
Mining Closed Strict Episodes

Nikolaj Tatti and Boris Cule
University of Antwerp

Antwerp, Belgium
{nikolaj.tatti,boris.cule}@ua.ac.be

Abstract—Discovering patterns in a sequence is an important
aspect of data mining. One popular choice of such patterns
are episodes, patterns in sequential data describing events that
often occur in the vicinity of each other. Episodes also enforce
in which order events are allowed to occur.

In this work we introduce a technique for discovering
closed episodes. Adopting existing approaches for discovering
traditional patterns, such as closed itemsets, to episodes is not
straightforward. First of all, we cannot define a unique closure
based on frequency because an episode may have several closed
superepisodes. Moreover, to define a closedness concept for
episodes we need a subset relationship between episodes, which
is not trivial to define.

We approach these problems by introducing strict episodes.
We argue that this class is general enough, and at the same
time we are able to define a natural subset relationship within
it and use it efficiently. In order to mine closed episodes we
define an auxiliary closure operator. We show that this closure
satisfies the needed Galois connection so that we can use the
existing framework for mining closed patterns. Discovering the
true closed episodes can be done as a post-processing step. We
combine these observations into an efficient mining algorithm
and demonstrate empirically its performance in practice.

Keywords-Frequent Episode Mining, Closed Episodes, Level-
wise Algorithm

I. INTRODUCTION

Discovering frequent patterns in an event sequence is an
important field in data mining. A pattern in a sequence is
usually considered to be a set of events that reoccurs in
the sequence within a window of a specified length. Gaps
are allowed between the events and the order in which the
events occur is often also considered important. Frequency,
the number of sliding windows in which the episode occurs,
is monotonically decreasing so we can use the well-known
WINEPI [1] method, essentially a level-wise approach, to
mine all frequent episodes.

The order restrictions of an episode are described by a
directed acyclic graph (DAG): the set of events in a sequence
covers the episode if and only if each event occurs only after
all its parent events (with respect to the DAG) have occurred
(see the formal definition in Section II). Usually, only two
extreme cases are considered. A parallel episode poses no
restrictions on the order of events, and a window covers the
episode if the events occur in the window, in any order. In
such a case, the DAG associated with the episode contains
no edges. The other extreme case is a serial episode. Such

an episode requires that the events occur in one, and only
one, specific order in the sequence. Clearly, serial episodes
are more restrictive than parallel episodes. If a serial episode
is frequent, then its parallel version is also frequent.

General episodes have, in practice, been over-shadowed
by parallel and serial episodes, despite being defined at
the same time [1]. The main reason for this is the pattern
explosion demonstrated in the following example.

Example 1.1: As an example of pattern explosion we will
use text data, namely inaugural speeches by presidents of the
United States (see Section VI for more details). By setting
the window size to 15 and the frequency threshold to 60 we
discovered a serial episode with 6 symbols,

(preserv→ protect→ defend→ constitut→ unit→ state).

In total, we found another 4823 subepisodes of size 6 of
this episode. However, all these episodes had only 3 distinct
frequencies, indicating that the frequencies of most of them
could be derived from the frequencies of only 3 episodes,
so 4821 episodes could safely be left out of the output.

Motivated by this example, we approach the problem of
pattern explosion by using a popular technique of closed
patterns. A pattern is closed if there exists no more specific
pattern with the same frequency. Mining closed patterns has
been shown to reduce the output. Moreover, if we can estab-
lish a specific property called the Galois connection, we can
discover closed patterns efficiently. However, adopting the
concept of closedness to episodes is not without problems.

Subset relationship: Firstly, in order to define closed
patterns we need a subset relation between patterns to
describe whether a pattern G is a subpattern of pattern H .
Essentially the same episode can be described by multiple
DAGs and if we would base our definition of closedness
simply on a subset relationship of DAGs we will run into
problems as demonstrated in the following example.

Example 1.2: Consider episodes G1, G2, and G3 given in
Figure 1. Episode G1 states that for a pattern to occur a must
precede b and c. G2 and G3, meanwhile, state that a must be
followed by b and then by c. Note that G2 and G3 represent
essentially the same pattern that is more restricted than the
pattern represented by G1. However, G1 is a subgraph of
G3 but not a subgraph of G2. This reveals a problem if we
base our definition of a subset relationship of episodes solely
on the edge subset relationship. We solve this by generating

only transitively closed graphs, thus ignoring graphs of form
G2. We will not lose any generality since we are still going
to discover episodes of form G3.

a
c
b

(a) Episode G1

a cb

(b) Episode G2

a cb

(c) Episode G3

a c
b

d

(d) Episode G4

Figure 1. Toy episodes used in Examples 1.2 and 1.3.

