
Discovering nested communities?

Nikolaj Tatti and Aristides Gionis

Helsinki Institute for Information Technology
Department of Information and Computer Science

Aalto University
{nikolaj.tatti,aristides.gionis}@aalto.fi

Abstract. Finding communities in graphs is one of the most well-studied
problems in data mining and social-network analysis. In many real ap-
plications, the underlying graph does not have a clear community struc-
ture. In those cases, selecting a single community turns out to be a fairly
ill-posed problem, as the optimization criterion has to make a difficult
choice between selecting a tight but small community or a more inclusive
but sparser community.
In order to avoid the problem of selecting only a single community we
propose discovering a sequence of nested communities. More formally,
given a graph and a starting set, our goal is to discover a sequence of
communities all containing the starting set, and each community forming
a denser subgraph than the next. Discovering an optimal sequence of
communities is a complex optimization problem, and hence we divide it
into two subproblems: 1) discover the optimal sequence for a fixed order
of graph vertices, a subproblem that we can solve efficiently, and 2) find
a good order. We employ a simple heuristic for discovering an order and
we provide empirical and theoretical evidence that our order is good.

Keywords: community discovery, monotonic segmentation, graph min-
ing, nested communities

1 Introduction

Discovering communities, tightly connected subgraphs, is one of the most well-
studied problems in the field of graph mining. Given some optimization crite-
rion, discovering a community is a computationally challending task, typically
NP-hard. Additionally, as pointed out by Leskovec et al. [17], in many real
applications the underlying graph does not have a clear community structure.
Such cases make the community-finding problem inherently ill-posed, as the
optimization criterion has to make a difficult, and eventually arbitrary, choice
between selecting a tight but small community or a more inclusive but more
sparse community. Moreover, the existence of a universal criterion for making
such a choice is unlikely as the balance between the size and the density of the
desired community will depend on the underlying application.

? This work was supported by Academy of Finland grant 118653 (algodan)

{nikolaj.tatti,aristides.gionis}@aalto.fi

In order to avoid the problem of selecting only a single community, we propose
a problem of discovering a sequence of nested communities. More formally, given
a graph G and a set of source vertices S, our goal is to discover a sequence of k
communities around S, such that each community is a subset of the next one. The
first community will consist only of S while the last community will contain the
whole graph. Inner communities should be tighter than the outer communities.
We express this requirement by computing the density of each community and
require that the next community should have a lower density than the current
community. In addition, we require that each community should be as uniform
as possible. We measure uniformity by computing the variance of weights of the
edges and requiring it to be small.

Discovering a sequence of communities by optimizing the uniformity crite-
rion is a challenging problem. We will show that several optimization problems
related to the optimal solution are NP-hard. Hence, we split the problem into
two subproblems. We can view a community sequence as a bucket order on the
vertices, each bucket consisting of vertices contained in the community and not
contained in the previous community. Our first subproblem is to discover a total
order on the vertices respecting the optimal bucket order. The second subprob-
lem is to discover the optimal sequence of communities, given an order on the
graph vertices. Fortunately, this subproblem can be formulated as a standard
sequence-segmentation problem, and thus, it can be solved in polynomial time.
In particular, we can solve this problem optimally in quadratic time or we can
find an approximate solution in nearly-linear time. Discovering the order is more
difficult as this is a complex combinatorial problem. We propose a simple order-
ing technique used for discovering dense subgraphs: pick iteratively a vertex
with the lowest degree, and remove it from the graph. We provide theoretical
evidence implying that this is a good order and we also show experimentally
that this order outperforms several baselines.

The rest of the paper is organized as follows. We introduce preliminary no-
tation in Section 2 and formalize our optimization problem in Section 3. In sec-
tion 4 we develop our discovery algorithm and point out theoretical properties
of our approach. Section 5 is devoted to related work and Section 6 is devoted
to experimental evaluation. We conclude our paper with a short conclusion in
Section 7.

2 Preliminaries

We consider a weighted undirected graph G = (V,E,w) over a set of vertices
V and edges E ⊆

(
V
2

)
. We use the notation

(
V
2

)
to denote the set of unordered

pairs of distinct vertices from V . The function w : E → R assigns a weight w(e)
to each edge e ∈ E. Also, given a subset of vertices V ′ ⊆ V we denote by E(V ′)
the set of edges in the induced subgraph of G defined by V ′.

The definitions and algorithms in this paper rely on a notion of edge density,
which is defined not only over subsets of vertices, but also over arbitrary pairs
of subsets of vertices. Even though it is conceptually simple, our edge-density

definition requires slightly complex notation for determining the set of poten-
tial edges to be used as a denominator in the density ratio. To simplify our
presentation we use the notation described below.

Given the graph G = (V,E,w), we consider its completed representation
G0 = (V,E0,w0), where E0 =

(
V
2

)
, and where w0 is an extension of w , so that

w0 (e) = w(e) if e ∈ E, and w0 (e) = 0 if e 6∈ E. In other words, G0 can be seen
as a complete graph, where all non-edges of G become zero-weight edges in G0.
We note again that we use the completed graph representation only to simplify
our notation; in our implementation there is no need to store the zero-weight
edges.

Now consider the completed representation G0 = (V,E0,w0) of a graph G,
and let F ⊆ E0 be a non-empty subset of edges. We define the weight and density
of F as

w(F) =
∑
e∈F

w(e) and d(F) =
w(F)

|F |
.

