correctness of Update
is given by Calders et al (2007). Note that we can compute the needed averages
in constant time, for example, by precalculating a sequence (c(1) , . . . , c(|D|)).

1 Calders et al (2007) deal only with binary sequences but we can easily extend these
results to the general case.
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Algorithm 2: Update, updates borders(1, i− 1) to borders(1, i)

input : borders (b1, . . . , bM ) = borders(1, i− 1)
output : updated borders borders(1, i)

1 bM+1 ← i;
2 M ←M + 1;
3 while M > 1 and av(bM−1, i) ≥ av(bM , i) do M ←M − 1;
4 return (b1, . . . , bM );

5.2 Computing Borders Simultaneously

We can use borders to discover the right interval for a single segment. However,
recall that in Algorithm 1 we need to be able to compute the right interval
for any D[c, i], where c ∈ C is the current set of candidates for a segment. A
näıve approach would be to compute borders separately for each D[c, i]. This
leads to O(L|D|) memory and time consumption, where L is the maximum
size of C during evaluation of Segment. Here, we will modify the border
update algorithm such that its total memory consumption is O(|D|). This will
guarantee that the memory consumption of Segment is O(|D|).

Example 3 Let us continue Example 2. We have borders(1, 10) = (1, 4, 7),
borders(3, 10) = (3, 4, 7), borders(8, 10) = (8, 9), and borders(10, 10) = (10).
Note that borders(1, 10) and borders(3, 10) have a common tail sequence,
namely, (4, 7). We can generalize this observation.

The following key result states that when two border lists, say borders(i)
and borders(j) share a common border, the subsequent borders are equivalent.

Theorem 6 Let D be a sequence and let 1 ≤ i, j ≤ |D| be two indices. Assume
that a ∈ borders(i) ∩ borders(j). Let b ≥ a. Then b ∈ borders(i) if and only if
b ∈ borders(j).

Proof We will show that {b ∈ borders(i, k) | b ≥ a} = {b ∈ borders(j, k) | b ≥ a}
using induction over k. The result follows by setting k = |D|.

Since {b ∈ borders(i, a) | b ≥ a} = {a} = {b ∈ borders(j, a) | b ≥ a}, the
first k = a step follows.

Assume that the result holds for k−1. Let (b1, . . . , bM ) = borders(i, k − 1)
and (c1, . . . , cK) = borders(j, k − 1). Let also bM+1 = cK+1 = k. Let x and y
be such that bx = a = cy.

Theorem 5 states that there is an integer N such that (b1, . . . , bN ) =
borders(i, k) and an integer L such that (c1, . . . , cL) = borders(j, k). Since
a ∈ borders(i), we must have N ≥ x and similarly L ≥ y. Note that, by
the induction assumption, we have (bx, . . . , bM+1) = (cy, . . . , cK+1). This im-
plies that update will process exactly the same input, and deletes exactly the
same number of entries, that is, implies that M − y ≤ N − x. This proves the
induction step. �

This theorem allows us to group border lists into a tree. LetD be a sequence
and let C be a set of indices. We define a border tree T = btree(D,C) as follows:
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Fig. 3 Border trees related to Example 4, demonstrating how these trees are updated.
Figure 3(a) is given as input to UpdateTree. First, UpdateTree adds a new node to the
tree, shown in Figure 3(b), then proceeds to prune obsolete borders, resulting in a new
border tree, given in Figure 3(f)

The non-root nodes of the tree consists of the borders from borders(c) for each
c ∈ C, that is,

V (T ) = {b | b ∈ borders(c) for some c ∈ C} .

There is an edge from a node m to a node n if and only if there is c ∈ C such
that (b1, . . . , bM ) = borders(c), n = bj and m = bj+1. Note that this is well-
defined since Theorem 6 states that if we have a node n, essentially a border,
shared by several border lists, then each border list will have the exactly same
next border, which is represented by the parent of n. Finally, the last border
from each borders(c) is a child of a root, which we will denote by r. Note that,
for each c ∈ C, a path from c to r in T is equal to (c = b1, . . . , bM , r), where
(b1, . . . , bM ) = borders(c).