Frequency closure: Secondly, frequency does not sat-
isfy the Galois connection. In fact, given an episode G there
can be several more specific closed episodes that have the
same frequency. So the closure operator cannot be defined as
a mapping from an episode to its frequency-closed version.

Example 1.3: Consider sequence s = abcbdacbcd and
episode G4 given in Figure 1(d). Assume that we use a
sliding window of size 5. There are two windows that
cover episode G4, namely s1 · · · s5 and s6 · · · s10. Hence, the
frequency of G4 is 2. There are two serial episodes that are
more specific than G4 and have the same frequency, namely,
H1 = (a → b → c → d) and H2 = (a → c → b → d).
Moreover, there is no superepisode of H1 and H2 that would
has the frequency 2. In other words, we cannot define a
unique closure for G4.

The contributions of our paper address these issues:
1) We introduce strict episodes, a new subclass of general

episodes. We will argue that this class is large, contains
all serial and parallel episodes, and most of the general
episodes, yet using only strict episodes eases the
computational burden.

2) We introduce a natural subset relation between
episodes based on the subset relation of sequences
covering the episode. We will prove that for strict
episodes this relation corresponds to the subset relation
between transitively closed graphs. For strict episodes
such a graph uniquely defines the episode.

3) We introduce a milder version of the closure concept
called the instance-closure. We will show that this
closure satisfies the Galois connection and that a
frequency-closed episode is always instance-closed.

4) Finally, we present an algorithm that generates
strict instance-closed episodes with transitively closed
graphs. Once these episodes are discovered we can
further prune the output by removing the episodes that
are not frequency-closed.

II. PRELIMINARIES AND NOTATION

We begin by presenting the preliminary concepts and
notations that will be used throughout the paper. In this

section we introduce the notions of sequence and episodes.
A sequence s = (s1, . . . , sL) is a string of symbols

coming from an alphabet Σ, so that for each i, si ∈ Σ.
An episode G is represented by an acyclic directed graph
with labelled nodes, that is, G = (V,E, lab), where V =
(v1, . . . , vK) is the set of nodes, E is the set of directed
edges, and lab is the function lab : V → Σ, mapping each
node vi to its label. We denote the set of nodes of an episode
G with V (G), and its set of edges with E(G).

Given a sequence s and an episode G we say that s
covers G if there is an injective map f mapping each node
vi to a valid index such that the node vi in G and the
corresponding sequence element sf(vi) have the same label,
sf(vi) = lab(vi), and that if there is an edge (vi, vj) in
G, then we must have f(vi) < f(vj). In other words, the
parents of vj must occur in s before vj .

Episode mining is based on searching for episodes that are
covered by windows of certain fixed size often enough. The
frequency of a given episode is then defined as the number
of such windows that cover it.

We now provide a canonical form for episodes, which
will help us in further theorems and algorithms. We define
an episode that has the maximal number of edges using a
fundamental notion familiar from graph theory.

Definition 2.1: The transitive closure of an episode G =
(V,E, lab) is an episode tcl(G), where G and tcl(G) have
the same set of nodes V , the same lab function mapping
nodes to labels, and the set of edges in tcl(G) is equal to

E(tcl(G))

= E ∪ { (vi, vj) | a path exists in G from vi to vj } .

Note that, despite its name, the transitive closure has
nothing to do with the concept of closed episodes.

III. SUBSET RELATIONSHIP

Generally, a pattern is considered closed if there exists no
more specific pattern having the same frequency. In order to
speak of more specific patterns, we must first have a way to
describe episodes in these terms. In this section we define a
subset relationship among episodes, that would allow us to
describe one episode as more specific than another one.

Definition 3.1: Assume two transitively closed episodes
G and H with the same number of nodes. An episode G
is called a subset of episode H , denoted G � H if the set
of all sequences that cover H is a subset of the set of all
sequences that cover G. If G is a proper subset of H , we
denote G ≺ H . If |V (G)| < |V (H)|, then G is a subset of
H if there is a subgraph H ′ of H such that G � H ′.

The problem with this definition is that we do not have the
means to compute this relationship for general episodes. To
do this, one would have to enumerate all possible sequences
that cover H and compute whether they cover G. We
approach this problem by restricting ourselves to a class of
episodes where this comparison can be performed efficiently.