Consider now two subsets of vertices S, T ⊆ V . We define the set of cross
edges from S to T as c(S, T) = {(x, y) ∈ E | x ∈ S, y ∈ T}. It is important to
note that we do not impose any constraint on the sets S and T ; they may overlap
in an arbitrary way. For instance, if the sets S and T are disjoint the edges in
c(S, T) are the cut edges from S to T , while if S ⊆ T the edge set c(S, T)
contains, among others, all the edges within S.

Finally, we write w(S, T) as a shorthand of w(c(S, T)) and we write d(S, T)
as a shorthand of d(c(S, T)).

3 Nested communities

As we discussed in the introduction, our goal is to find the optimal sequence
of nested communities, with respect to a set of source vertices of the input
graph. We denote this set of source vertices by S. For conceptual simplicity,
one may think of S as a singleton set, that is, identifying the sequence of nested
communities for a single vertex. However, all our problem definitions, algorithms,
and proofs, hold for the general case of S being any subset of V .

Our objective is to find k nested communities, where the parameter k is
part of the problem input. Given a set of source vertices S, we represent a
sequence of nested communities with respect to S, by the sequence of vertex
sets S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V .

Intuitively, the inner sets of the nested-community sequence are expected to
be more strongly related to the source set S. This type of relatedness is expressed
by the notion of density. So, V1 is the densest community that contains S, V2 is
the second densest community, and in general, we require that the density of Vi
should decrease as i increases.

Considering the requirement of monotonically decreasing density in isolation
is not sufficient to determine in a well-defined manner a desirable sequence of
nested communities. Indeed, given a graph G, a set of source vertices S, and

integer k, there is a potentially exponential number of ways to partition the set
of vertices of the graph into a sequence of nested communities V0, . . . , Vk.

The main question we are facing is to decide where exactly to draw the
boundary between each pair of communities Vi and Vi+1. To answer this question,
we follow an approach inspired by segmentation problems. In particular, our
approach is as follows: consider the set of vertices Di+1 = Vi+1 \ Vi that need to
be added to the community Vi in order to form community Vi+1. Consider also
the set of edges Ei+1 = E(Vi+1)\E(Vi), defined as the additional edges brought
in by extending the community Vi to the community Vi+1. We can then define
the density of the set of edges Ei+1. To capture the intuition that the set Di+1

should form a coherent extension to Vi we require that the density of Ei+1 is as
uniform as possible.

The notion of uniformity for a set of edges, among many ways, can be ex-
pressed as a sum of square of difference of the weight of each edge from the
average weight of the set. We thus have the following definition.

Definition 1. Given a set of edges F ⊆ E, we define the density-uniformity
score as

q(F) =
∑
e∈F

(w(e)− d(F))
2
.

Our goal is then to find a sequence of nested communities so that the suc-
cessive segments of added edges are as uniform as possible with respect to their
density. Formulating this objective as an optimization problem not only gives
meaningful semantics to the nested community detection problem, but it also
makes the problem well-defined. Motivated by the discussion above, our main
problem definition is given below.

Problem 1. Given a weighted input graph G = (V,E,w), a set of source vertices
S ⊂ V , and an integer k, find the sequence of nested communities V = {S =
V0 ⊆ V1 ⊆ · · · ⊆ Vk = V } that minimizes the density-uniformity score

q(V) =

k∑
i=1

q(E(Vi) \ E(Vi−1)) ,

subject to the constraint d(Vi) < d(Vi−1) for i = 2, . . . , k.

4 An algorithm for discovering nested communities

In this section we present our algorithm for discovering nested communities. We
begin by demonstrating a necessary condition for the optimal solution based on
dense subgraphs. Discovering such subgraphs turns out to be computationally
intractable. We then split the original problem into two subproblems: discover-
ing community sequence for a fixed order of vertices, a problem which we can
solve efficiently, and discovering such an order. We provide a simple heuristic for
discovering an order, and provide theoretical evidence that this order is good.

S

Y

XD1

D2

(a) Original community

S
D1

D2

(b) Adding X

S
D1

D2

(c) Removing Y

Fig. 1. Communities related to Proposition 1. If d(X,X ∪D1) > d(Y,D1), then either
adding X to D1 or removing Y from D1 will yield a better score.

4.1 Nested communities and dense subgraphs

We start our discussion by demonstrating a connection of the problem of find-
ing the optimal sequence of nested communities, i.e., solving Problem 1, with
problems related to finding dense subgraphs of a given graph.

To establish this connection, consider a triple of communities Vi−1 ⊆ Vi ⊆
Vi+1 in an optimal solution to Problem 1. Consider the two corresponding seg-
ments Di+1 = Vi+1 \ Vi and Di = Vi \ Vi−1. Consider also any two subsets of
those segments, X ⊆ Di+1 and Y ⊆ Di, that is, X is a subset of the outer
segment, while Y is a subset of the inner segment, see Figure 1(a) for a visual-
ization. As we will show shortly, adding the outer subset X in the community Vi
leads to a situation where the density of the subset X with respect to the overall
community Vi is no better than the density of the subset Y with respect to the
community Vi. Otherwise, either adding X to Vi (see Figure 1(b)) or removing Y
from Vi (see Figure 1(c)) lead to a better solution. This follows from the fact that
we require that the densities of the nested communities in any feasible solution
of Problem 1 decrease monotonically.

Before proceeding to discussing the implications of this observation, we first
give a formal statement and its proof.

Proposition 1. Consider a graph G = (V,E,w), a set of source vertices S ⊆ V ,
and an integer k. Let V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V) be the optimal sequence
of nested communities, that is, a solution to Problem 1. Fix i such that 1 ≤ i ≤
k − 1 and let X ⊆ Vi+1 \ Vi and Y ⊆ Vi \ Vi−1. Then

d(X,X ∪ Vi) ≤ d(Y, Vi) .