Given a node a in btree(D,C) we write children(a) to be the child nodes of
a. We assume that btree(D,C) is constructed so that the children are ordered
from smallest to largest. In order to be able to modify the tree quickly, we
store the tree structure as follows. Each node can have 3 pointers at most: a
pointer to a right sibling, a pointer to a left sibling or to the parent, if there is
no left sibling, and a pointer to the first child, see Figure 3(a) as an example.

Our next step is to show how to extract the maximal average, and by doing
so compute the right interval. In order to do so we need the following results.

Theorem 7 Let D be a sequence and let 1 ≤ i ≤ j ≤ |D| be two indices. If
a ∈ borders(i) and a ≥ j, then a ∈ borders(j).
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Proof Assume that a /∈ borders(j). Then Theorem 4 implies that there are
j ≤ x < a ≤ y ≤ |D| such that av(x, a− 1) ≥ av(a, y). Since i ≤ x, Theorem 4
immediately implies a /∈ borders(i). �

Corollary 1 Let D be a sequence and let 1 ≤ i ≤ j ≤ |D| be two indices. If
a = max borders(i) and a ≥ j, then a = max borders(j).

Proof Theorem 7 implies a ∈ borders(j). Since both border lists share a they
also share any border larger than a. If both b ∈ borders(j) and b > a, then
Theorem 6 implies b ∈ borders(i), which is a contradiction. Consequently,
a = max borders(j). �

Corollary 2 Let D be a sequence and let C be a set of indices. Let btree(D,C)
be a border tree and let r be its root. Select c ∈ C and let a ∈ children(r) be
the smallest index such that c ≤ a. Then av(a, |D|) ≥ av(b, |D|) for any b ≥ c.

Proof Let b = max borders(c) be the maximal border. Theorem 3 states that
we need to prove a = b. We see immediately that a ≤ b. Let d be such
that a = max borders(d). If d ≤ c, then, since c ≤ a, Corollary 1 implies
a = max borders(c) = b. On the other hand, if d > c, then since d ≤ a ≤ b,
Corollary 1 implies b = max borders(d) = a. �

Corollary 2 gives a way to find the maximal average. Given btree(D,C)
and c ∈ C, we look for the smallest child of root, say a, such that a ≥ c.

Our next step is to update a border tree from T = btree(D[1, i− 1], C)
to btree(D[1, i], C), an update step similar to Algorithm 2. We start by first
adding a node i between a root and its children. This corresponds to the first
two lines in Algorithm 2. After this we modify the tree such that Theorem 5
holds for every path from c ∈ C to the root. In Algorithm 2 we simply deleted
indices that were no longer borders. However, since a single node n can be
shared by several border lists we cannot just delete it, since it might be the
case that it is still used by another border list. Instead, we reattach children
of n violating Theorem 5 to the root; effectively removing n from the border
lists in which n is no longer a border. We give the pseudo-code in Algorithm 3.

Example 4 Let us continue Examples 2–3. Assume that we have a sequence
given in Example 2 and that we have C = {1, 3, 8, 10}. Based on borders given
in Example 3, the border tree is given in Figure 3(a). Assume that we see a
new data point, D11 = 1. We have borders(1, 11) = (1, 4, 7), borders(3, 11) =
(3, 4, 7), borders(8, 11) = (8), and borders(10, 11) = (10, 11).

We begin updating the tree by first adding node 11 between the root and
its children, see Figure 3(b). We continue by checking the first child of 11: node
7, and reattach it to r, see Figure 3(c). After this, we check the first child of
7, node 4 and leave it unmodified. We continue by reattaching 9 to the root,
see Figure 3(d), and similarly node 8, see Figure 3(e). Since node 9 is now a
leaf and 9 /∈ C, we can delete it. Finally, we leave 10 attached to 11. The final
tree, which corresponds to the correct border tree, is given in Figure 3(f).
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Algorithm 3: UpdateTree(T,C,D, i)

input : A tree T = btree(D[1, i− 1], C), a set of candidates C, a sequence D, an
index i

output : border tree btree(D[1, i], C)
1 add node i between the root and its children;
2 a← i;
3 while a exists do
4 n← next sibling of a;
5 if a is a leaf then
6 if a /∈ C then delete a from T ;

7 else
8 b← first child of a;
9 if av(b, i) ≥ av(a, i) then

10 detach b from a;
11 attach b to the root left to a;
12 n← b;

13 a← n;

14 return T ;

Theorem 8 Let T = btree(D[1, i− 1], C). Algorithm UpdateTree(T,C,D, i)
outputs btree(D[1, i], C).