Definition 3.2: An episode G is called strict if for any
two nodes v and w in G sharing the same label, there exists
a path either from v to w or from w to v.

Using strict episodes will also allow us to build an
algorithm to efficiently discover closed episodes. In the
remaining text, we consider episodes to be strict. However,
as can be seen in Figure 2, this, unfortunately, means that
some episodes will never be discovered.

a

c

a

b

(a) non-strict

a

c

a

b

(b) strict

Figure 2. An example of a non-strict and a strict episode.

For notational simplicity, we now introduce the concept
of two episodes having identical nodes. Given an episode G
with nodes V (G) = {v1, . . . , vN}, we assume from now on
that the order of the nodes is always fixed such that for i < j
either lab(vi) < lab(vj), or lab(vi) = lab(vj) and vi is an
ancestor of vj . We say that two episodes G and H , with
V (G) = {v1, . . . , vN} and V (H) = {w1, . . . , wN} have
identical nodes if lab(vi) = lab(wi). To simplify notation,
we often identify vi and wi.

Crucially, we can easily compute the subset relationship
between two episodes, if they have identical nodes.

Theorem 3.3: For transitively closed episodes G and H
with identical nodes, E(G) ⊆ E(H) if and only if G � H .

Proof: To prove the ”only if” direction assume that
E(G) ⊆ E(H). Let s = {s1, . . . , sN} be a sequence
covering H and let f be the corresponding mapping. Then
f is also a valid mapping for G. Thus, G � H .

To prove the other direction, assume that E(G) * E(H).
We therefore must have an edge e = (x, y) ∈ E(G), such
that e /∈ E(H). Note that this implies that lab(x) 6= lab(y),
otherwise H would not be strict. We know that for every
node v it holds that the number of ancestors of v in G having
the label lab(v) is equal to the number of such ancestors of
v in H . To prove that G � H we will construct a sequence
s that covers H but not G. We build s by first visiting
every parent of y in H in a valid order with respect to
H , then y itself, and then the rest of the nodes, also in a
valid order. This sequence covers H . Let si be the event
corresponding to x and let sj be the event corresponding
to y. Assume now that s covers G so that there is a map f
mapping the nodes of G to indices of s. Let k be the number
of ancestors of x having the same label as x in H . Let l
be the number of descendants having the same label as x
in H . Since s covers H and lab(x) 6= lab(y) we must have
k occurrences of lab(x) events before si and l occurrences
after. Let v be such that f(v) = si. We see that v must
also have k ancestors with the same label so we must have
v = x, and f(x) = i. Similarly, we have f(y) = j. This is

a contradiction since (x, y) ∈ E(G) but j < i.
Note that we do not need to define a subset relation

for episodes that do not have identical nodes, as will be
explained in detail in Section V.

We now define what we exactly mean when we say that
two episodes are essentially the same.

Definition 3.4: Episodes G and H are said to belong to
the same class, denoted by G ∼ H , if each sequence that
covers G also covers H , and vice versa.

Corollary 3.5 (of Theorem 3.3): For transitively closed
episodes G and H , G ∼ H ⇔ E(G) = E(H).

Proof: This follows from the fact that G ∼ H is
equivalent to G � H and H � G, and that E(G) = E(H)
is equivalent to E(G) ⊆ E(H) and E(H) ⊆ E(G).

Note that by generating only transitively closed strict
episodes, we have obtained an efficient way of computing
the subset relationship between two episodes. At first glance,
though, it may seem that we have completely omitted certain
parallel episodes from consideration — namely, all non-strict
parallel episodes (i.e. those containing multiple nodes with
same labels). Note, however, that for each such episode G,
there exists a strict episode H , such that G ∼ H . To build
such an episode H , we just need to create edges that would
strictly define the order among nodes with the same labels.
From now on, when we talk of parallel episodes, we actually
refer to their strict equivalents.

IV. CLOSURE

Having defined a subset relationship among episodes, we
are now able to speak of an episode being more specific than
another episode. However, this is only the first step towards
defining the closure of an episode. We know that the closure
must be more specific, but it must also be unique and well-
defined. We have already seen that basing such a closure on
the frequency fails, as there can be multiple more specific
closed episodes that could be considered as closures. In this
section, we will base the closure on another criterion, which
will result in each episode having a unique closure.

We begin by associating each sequence with a correspond-
ing serial episode.