For the proof of the proposition we require the following lemma, which states
that the mean square error of a set of numbers from a single point, increases
with the distance of that point from the mean of the numbers. The lemma can
be derived by simple algebraic manipulations, and its proof is omitted.

Lemma 1. Let w1, . . . , wN and x1, . . . , xN be two sets of real numbers. Let W =∑N
i=1 wi and µ = 1

W

∑N
i=1 wixi. For any real number d it is

N∑
i=1

wi(xi − d)2 =

N∑
i=1

wi(xi − µ)2 +W (d− µ)2.

We are now ready to prove the proposition.

Proof (Proposition 1). Let C1 = E(Vi+1) \E(Vi) and C2 = E(Vi) \E(Vi−1). Let
us break C1 into two parts, D11 = c(X,X ∪ Vi) and D12 = C1 \D11. Similarly,
let us break C2 into two parts, D21 = c(Y, Vi) and D22 = C2 \D21. Define the
centroids µij = d(Dij) and λi = d(Ci). Lemma 1 now implies that

s = q(C1) + q(C2) = const + |D11|(µ11 − λ1)2 + |D21|(µ21 − λ2)2,

s1 = q(C1 ∪D21) + q(D22) = const + |D11|(µ11 − λ1)2 + |D21|(µ21 − λ1)2,

s2 = q(D12) + q(C1 ∪D11) = const + |D11|(µ11 − λ2)2 + |D21|(µ21 − λ2)2,

where const is equal to

2∑
i=1

q(Di1) + q(Di2) + |Di2|(µi2 − λi)2 .

Since V is optimal we must have s ≤ s1 and s ≤ s2. Otherwise, we can obtain
a better segmentation by attaching X to Vi or deleting Y from Vi. This implies
that |µ21 − λ2| ≤ |µ21 − λ1| and |µ11 − λ1| ≤ |µ11 − λ2|. Since λ2 ≥ λ1, this
implies that µ21 ≥ (λ1 + λ2)/2 and µ11 ≤ (λ1 + λ2)/2, which implies µ11 ≤ µ21.
This completes the proof. ut

Proposition 1 implies that in an optimal solution the graph vertices can be
ordered in such a way so that subgraph density, as specified by the proposi-
tion, decreases along this order. This observation motivates the following greedy
algorithm for solving the problem of discovering nested communities:

Algorithm outline: Greedy–add–densest–subgraph

1. Start with S, the set of source vertices.
2. Given the current set S, find a subset of vertices T that maximize d(T, S ∪ T).
3. Set S ← S ∪ T , and repeat the previous step until the set S includes all the

vertices of the graph.
4. Consider the vertices in the order discovered by the previous process. Find

the optimal sequence of k nested communities that respects this order.

One potential problem with the above greedy approach is that the subroutine
that is called iteratively in step 2, is an NP-hard problem. This is formalized
below as problem DenseSuperset. The proof of Proposition 2 is given in
Section 4.3.

Problem 2 (DenseSuperset). Given a weighted graph G = (V,E,w) and a
subset of vertices S ⊆ V , find a subset of vertices T maximizing d(T, S ∪ T).

Proposition 2. The DenseSuperset problem is NP-hard.

Similarly, one can think of solving the problem by working on the opposite
direction, that is, start with the whole vertex set V and “peel off” the set V by
removing the sparsest subgraph, until left with the set of source vertices S. The
corresponding algorithm will be the following.

Algorithm outline: Greedy–remove–sparsest–subgraph

1. Start with V , the vertex set of G.
2. Given a current set V , find a subset of vertices T that does not include the

source vertex set S and minimizes the density d(T, V).
3. Set V ← V \ T , and repeat the previous step until left only with the set of

source vertices S.
4. Consider the vertices in the order removed by the previous process. Find the

optimal sequence of k nested communities that respects this order.

Not surprisingly, the problem of finding the sparsest subgraph, which corre-
sponds to step 2 of the above process is NP-hard. The proof is given again in
Section 4.3.

Problem 3 (SparseNbhd). Given a weighted graph G = (V,E,w) find a set of
vertices T minimizing d(T, V).

Proposition 3. The SparseNbhd problem is NP-complete.

4.2 Algorithm for discovering nested communities

Armed with intuition from the previous section, we now proceed to discuss the
proposed algorithm. The underlying principle of both of the greedy algorithms
described above is to consider the vertices of the graph in a specific order and
then find a sequence of nested communities that respects this order. In one case,
the order of graph vertices is obtained by starting from S and iteratively adding
the densest subgraph, while in the other case, the order is obtained by starting
from the full vertex set V and iteratively removing the sparsest subgraph.

Our algorithm is an instantiation of this general principle. We specify in
detail (i) how to obtain an order of the graph vertices, and (ii) how to find a
sequence of nested communities that respects a given order.

We start our discussion from the second task, i.e., finding the sequence of
nested communities given an order. As it turns out, this problem is an instance
of sequence segmentation problems. We define this problem below, which is a
refinement of Problem 1.

Problem 4 (Sequence of nested communities from a given order). Given a graph
G = (V,E,w) with ordered vertices, a set of source vertices S = {v1, . . . , vs} ⊂ V ,

and an integer k, find a monotonically increasing sequence of k + 1 integers
b = (b0 = s, . . . , bk = |V |) such that

V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V) , where Vk = {v1, . . . , vbi} ,

minimizes the density-uniformity score q(V) and satisfies the monotonicity con-
straint d(Vi) < d(Vi−1) for i = 1, . . . , k.