See Appendix for the proof.

In addition to UpdateTree, we need a routine for updating the tree when
an index c is deleted from C. This is needed when Segment deletes a candidate
for the optimal segmentation. In order to update we simply check whether c
is a leaf, if it is, then we delete it, and recursively test the parent of c.

Finally, let us address memory and time complexity of a border tree. First
of all, we have |D| nodes at maximum, hence we need O(|D|) memory. Let
L be the maximum number of |C|. Let Ki be the number of nodes removed
during UpdateTree(T,D,C, i). If we do not modify the tree during the while-
loop, then we execute the while-loop only once, since there is only child of r,
namely i. Note that by the end of each UpdateTree(T,D,C, i), root r can
have at most L children. This means that at maximum we have done L+Ki

reattachments. Each reattachment increases the while-loop executions by 2:
we need to check the child attached to the root and we need to check whether
the parent has more children that need to be reattached. Hence, the while-loop
is executed at most 2(L+Ki)+1 times during UpdateTree(T,D,C, i). Thus

total time complexity is O(|D|L+
∑|D|
i=1Ki). Note that once a node is deleted

it will not be introduced again. Hence,
∑|D|
i=1Ki ≤ |D|. This gives us a total

execution time of O(|D|L).
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6 Experiments

In this section we empirically evaluate our approach on synthetic and real-
world datasets.2

Synthetic data Our main contribution to the paper is the speedup of the dy-
namic program for finding the optimal segmentation when using one-dimensional
log-linear models. We measure the efficiency by the total number of compar-
isons needed in Line 8 of Algorithm 1. We define a performance ratio by
normalizing this number by the number of comparisons that we would have
made if we would not use any pruning. This ensures that the ratio is between
0 and 1, smaller values indicating faster performance. Note that if we do not
use any pruning, the total number of comparisons is O(K|D|2).

We begin by generating sequences of random samples drawn from the Gaus-
sian distribution with 0 mean and 1 variance. We generated 11 sequences of
lengths 2k for k = 10, . . . , 20 and computed the performance ratio of our seg-
mentation using 4 segments of Gaussian distributions (as given in Example 1).
From results given in Figure 4(a) we see that we obtain speedups of 1 order
of magnitude for the smallest data, up to 3 orders of magnitude for longer
data: the ratio for the largest sequence is 0.0007. Note that the ratios become
smaller as the sequence becomes larger. The reason is that when considering
longer segments, it becomes more likely that we can delete candidates, making
the algorithm relatively faster. The absolute computation time grows with the
length of a sequence, 11ms, 1.3s, and 20 minutes for sequences of length 210,
215, and 220, respectively.
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Fig. 4 Performance ratio, total number of score comparisons (see Algorithm 1, Line 8),
normalized between 0 and 1, as a function of sequence length 4(a), using 4 segments, and
as a function of number of segments 4(b). Smaller values are better

Our second experiment is to study the performance ratio as a function
of segments. We sampled 3 sequences from a Gaussian distribution, with 0
mean and 1 variance, of sizes 214, 215, 216. For each sequence we computed
segmentations up to 50 segments. From the results given in Figure 4(b) we

2 The implementation of the algorithm is given at http://adrem.ua.ac.be/segmentation

http://adrem.ua.ac.be/segmentation
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Fig. 5 Sequence of 4 Gaussian segments and candidate lifetimes, how many iterations is
needed for a candidate to be deleted, when computing a segmentation with K segments
from a segmentations of K − 1 segments, where K = 2, 3, 4. Smaller values imply lower
computational burden

see that the performance ratio becomes worse as we increase the number of
segments. The reason is that when segments become shorter, consequently, the
right intervals are more compact and have less chance of being intersected with
the left interval. Nevertheless, we get 0.06, 0.04, and 0.02 for performance ratios
for our sequences when using 50 segments. The peak at 3 segments suggest
that discovering segmentation with 3 segments is particularly expensive. To see
why this is happening, first note that the first segment always starts from the
beginning. This implies that when looking for a segmentation with 2 segments
for a sequence D[1, i], the second segment will be typically either really short or
really long as its mean needs to differ from the mean of the first segment. If the
second segment is short, it will have an abnormal right interval, consequently,
the interval has a smaller chance of overlapping with the left interval of the
next segment.