Definition 4.1: Given a sequence s = (s1, . . . , sN), we
define its corresponding serial episode Gs as the transitive
closure of (

vm(1) → vm(2) → · · · → vm(N)

)
,

with lab
(
vm(i)

)
= si. Mapping m makes sure that the nodes

of Gs are ordered, that is, for i < j, lab(vi) ≤ lab(vj).
Based on this definition, we can now build a maximal

episode that is covered by a set of sequences.
Definition 4.2: Given a set of nodes V , and a set S of

sequences containing the events corresponding to labels of
nodes in V , we define the maximal episode covered by
set S as the episode H , where V (H) = V and E(H) =⋂

s∈S E(Gs).

We now show that we can make a Galois connection
between the set of all episodes with a fixed set of nodes
V and the power set S containing all sets of subsequences
consisting only of labels of nodes V in all windows of length
k in our sequence s. For all episodes G containing nodes
V , we define a function f as

f(G) = {w | w ∈ S, w covers G } .

For all sets of subsequences S in S , we define a function g
as g(S) = G, with G the maximal episode covered by S.

Theorem 4.3: Given a set of nodes V , a sequence s,
and the power set S containing all sets of subsequences
consisting only of labels of nodes V in all windows of
length k in s, f and g, as defined above, satisfy the Galois
connection: S ⊆ f(G)⇔ G � g(S).

Proof: Assume that S ⊆ f(G). This means that all
sequences in S cover G. g(S) gives us the maximal episode
that covers all sequences in S. Clearly, G must be a subset
of such an episode.

Assume now g(S) = H and that G � H . Therefore,
all sequences that cover H also cover G. We know that all
sequences in S cover H , and, therefore, G, so S must be a
subset of f(G), a set of all sequences that cover G.

We are now ready to define closure using f and g.
Definition 4.4: We define the instance-closure, or i-

closure of an episode G, denoted icl(G), as g(f(G)). We
say an episode G is i-closed, if g(f(G)) = G.

The following example demonstrates how f and g work
in practice.

Example 4.5: Consider sequence s = abcbdxyacbcd and
the parallel episode G = (a, b, c, d), given that the cho-
sen window length is 5. We begin with a set of nodes
V = { v1, v2, v3, v4 }, labelled a, b, c and d respectively.
f(G) is defined as the set of all subsequences consisting
of nodes V in all windows of length 5 that cover G. In
our example, there are two windows of length 5 that cover
G, s1 · · · s5 and s8 · · · s12, and each window contains the
same two subsequences that satisfy our criteria. Therefore,
f(G) = { abcd, acbd }. The serial episodes corresponding
to these two subsequences are the transitive closures of
(a → b → c → d) and (a → c → b → d), so g(f(G)), or
icl(G), is obtained by taking the intersection of the edges
of these two serial episodes, and is given in Figure 1(d).

As we intend to allow the user to also obtain closed
episodes based on frequency, we now provide a formal
definition of such episodes.

Definition 4.6: An episode G is frequency-closed, or f-
closed, if there exists no episode H , such that G ≺ H and
fr(G) = fr(H).

Note that, unlike the i-closure, we do not define an f-
closure of an episode at all. As shown in Section I, such an
f-closure would not necessarily be unique. For this reason,
our algorithm identifies instance-closed episodes. Should the
user wish to find only frequency-closed episodes, we provide

this option as a post-pruning step. The following proposition
proves that such a step is possible.

Proposition 4.7: A frequency-closed episode is always
instance-closed.

Proof: Assume episode G is frequency-closed and
not instance-closed. Note that the definition of i-closure
effectively says that if G is not i-closed, then there exists
an episode H , such that G ≺ H , and for each possible
mapping of G in each window of length k in the sequence
s, this mapping is also a mapping of H . Clearly, in this case,
fr(G) = fr(H), which is a contradiction.

V. ALGORITHM FOR DISCOVERING CLOSED EPISODES

In this section we will present our mining algorithm for
discovering closed episodes. First we give an overview of the
algorithm. Next, we explain in detail how candidate episodes
are tested before being scanned. We continue by presenting
techniques for generating the candidate episodes. Finally, we
discuss how closures are computed in practice.

A. Overview of the algorithm

We showed in Section IV that icl(G) has a Galois
connection. This allows us to use a standard level-wise
approach for mining closed patterns (see, for example, [2]).
The outline of the algorithm is given in Algorithm 1.