It is quite easy to see that Problem 4 can be cast as a segmentation problem.
Typical segmentation problems can be solved optimally using dynamic program-
ming, as shown by Bellman [3]. The most interesting aspect of Problem 4, seen
as segmentation problem, is the monotonicity constraint d(Vi) < d(Vi−1), for
i = 1, . . . , k. That is, not only we ask to segment the ordered sequence of vertices
so that we minimize the density variance on the segments, but we also require
that the density scores of each segment decrease monotonically. The situation
can be abstracted to the monotonic segmentation problem stated below.

Problem 5 (Monotonic segmentation). Let a1, . . . , an and x1, . . . , xn be two se-
quences of real numbers. Given an integer k, find k + 1 indices b0 = 1, . . . , bk =
n+ 1 minimizing

n∑
j=1

bj−1∑
i=bj−1

ai(xi − µj)2,

where µj is the weighted centroid of j-th segment such that µj < µj−1.

In order to express Problem 4 with Problem 5, consider a group of edges,
Pi = c(vi, {v1, . . . , vi−1}) for each vertex vi ∈ V \ S. If we set ai =

∣∣Pi+|S|∣∣ and

xi = d
(
Pi+|S|

)
, we can apply Lemma 1 and show that the score of community

sequence is equal to the variance minimized by Problem 5, plus a constant. In
fact, this constant is the sum of the variances within each Pi.

Similarly to the unconstrained segmentation problem, the monotonic seg-
mentation problem can be solved optimally. The idea is to use as preprocessing
step the classic “pool of adjacent violators” algorithm (PAV) [2], which merges
points until there are no monotonicity violations, and then apply the classic
dynamic-programming algorithm on the resulting sequence of merged points.
This algorithm runs in O(|V |) time. By definition the merged points do not con-
tain any monotonicity violations, and thus, the resulting segmentation respects
the monotonicity constraint, as well. As shown by Haiminen et al. [14], this
two-phase algorithm gives the optimal k segmentation under the monotonicity
constraints. As a result of the optimality of the monotonic segmentation prob-
lem, Problem 4 can be solved optimally.

We next proceed to discuss the first component of the algorithm, namely, how
to obtain an order of the graph vertices. Recall that, according to the principles
discussed in the previous section, we can either start from S and iteratively
add dense subgraphs, or start from V and remove sparse subgraphs. We follow
the latter approach. In order to overcome the NP-hard problem of finding the

sparsest subgraph and in order to obtain a total order, we use the heuristic of
iteratively removing the sparsest subgraph of size one, namely, a single vertex.
The sparsest one-vertex subgraph is simply the vertex with the smallest weighted
degree. Thus, overall, we obtain the simple algorithm SortVertices, whose
pseudocode is given as Algorithm 1.

As an interesting side remark, we note that the algorithm SortVertices is
encountered in the context of finding subgraphs with the highest average degree.
In particular, it is known that the densest subgraph obtained by the algorithm
during the process of iteratively removing the smallest-degree vertex is a factor-2
approximation to the optimally densest subgraph in the graph [4].

The natural question to ask is how good is the order produced by algorithm
SortVertices? As we will demonstrate shortly, it turns out that the order is
quite good. First, we note that the optimal solution obtained for Problem 4, sat-
isfies an analogous structural property, with respect to subgraph densities, as the
optimal solution for Problem 1, We omit the proof of the following proposition
as it is similar to the one of Proposition 1.

Proposition 4. Consider a graph G = (V,E,w) with ordered vertices, a set of
source vertices S ⊂ V , and an integer k. Let V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V)
be the optimal sequence of nested communities with respect to the order, that
is, a solution to Problem 1. Fix i such that 1 ≤ i ≤ k − 1 and let b = |Vi|.
Let X ⊆ Vi+1 \ Vi and Y ⊆ Vi \ Vi−1 such that X =

{
vb+1, . . . , vb+|X|

}
and

Y =
{
vb−|Y |+1, . . . , vb

}
. Then d(X,X ∪ Vi) ≤ d(Y, Vi).

The only difference between Proposition 1 and Proposition 4 is that in Propo-
sition 4 we require additionally that Vi+1 starts with X and Vi ends with Y with
respect to the order. We want this condition to be redundant, otherwise the given
order is suboptimal. For example, consider the adjacency matrix of G given in
Figure 2(a). The given segmentation is optimal with respect to the given order.
However if we rearrange the vertices in D1 and D2, given in Figure 2(b), then
the same segmentation is no longer optimal as X and Y violate Proposition 4.
The additional condition in Proposition 4 becomes redundant if Vi ends with
the sparsest subset while Vi+1 starts with densest subset. We will now show
that the algorithm SortVertices produces an order that satisfies this prop-
erty approximately. The exact formulation of our claim is given as Propositions 5
and 6.

Proposition 5. Consider a weighted graph G = (V,E,w), whose vertices are
ordered by algorithm SortVertices. Let 1 ≤ b < c ≤ |V |. Let U = {vb, . . . , vc}
and W = {v1, . . . , vc}. Let f = d(vc,W). Then 2f ≤ d(X,W) for any X ⊆ U .

Proof. Note that s =
∑
x∈X w(x,W) = 2w(X) + w(X,W \X) ≤ 2w(X,W).

Write mx = |c(x,W)|. Since vc has the smallest d(vc,W), we have

s =
∑
x∈X

mxd(x,W) ≥ d(vc,W)
∑
x∈X

mx ≥ d(vc,W) |c(X,W)| .