Our next step is to study how candidates for segments are distributed. A
candidate c is added to C on Line 3 and deleted from C on Line 7 in Segment.
The candidate is added when the counter i is equal to c and let us assume
that it is deleted when the counter is equal to j. If c is not deleted, after
the for-loop in Segment, we simply set j = |D| + 1. We define a lifetime of
a candidate c to be j − c, that is, a candidate lifetime is how often it has
been used in the maximization step on Line 8. The smaller the value, the less
computational burden a candidate is producing. In the worst case, that is,
without any pruning, the lifetime for a candidate c is equal to |D|+ 1− c.
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To study candidate lifetimes we generate a sequence of 4 000 samples, con-
sisting of 4 segments of Gaussian distribution with 0, 5, −5, and 0 means,
respectively, and variance of 1 (see Figure 5(a)). We computed segmentations
up to 4 segments and present the lifetimes in Figure 5.3 We see that there are
four major spikes in lifetimes, at the beginning of the sequence and around
each change point. Let us consider a spike at 2 000 for K = 4. A candidate on
the left side of the spike has a longer lifetime because the left interval of the
next segment is shifted and it is less likely that it will intersect with the right
interval. On the other hand, a candidate on the right side of the spike has a
longer lifetime because the segment is short and the right interval has a higher
chance of being abnormal. The same rationale applies to spike at the beginning
of the sequence. The spikes grow with increasing number of segments, never-
theless they are shallow, implying that we have significant speedup. In fact,
the performance ratios are 0.004, 0.01, 0.02 for segmentations with K = 2, 3, 4
segments, respectively.
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Fig. 6 Sequence sampled from a Gaussian distribution with a slowly increasing mean and
candidate lifetimes, how many iterations is needed for a candidate to be deleted, when
computing a segmentation with K segments from a segmentations of K − 1 segments, for
segmentation with K segments

Finally, let us demonstrate the limitations of our approach. We generate
a sequence of 4 000 samples, where a sample i is generated from a Gaussian
distribution with a mean of i/100 and variance of 1, see Figure 6(a). The
performance ratio of segmentation with 4 segments is 0.06, the lifetimes are
given in Figure 6(b). While we see a good performance for this data, when
we increase the slope (or equivalently, lower variance) the performance ratio
becomes worse. The worst case scenario is a genuinely monotonically increasing
(or decreasing) sequence, that is, Di+1 > Di. In such case, the left intervals
and the right intervals will never overlap and no candidate will be pruned. We
should point out that applying segmentation for a monotonic sequence in the
first place is questionable as such sequence does not fit well the segmentation
probabilistic model, and it might be beneficial to detrend the data to obtain
a better segmentation.

3 For clarity sake, figures show average lifetimes of bins containing 40 points
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Real-world data We continue our experiments using real-world data sets. We
considered 3 different datasets.4 The first dataset, Marotta, is Space Shuttle
Marotta Valve time series, consisting of 5 energize/de-energize cycles (TEK17).
The second dataset, Power, consists of a power consumption of a Dutch
research facility during the year 1997. The third dataset consists of two-
dimensional time series extracted from videos of an actor performing various
acts with and without a replica gun. Since this sequence is two-dimensional,
we split the dimensions into Video1 and Video2. The sequence lengths are
given in Table 1.

Table 1 Characteristics of real-world datasets and performance of the algorithm with 20
segments. The last column is the time needed to compute the optimal segmentation using
traditional dynamic program

Data length performance time (s) baseline time (s)

Marotta 5 000 0.04 0.6 13
Power 35 040 0.03 19.5 600
Video1 11 251 0.1 6.7 62
Video2 11 251 0.14 9.7 62

We study the performance by computing segmentations with 20 segments
for each data and comparing it against the traditional dynamic program, that
is, without deleting any candidates. From the results, given in Table 1, we see
that our approach has a significant advantage over a baseline approach, for
example, with Power dataset we find an optimal solution in 20 seconds while
the baseline approach requires 10 minutes.