Combining the inequalities and dividing by |c(X,W)| proves the result. ut

Algorithm 1: SortVertices. Sort vertices of a weighted graph by itera-
tively removing a vertex with the least weight of adjacent edges.

input : weighted graph G = (V,E,w), a set S
output : order on V

1 W ← V \ S;
2 o← empty sequence;
3 while |W | > 0 do
4 x← arg minx∈W d(x,W ∪ S);
5 delete x from W and add x to the beginning of o;

6 add S in an arbitrary order to the beginning of o;
7 return o;

Proposition 6. Consider a weighted graph G = (V,E,w), whose vertices are
ordered by algorithm SortVertices. Let 1 ≤ b < c ≤ |V |. Let U = {vb, . . . , vc}
and W = {v1, . . . , vb−1}. Assume that there is α ≥ 0 such that for all v ∈ U it
is αw(v,W) ≥ w(v, U). Let f = d(vb,W). Then (1 + α)2f ≥ d(X,X ∪W) for
any X ⊆ U .

Proof. Let A = c(X,W) and B = c(X,X). The density of X is bounded by

d(X,X ∪W) =
w(A) + w(B)

|A|+ |B|
≤ w(A) + αw(A)

|A|+ |B|
≤ (1 + α)w(A)

|A|
= (1+α)d(A) .

Select x ∈ X with the highest d(x,W). Then d(A) ≤ d(x,W). Let us prove that
d(x,W) ≤ (1 + α)f . If vb = x, then we are done. Assume that vb 6= x. Since
G is fully-connected, SortVertices always picks the vertex with the lowest
weight. Let Z = {v1, . . . , x}. Then w(x,W) ≤ w(x, Z) ≤ w(vb, Z) = w(vb,W) +
w(vb, U) ≤ (1 + α)w(vb,W). Since, G is fully-connected w(y,W) = |W |d(y,W)
for any y ∈ U . Hence, dividing the inequality gives us d(x,W) ≤ (1+α)f , which
proves the proposition. ut

D1

D2

S

(a) Original order

D1

D2

S

Y

X

(b) Improved order

Fig. 2. Consequences of Proposition 4. If we reorder the vertices in D1 and D2, then
an optimal solution with respect to the order may become suboptimal with respect to
the improved order.

4.3 Hardness of finding dense and sparse subgraphs

In this section we prove the NP-hardness results, stated in Section 4.1. We start
with an auxiliary lemma.

Lemma 2. Let x, y, a, b, c be real numbers. Let r = b+ (b+ x)c/(y − x). If

a > r and y > x or if a < r and x < y, then
x+ a

x+ b
>
y + a+ c

y + b
.

Similarly, if

a < r and y > x or if a > r and x < y, then
x+ a

x+ b
<
y + a+ c

y + b
.

Proof. We will only prove the first case. The other 3 cases are similar. We have
(x − y)a > (x − y)b + (b + x)c which is equivalent to xy + ay + xb + ab >
xy + ax+ cx+ by + bc+ ab. The left-hand side is equal to (x+ a)(y + b) while
the right hand side is equal to (y + a+ c)(x+ b). The lemma follows. ut

We now give the proofs of Propositions 2 and 3.

Proposition 2. The DenseSuperset problem is NP-hard.

Proof. To prove the hardness, we will reduce Clique to DenseSuperset. Let
G = (V,E) be the given graph. Let us create a new graph G′ by adding one
extra vertex, say s, to G and connecting every vertex in G to s. We set w(e) to
be 1 for any edge in E and α, which we will define later, if e is adjacent to s.
Finally, we connect the non-connected vertices with edges of weight 0. We will
use G′, S = {s}, and w as inputs to DenseSuperset.

Our next step is to define α such that the maximum clique will also have the
largest density. In order to do that, let X be a clique of size N in G. Then the
weight of X is equal to

d(X,X ∪ S) =

(
N
2

)
+ αN(

N
2

)
+N

=
N − 1 + 2α

N − 1 + 2
.

If we have a non-clique subgraph of size N , then obviously its weight is
genuinely smaller than d(X,X ∪ S).

Assume a set of vertices Z with K < N vertices. The weight of Z is bounded
by

d(Z,Z ∪ S) ≤
(
K
2

)
+ αK(

K
2

)
+K

=
K − 1 + 2α

K − 1 + 2
.

We want d(X,X ∪ S) > d(Z,Z ∪ S), which is guaranteed if

N − 1 + 2α

N + 1
>
K − 1 + 2α

K + 1
. (1)

Since N − 1 > K − 1, Lemma 2 implies that if

2α < 2 +
2 +N − 1

(K − 1)− (N − 1)
0 = 2,

then the inequality in Eq 1 is guaranteed.
Let Y be a non-clique of size M > N in G. Then the weight of Y bounded

by

d(Y, Y ∪ S) ≤
(
M
2

)
+ αM − 1(
M
2

)
+M

=
M − 1 + 2α− 2/M

M − 1 + 2
.

We need to have d(X,X ∪ S) > d(Y, Y ∪ S), which is guaranteed if

N − 1 + 2α

N − 1 + 2
>
M − 1 + 2α− 2/M

M − 1 + 2
. (2)

Since N − 1 < M − 1, Lemma 2 guarantees that if

2α > 2 +
−2

M

2 +N − 1

(M − 1)− (N − 1)
= 2− 2(N + 1)

M(M −N)
,

then the inequality in Eq. 2 is guaranteed. If we choose α = 1− 0.5/|V |2, both
inequalities in Eqs. 1–2 are now guaranteed.

Let k be the minimum size of the clique given as a parameter in Clique. Set
β = k−1+2α

k−1+2 . If G contains a clique of size k, then there is a subgraph in G′ with
a density of β. Assume now that G′ contains a subgraph, say H, with a density
of at least β. H must contain at least k vertices, otherwise bound in Eq. 1 is
violated. H must be a clique, otherwise bound in Eq. 2 is violated. Consequently,
G has a clique of size k if and only if G′ has a subgraph of density at least β.
The reduction is polynomial. This concludes the proof. ut

Proposition 3. The SparseNbhd problem is NP-hard.

Proof. To prove the hardness, we will reduce Clique to SparseNbhd. Let G =
(V,E) be the given graph. We will define G′ = (V ′, E′) as follows. First we
attach two vertices s and t to G. Select one vertex, say s, from the clique and
connect each vertex in G to s. We connect the non-connected vertices with edges
of weight 0. Let P = |V ′|− 1. We will weight the edges in G with 1, let us define
α = P − 0.5/P 2. Set the weight of an edge w((s, n)) = α − deg (n), for each
n ∈ V . Due to this scheme we have

∑
(n,y)∈E′ w((n, y)) = α for any n ∈ V .

Finally, we set w((s, t)) = |V ′|α. This weight is so large that no solution for
SparseNbhd will contain s or t.

Let X be a clique of size N in G. Then the weight of X is equal to

d(X,V ′) =
αN −

(
N
2

)
PN −

(
N
2

) =
2α−N + 1

2P −N + 1
.

If we have a non-clique subgraph of size N , then obviously its weight is
genuinely larger than d(X,V ′).

Assume a set Z ⊆ V with K < N vertices. The weight of Z is bounded by

d(Z, V ′) ≥
αK −

(
K
2

)
PK −

(
K
2

) =
2α−K + 1

2P −K + 1
.

We want d(X,V ′) < d(Z, V ′), which is guaranteed if

2α−N + 1

2P −N + 1
<

2α−K + 1

2P −K + 1
. (3)

If we have a non-clique subgraph of size N , then obviously its weight is genuinely
smaller than d(X,X ∪ S).

Since −K + 1 > −N + 1, Lemma 2 implies that if

2α < 2P +
2P −N + 1

(N − 1)− (K − 1)
0 = 2P,

then the inequality in Eq 3 is guaranteed. This is guaranteed by our choice of α.

Let Y ⊆ V be a non-clique of size M > N in G. Then the weight of Y
bounded by

d(Y, V ′) ≥
αM −

(
M
2

)
+ 1

PM −
(
M
2

) =
2α+ 2/M −M + 1

2P −M + 1
.

We need to have d(X,V ′) < d(Y, V ′), which is guaranteed if

2α−N + 1

2P −N + 1
<

2α+ 2/M −M + 1

2P −M + 1
. (4)

Since −M + 1 < −N + 1, Lemma 2 guarantees that if

2α > 2P +
2

M

2P −N + 1

(N − 1)− (M − 1)
= 2P − 2(2P −N + 1)

M(M −N)

then Eq. 4 is guaranteed. This is guaranteed by our choice of α.

Let k be the minimum size of the clique given as a parameter in Clique. Set
β = 2α−k+1

2P−k+1 . If G contains a clique of size k, then there is a subgraph in G′ with
a density of β. Assume now that G′ contains a subgraph, say H, with a density
of at most β. Note that β is largest, when k = 1, that is, β ≤ α/P . If s or t is
contained in H, then the density is at least 2w((s, t)) /P (P +1) > α/P , which is
a contradiction. Hence H is a subgraph of G. H must contain at least k vertices,
otherwise bound in Eq. 3 is violated. H must be a clique, otherwise bound in
Eq. 4 is violated. Consequently, G has a clique of size k if and only if G′ has a
subgraph of density at least β. The reduction is polynomial. This concludes the
proof. ut

5 Related work

Finding communities in graphs and social networks is one of the most well-
studied topics in graph mining. The amount of literature on the subject is very
extensive. This section cannot aspire to cover all the different approaches and
aspects of the problem, we only provide a brief overview of the area.

Community detection. A large part of the related work deals with the
problem of partitioning a graph in disjoint clusters or communities. A number of
different methodologies have been applied, such as hierarchical approaches [11],
methods based on modularity maximization [1, 6, 11, 26], graph-theoretic ap-
proaches [8,9], random-walk methods [21,24,28], label-propagation approaches [24],
and spectral graph partition [5, 15, 18, 25]. A thorough review on community-
detection methods can be found on the survey by Fortunato [10]. We note that
this line of work is different than the present paper, since we do not aim at
partitioning a graph in disjoint communities.

Overlapping communities. Researchers in community detection have re-
alized that, in many real situations and real applications, it is meaningful to con-
sider that graph vertices do not belong only to one community. Thus, one asks
to partition a graph into overlapping communities. Typical methods here rely on
clique percolation [19], extensions to the modularity-based approaches [12, 20],
analysis of ego-networks [7], or fuzzy clustering [27]. Again the problem we ad-
dress in this paper is quite different. First, we find communities centered around
a given set of source vertices, and not for the whole graph. Second, the commu-
nities output by our algorithm do not have arbitrary overlaps, but they have a
specific nested structure.