Finally, let us look at some of the discovered segmentations. In Figure 7
we present a segmentation of Marotta with 11 segments. The segments align
with high and low energy states. Note that the 3rd high energy segment is
more shallow than the other high energy segments. This cycle contains an
anomaly as pointed out by Keogh et al (2005) resulting in a shorter high
energy segment. In Figure 8 we show a segmentation with 3 segments of the
power consumption. We can see that the mean of the middle segment is lower
than the other means, indicating a summer season.

7 Related Work

Segmentation is an instance of a larger problem setting, called change point
detection, see (Basseville and Nikiforov, 1993), for introduction. We can divide
the problem settings broadly into two categories: offline and online. Although
these settings have conceptually the same goal, the setup details make it dif-
ferent from an algorithmic point of view. In online change point detection

4 The datasets were obtained from http://www.cs.ucr.edu/~eamonn/discords/

http://www.cs.ucr.edu/~eamonn/discords/
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Fig. 7 Segmentation with 11 segments of Space Shuttle Marotta Valve time series
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Fig. 8 Segmentation with 3 segments of the Power dataset. The horizontal lines represent
the means of the individual segments.

(see Kifer et al (2004), for example) the data arrives in a stream fashion, typ-
ically there is no budget for how many change points are allowed, and the
decision needs te be made within some time frame, whereas in segmentation,
offline change point detection, new datapoints can change early segments. A
typical goal for online change detection is to alert the system or a user of a
change, whereas in segmentation the only goal is to summarize the sequence.

Popular approaches for segmentation are top-down approaches where we
select greedily a new change-point (see Shatkay and Zdonik (1996); Bernaola-
Galván et al (1996); Douglas and Peucker (1973); Lavrenko et al (2000), for
example) and bottom-up approaches where at the beginning each point is a
segment, and points are combined in a greedy fashion (see Palpanas et al
(2004), for example). A randomized heuristic was suggested by Himberg et al
(2001), where we start from a random segmentation and optimize the seg-
ment boundaries. These approaches, although fast, are heuristics and have
no theoretical guarantees of the approximation quality. A divide-and-segment
approach, an approximation algorithm with theoretical guarantees on the ap-
proximation quality was given by Terzi and Tsaparas (2006).

Modifications of the original segmentation problem have been also studied.
Discovering recurrent sources is a setup where one limits the amount of distinct
means of the segments to be H such that H < K, where K is the number of
allowed segments has been suggested (Gionis and Mannila, 2003). Haiminen
and Gionis (2004) study unimodal sequences, where means of the centroids
(of one-dimensional sequence) are required to follow a unimodal curve, that
is, the means should only rise to some point and then only decline afterwards.
For a survey of the segmentation algorithms, see Chapter 8 in (Džeroski et al,
2011).
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8 Discussion and Conclusions

In this paper we introduced a pruning technique to speedup the dynamic
program used for solving the segmentation problem. We demonstrated on both
synthetic and real-world data that we gain a significant speedup by using our
pruning technique.

We should point out that our pruning is online, that is, the decision to
delete a candidate is based only on current and past data points. We believe
that we can speedup the algorithm further by applying additional pruning
techniques based on future data points, such as (Gedikli et al, 2010). In addi-
tion, we conjecture that these optimizations may prove to be useful in other
setups, such as, discovering HMMs or CRFs, where dynamic programs are
used in order to optimize the model. We leave these studies as future work.

Segmentation requires a parameter, namely the number of segments. One
approach to remove this parameter is by using model selection techniques,
such as, BIC (Schwarz, 1978) or MDL (Grünwald, 2007). We conjecture that
using these techniques not only remove the parameter but can be also used
for further speedup.

Our algorithm is limited only to handle one-dimensional case. However,
the key result, Theorem 1, actually handles the multi-dimensional case. The
reason why we limit ourselves to one-dimensional case is that we were able
to verify the sufficient conditions in Theorem 1 with relative ease. We leave
studying applying Theorem 1 more generally as future work. While we are
skeptical whether it is possible verify the conditions in Theorem 1 exactly,
we believe that it is possible to find more conservative conditions that can be
easily checked and that will imply the conditions in Theorem 1.
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Džeroski S, Goethals B, Panov P (eds) (2011) Inductive Databases and
Constraint-based Data Mining. Springer

Gedikli A, Aksoy H, Unal NE, Kehagias A (2010) Modified dynamic program-
ming approach for offline segmentation of long hydrometeorological time
series. Stochastic Environmental Research and Risk Assessment 24(5)

Gionis A, Mannila H (2003) Finding recurrent sources in sequences. In: Pro-
ceedings of the seventh annual international conference on Research in com-
putational molecular biology, RECOMB ’03, pp 123–130

Grünwald P (2007) The Minimum Description Length Principle. MIT Press
Haiminen N, Gionis A (2004) Unimodal segmentation of sequences. In: ICDM,

pp 106–113
Himberg J, Korpiaho K, Mannila H, Tikanmäki J, Toivonen H (2001) Time
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A Proofs

A.1 Proof of Theorem 1

Theorem 1 will follow from the following theorem.