Centerpiece subgraphs and community search. Perhaps closer to our
approach is work related to the centerpiece subgraphs and the community-search
problem [16,22,23]. In this class of problems, a set of source vertices S is given and
the goal is to find a subgraph so that S belongs in the subgraph and the subgraph
forms a tight community. The quality of the subgraph is measured with various
objective functions, such as degree [22], conductance [16], or random-walk-based
measures [23]. The difference of these methods with the one presented here is
that these methods return only one community, while in this paper we deal with
the problem of finding a sequence of nested communities.

In summary, despite the numerous research on the topic of community detec-
tion in graphs and social networks, to the best of our knowledge, this is the first
paper to address the topic of nested communities with respect to a set of source
vertices. Furthermore, our approach offers novel technical ideas, such as provid-
ing a solid theoretical analysis that allows to decompose the problem of finding
nested communities into two sub-problems: (i) ordering the set of vertices, and
(ii) segmenting the graph vertices according to that given order.

Table 1. Basic statistics of graphs (first two columns) and performance over hops
baseline. The third column represents a typical running time while the fourth column
represents a typical number of entries during the segmentation. The last three columns
represent the normalized score compared to the baseline score q(H).

performance q(V) /q(H)

Name |V (G)| |E(G)| Time N wn ws wm

Adjnoun 112 425 2ms 84 0.90/0.95 0.88/0.95 0.77/0.94
Dolphins 62 159 1ms 41 0.67/0.80 0.61/0.78 0.57/0.80
Karate 34 78 1ms 21 0.78/0.91 0.76/0.91 0.60/0.93
Lesmis 77 254 2ms 37 0.77/0.93 0.84/0.94 0.62/0.94
Polblogs 1 222 16 714 84ms 872 0.87/0.96 0.95/0.99 0.57/0.96
DBLP 703 193 2 341 362 23s 1 797 0.87/0.99 0.98/1.00 0.45/0.99

6 Experimental evaluation

We will now provide experimental evidence that our method efficiently discovers
meaningful segmentations and that our ordering algorithm outperforms several
natural baselines.

Datasets and experimental setup. In our experiments we used six datasets,
five obtained from Mark Newman’s webpage,1 and a bibliographic dataset ob-
tained from DBLP. The datasets are as follows: Adjnoun: adjacency graph of
common adjectives and nouns in the novel David Copperfield, by Charles Dick-
ens. Dolphins: an undirected social graph of frequent associations between 62
dolphins in a community living off Doubtful Sound, New Zealand. Karate: social
graph of friendships between 34 members of a karate club at a US university
in the 1970s. Lesmis: coappearance graph of characters in the novel Les Miser-
ables. Polblogs: a directed graph of hyperlinks between weblogs on US politics,
recorded in 2005. DBLP: coauthorship graph between researchers in computer
science. The statistics of these datasets are given in Table 1.

For each dataset and a given source set S, we considered three different
weighting schemes: First we run personalized PageRank using the source node
with a restart of 0.1. Let p(v) be the PageRank weight of each vertex. Given an
edge e = (v, w), we set three different weighting schemes,

wn(e) =
p(v)

deg(v)
+

p(w)

deg(w)
, ws(e) = p(v) + p(w), wm(e) = min(p(v), p(w)).

These weights are selected so that the vertices that are hard to reach with a
random walk will have edges with small weights, and hence will be placed in
outer communities. For DBLP, we weighted the edges during PageRank compu-
tation with the number of joint papers, each paper normalized by the number
of authors. We use the vertex with the highest degree as a starting set.

1 http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/

2 4 6 8 10

0.86

0.88

0.9

0.92

number of communities

q
(V

)
/
q
(B

)

weight wn

2 4 6 8 10

0.94

0.95

0.96

0.97

number of communities

weight ws

2 4 6 8 10

0.55

0.6

0.65

0.7

number of communities

weight wm

SortVertices Degree PageRank

Fig. 3. Quality scores of community sequences based on different orders as a function
of number of communities for Polblogs. The scores are normalized by the score of a
community sequence B with a single community.

Time complexity. Our first step is to study the running time of our algo-
rithm. We ran our experiments on a laptop equipped with a 1.8 GHz dual-core
Intel Core i7 with 4 MB shared L3 cache, and typical running times for each
dataset are given in 3rd column of Table 1.2 Our algorithm is fast: for the largest
dataset with 2 million edges, the computation took only 20 seconds. The algo-
rithm consists of 4 steps, computing PageRank, ordering the vertices, grouping
the vertices into blocks such that monotonicity condition is guaranteed, and seg-
menting the groups. The only computationally strenuous step is segmentation
which requires quadratic time in the number of blocks. The number of vertices in
DBLP is over 700 000, however, grouping according to the PAV algorithm leaves
only 2 000 blocks, which can be easily segmented. It is possible to select weights
in such a way that there will no reduction when grouping vertices, so that finding
the optimal segmentation becomes infeasible. However, in such a case, we can
always resort to a near-linear approximation optimization algorithm [13].

Comparison to baseline. A key part in our approach is discovering a
good order. Our next step is to compare the order induced by SortVertices
against several natural baselines. For the first baseline we group the vertices
based on the length of a minimal path from the source. We then compared
these communities, say H, to the (same number of) communities obtained with
our method. The scores, given in Table 1, show that our approach beats this
baseline in every case, which is expected since this näıve baseline does not take
into account density. For our next two baselines we order vertices based on
vertex degree and PageRank. We then compute community sequences with 2–
10 communities from these orders. Typical scores are given in Figure 3. Out of
6 × 3 × 9 = 162 comparisons, SortVertices wins both orders 158 times, ties
once (Karate, wm , 3 communities) and loses 3 times to the degree order (DBLP,
wn , 3–5 communities).

2 For the code, see http://users.ics.aalto.fi/~ntatti/

http://users.ics.aalto.fi/~ntatti/

1

1112

13

14

18

2

20

22

332

4

5 6

78

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17

(a) Karate, source vertex 1

1

1112

13

14

18

2

20

22

332

4

5 6

78

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17

(b) Karate, source vertices 33, 34

source
1. segment
2. segment
3. segment
ws

wn

Fig. 4. 4 community sequences with 3 communities of Karate. Segmentations in Fig-
ure 4(a) use 1 as a source and community sequences in Figure 4(b) use 33, 34 as sources.
Communities are decoded as colors, the top-half represents ws , the bottom-half repre-
sents wn .

Table 2. Top-3 communities from a sequence of 5 communities for Christos Papadim-
itriou from DBLP set and using ws .

1. segment D. Johnson E. Dahlhaus V. Vianu G. Gottlob A. Itai
M. Yannakakis M. Garey P. Crescenzi P. Kanellakis M. Sideri A. Schäffer
F. Afrati R. Karp P. Seymour S. Abiteboul E. Koutsoupias A. Aho
2. segment R. Fagin O. Vornberger A. Piccolboni C. Daskalakis P. Serafini
J. Ullman 3. segment M. Blum D. Goldman X. Deng P. Raghavan
Y. Sagiv G. Papageorgiou K. Ross E. Arkin P. Goldberg P. Bernstein
S. Cosmadakis V. Vazirani P. Kolaitis I. Diakonikolas T. Hadzilacos

Examples of Communities. Our final step is to provide examples of discov-
ered communities. In Figure 4 we provide 4 different community sequences with
3 communities using weights ws and wn and sources S = {1} and S = {33, 34}.
The inner-most community for 1 contains a near 5-clique. The inner-most com-
munity for 33, 34 contains two 4-cliques. The normalized weight wn penalizes
hubs. This can be seen in Figure 4(a), where hubs 33, 34 move from the outer
community to the middle community. Similarly, hub 1 changes communities in
Figure 4(b). Finally, we give an example of communities discovered in DBLP. Ta-
ble 6 contains communities discovered around Christos Papadimitriou. Authors
in inner communities share many joint papers with Papadimitriou.

7 Concluding remarks

We considered a problem of discovering nested communities, a sequence of sub-
graphs such that each community is a more connected subgraph of the next
community. We approach the problem by dividing it into two subproblems: dis-
covering the community sequence for a fixed order of vertices, a problem which
we can solve efficiently, and discovering an order. We provided a simple heuristic

for discovering an order, and provided theoretical and empirical evidence that
this order is good.

Discovering nested communities seems to have a lot of potential as it is pos-
sible to modify or extend the problem in many ways. We can generalize the
problem by not only considering sequences but, for example, trees of communi-
ties, where a parent node needs to be a denser subgraph than the child node.
Another possible extension is to consider multiple source sets instead of just one.

References

1. G. Agarwal and D. Kempe. Modularity-maximizing network communities via
mathematical programming. European Physics Journal B, 66(3), 2008.

2. M. Ayer, H. Brunk, G. Ewing, and W. Reid. An empirical distribution function
for sampling with incomplete information. The annals of mathematical statistics,
26(4), 1955.

3. R. Bellman. On the approximation of curves by line segments using dynamic
programming. Communications of the ACM, 4(6), 1961.

4. M. Charikar. Greedy approximation algorithms for finding dense components in a
graph. In APPROX, 2000.

5. F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
6. A. Clauset, M. E. J. Newman, , and C. Moore. Finding community structure in

very large networks. Physical Review E, 2004.
7. M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. DEMON: a local-first

discovery method for overlapping communities. In KDD, 2012.
8. G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web commu-

nities. In KDD, 2000.
9. G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-organization and

identification of web communities. Computer, 35(3), 2002.
10. S. Fortunato. Community detection in graphs. Physics Reports, 486, 2010.
11. M. Girvan and M. E. J. Newman. Community structure in social and biological

networks. PNAS, 99, 2002.
12. S. Gregory. An algorithm to find overlapping community structure in networks.

In PKDD, 2007.
13. S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for

histogram construction problems. ACM TODS, 31, 2006.
14. N. Haiminen and A. Gionis. Unimodal segmentation of sequences. In ICDM, 2004.
15. G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph par-

titioning. In CDROM, 1998.
16. Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting proximity

graphs in networks. TKDD, 1(3), 2007.
17. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties

of community structure in large social and information networks. In WWW, 2008.
18. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In NIPS, 2001.
19. G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-

nity structure of complex networks in nature and society. Nature, 435, 2005.
20. J. Pinney and D. Westhead. Betweenness-based decomposition methods for social

and biological networks. In Interdisciplinary Statistics and Bioinformatics, 2006.

21. P. Pons and M. Latapy. Computing communities in large networks using random
walks. Journal of Graph Algorithms Applications, 10(2), 2006.

22. M. Sozio and A. Gionis. The community-search problem and how to plan a suc-
cessful cocktail party. In KDD, 2010.

23. H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast
solutions. In KDD, 2006.

24. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

25. U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4),
2007.

26. S. White and P. Smyth. A spectral clustering approach to finding communities in
graph. In SDM, 2005.

27. S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A, 2007.

28. H. Zhou and R. Lipowsky. Network brownian motion: A new method to mea-
sure vertex-vertex proximity and to identify communities and subcommunities. In
ICCS, 2004.

	Discovering nested communities