Theorem 9 Let D = (D1, . . . , De). Let 1 ≤ m < e. Assume that diff (D[1,m], D[m+ 1, e])
is a cover. Then there exists n > m such that sc([1, n], [n+ 1, e]) > sc([1,m], [m+ 1, e]) or
there exists l < m such that sc([1, l], [l + 1, e]) ≥ sc([1,m], [m+ 1, e]).

In order to prove the theorem we will introduce some helpful notation. First, given a
parameter vector s and r, we define

h(k | s, r) = sc([1, k] | s) + sc([k + 1, e] | r) .
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Note that h(k | s, r) ≤ sc([1, k], [k + 1, e]). We also define

g(l, δ | s, r) = l(Z(s)− Z(r) + (s− r)T δ) .

This function is essentially the difference between two scores.

Lemma 1 Let k > l. We have h(k | s, r)− h(l | s, r) = g(k − l, av(l + 1, k) | s, r).

Proof Note that

h(k | s, r) = kZ(s) + sT c(k) + (e− k)Z(r) + rT (c(e)− c(k))

= k(Z(s)− Z(r)) + (s− r)T c(k) + eZ(r) + rT c(e) .

The last two terms do not depend on k. This allows us to write

h(k | s, r)− h(l | s, r) = k(Z(s)− Z(r)) + (s− r)T c(k)− l(Z(s)− Z(r))− (s− r)T c(l)

= (k − l)
(
Z(s)− Z(r) + (s− r)T

c(k)− c(l)

k − l
)

= g(k − l, av(l + 1, k) | s, r) .

This completes the proof. �

Proof (Proof of Theorem 9) Write y = sc([1,m], [m+ 1, e]) and define

x = max
k<m

sc([1, k], [k + 1, e]) and z = max
k>m

sc([1, k], [k + 1, e]) .

We need to show that either x ≥ y or z > y. Assume that z ≤ y. Fix ε > 0. By definition,
there exist s and r such that

sc([1,m] | s) + sc([m+ 1, e] | r) ≥ y − ε .

From now on we will write h(k) to mean h(k | s, r) and g(k, δ) to mean g(k, δ | s, r). We
must have h(m) + ε ≥ y ≥ z or, equivalently, ε ≥ z − h(m).

Since diff (D[1,m], D[m+ 1, e]) is a cover, there exist integers l and n, 0 ≤ l < m < n ≤
e, such that (α− β)T (s− r) ≥ 0, where α = av(m+ 1, n) and β = av(l + 1,m).

Define c = (n−m)/(m− l). We now have

ε ≥ z − h(m) ≥ h(n)− h(m) = g(n−m,α) = cg(m− l, α)

= cg(m− l, β) + c(m− l)(s− r)T (α− β) ≥ cg(m− l, β)

= c(h(m)− h(l)) ≥ c(h(m)− x) ≥ c(y − ε− x),

which implies y−x ≤ ε(1 + c−1) ≤ ε(1 + e). Since this holds for any ε > 0, we conclude that
y ≤ x. This proves the theorem. �

Proof (Proof of Theorem 1) Let P a segmentation and let I and J be two consecutive seg-
ments such that diff (D[I], D[J ]) is a cover. We can now apply Theorem 9 to find alternative
segments I′ and J ′ such that if we define P ′ by replacing I and J from P with I′ and J ′

then either sc(P ′ | D) > sc(P ′ | D) or sc(P ′ | D) ≥ sc(P ′ | D) and I′ ends before I. We
repeat this until no consecutive segments constitute a cover. This repetition ends because
no segmentation will occur twice during these steps and there is a finite number of segmen-
tations. The reason why no segmentation occur twice is because either the score properly
increases or the score stays the same and we move a breakpoint to the left. �
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A.2 Proof of Theorem 8

Let U be the resulting tree from UpdateTree(T,C,D, i). To prove the theorem we need to
show that the paths of U from leafs to the root consists of borders, there are no nodes in U
outside the borders, and that children are ordered. We will prove these results in a series of
lemmata.

Lemma 2 Let T ′ be a tree after we have added a node i in UpdateTree. Let n 6= i be
a node in T ′ and let m be its parent. Let c ∈ C be such that n ∈ borders(c, i− 1). If
m /∈ borders(c, i), then n will cease to be a child of m during some stage of UpdateTree.

Proof Let r be a root node of T ′. Consider a pre-order of nodes of T ′, that is, parents and
earlier siblings come first. We will prove the lemma using induction on the pre-order.

To prove the first step, let n be the first child of i. If i /∈ borders(c, i), then Theo-
rem 5 implies that av(n, i) ≥ av(i, i) which is exactly the test on Line 9. Hence, n will be
disconnected from i.

Let us now prove the induction step. Let p be the parent of m in T ′. Assume that
p 6= r. Note that p is the border next to m in borders(c, i− 1). Theorem 5 implies that
p /∈ borders(c, i), hence the induction assumption implies that m and p are disconnected
and m becomes a child of r at some point.

Assume now that n is not the first child of m and let q be the sibling left to n, and let
p be such that q ∈ borders(p, i− 1). Theorem 3 implies that av(q,m− 1) ≥ av(j,m− 1) for
any q ≤ j < m. Since n > q, we must have av(q,m− 1) ≥ av(n,m− 1) ≥ av(m, i), which
implies that m /∈ borders(p, i). Again, the induction assumption implies that q and m will
be disconnected. Consequently, n will be the first child of m at some point.

Note that while moving m or left siblings of n to be children of r we move the current
node a in UpdateTree to the left. Hence, there will be a point where a = m and n is the
first child of m. Theorem 5 implies that av(n, i) ≥ av(m, i) which is exactly the test on
Line 9. Hence, n will be disconnected from m. This proves the lemma. �

Lemma 3 For every c ∈ C, a path in U from c to a child of the root node r equals
borders(c, i).

Proof Fix c ∈ C and let (b1, . . . , bM ) = borders(c, i− 1) and define bM+1 = i. Theorem 5
implies that there is 1 ≤ N ≤M + 1 such that (b1, . . . , bN ) = borders(c, i).

After adding i to T , UpdateTree will not add new nodes into the path from c to r.
Lemma 2 now implies that the path from c to r will be (b1, . . . , bK), where K ≤ N . If
N = 1, then immediately K = 1. To conclude that K = N in general, assume that N > 1
and assume that at some point in UpdateTree we have a = bN and b = bN−1. Then,
according to Theorem 5, the test on Line 9 will fail and bN−1 remains as a child of bN . �

Lemma 4 Let n be a node in U , then there is c ∈ C such that n ∈ borders(c, i).

Proof Let m be a node that occurs in T but not in btree(D[1, i], C). The lemma will follow
if we can show that m is not in U . Let n be the last child of m. Lemma 2 implies that at
some point n will be disconnected from m and we will visit m when it is a leaf, since m /∈ C,
we will delete m. �

Lemma 5 Consider a post-order of nodes of T = btree(D[1, i− 1], C), that is, parents and
later siblings come first. Node values decrease with respect to this order.

Proof We will prove that the following holds: Let n be a node and let m be its left sibling.
Let q be the smallest child of n. Then m < q. Note that this automatically proves the lemma.

Note that q ∈ C. To prove that m < q, let c ∈ C such that m ∈ borders(c, i− 1). If c ≥ q,
then since n > m ≥ c, Theorem 7 implies that n ∈ borders(c, i− 1) which is a contradiction.
Consequently, c < q. If q ≤ m, then again Theorem 7 implies that m ∈ borders(q, i− 1)
which is a contradiction. This proves that m < q. �

Lemma 6 Child nodes of each node in U are ordered from smallest to largest.
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Proof UpdateTree modifies the tree by moving the first child of a node a to be the left
sibling of a. This does not change the post-order of the nodes. This implies that, since node
values decrease with respect to the post-order in T , they will also decrease in U . This proves
the lemma. �
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