The algorithm consists of two loops. In the outer loop we
discover parallel episodes. For each parallel episode we call
MINEDAG given in Algorithm 2. MINEDAG discovers all
general episodes in a level-wise fashion by adding edges.
During the generation MINEDAG calls GENERATECAN-
DIDATE (Algorithm 3) which ensures that the candidates
are transitively closed. In the next step, for each candidate
episode, we test whether all its subepisodes are frequent,
and that the candidate episode is not contained in the
closure of one of its subepisodes (see TESTCANDIDATE in
Algorithm 4). Finally, we compute the frequency, and if the
episode is frequent, we compute its instance-closure.

Mining episodes requires an additional step that does not
occur in mining itemsets: we need to add some episodes that
are not generators as candidates. This step is done on Line 13
of MINEDAG and is explained in detail in Section V-D.

B. Generating Transitively Closed Candidate Episodes

Theorem 3.3 implies that if we generate only transitively
closed episodes, then the subset relationship between the
episodes is simply the subset relationship between the
edges. In this section we define an algorithm, GENERATE-
CANDIDATE, which generates the candidate episodes from
the episodes discovered previously. GENERATECANDIDATE
makes sure that the candidates are transitively closed. These
candidates are then tested by the TESTCANDIDATE algo-
rithm described in the next section. If the candidates pass
the test they are tested for frequency.

To describe GENERATECANDIDATE we need the follow-
ing definition.

Algorithm 1: MINEEPISODES. An algorithm discover-
ing all frequent closed episodes.

input : Sequence s. Frequency threshold.
output: f -closed frequent episodes.

1 G ← frequent episodes with one node;
2 while G is not empty do
3 H ← next level of parallel frequent episodes

discovered from G;
4 foreach G ∈ H do MINEDAG(G);
5 G ← H;

6 return F-CLOSURE(episodes outputted by MINEDAG)

Algorithm 2: MINEDAG. An algorithm that discovers
frequent episodes from a fixed parallel episode.

input : Parallel episode G.
output: i-closed frequent episodes having identical

nodes as G.
1 G1 ← frequent episodes with one edge and

identical nodes as G;
2 N ← |V (G)|(|V (G)| − 1)/2;
3 foreach i = 1, . . . , N do
4 H ← GENERATECANDIDATE(Gi);
5 foreach H ∈ H do
6 if TESTCANDIDATE(H) and H is frequent

then
7 Gi+1 ← Gi+1 ∪H;
8 icl(H)← I-CLOSURE(H);
9 output icl(H);

10 foreach e /∈ icl(H) do
11 Z ← E(tcl(H + e))− E(H + e);
12 if Z 6= ∅ and Z ⊂ E(icl(H)) then
13 add H + Z to Gi+|Z|+1;

Definition 5.1: An edge (v, w) in a transitively closed
episode G is called a skeleton edge if there is no node u
such that (v, u, w) is a path in G. If v and w have different
labels, we call the edge (v, w) a proper skeleton edge.

As pointed out in Section V-A we will first generate
parallel episodes and then in a level-wise fashion add edges.
Let G be a transitively closed episode. It is easy to see that
if we remove a proper skeleton edge e from G, then the
resulting episode G− e will be transitively closed. We can
reverse this property in order to generate candidates: Let G
be a previously discovered transitively closed episode, add
an edge e and verify that the new episode is transitively
closed. However, we can improve on this naive approach
with the following proposition describing the sufficient and
necessary condition for an episode to be transitively closed.

Proposition 5.2: Let G be a transitively closed episode

and let e = (x, y) be an edge not in E(G). Let H = G+ e.
Assume that H is a DAG. Then H is transitively closed if
and only if there is an edge in G from x to every child of
y and from every parent of x to y.

Proof: The ’only if’ part follows directly from the
definition of transitive closure. To prove the ’if’ part, we
will use induction. Let u be an ancestor node of v in
H . Then there is a path from u to v in H . If the path
does not use edge e, then, since G is transitively closed,
(u, v) ∈ E(G) and hence (u, v) ∈ E(H). Assume now that
the path uses e. If v = y, then u must be a parent of y in G,
since G is transitively closed, so the condition implies that
(u, v) ∈ E(G) ⊂ E(H). Assume that v is a descendant of
y in H . To prove the first step in the induction, assume that
v = x, then again (u, v) ∈ E(G). To prove the induction
step, let w be the next node along the path from u to v in H .
Assume that (w, v) ∈ E(G). Then the path (u,w, v) occurs
in G, so (u, v) ∈ E(G), which completes the proof.

We now show when we can join two episodes to obtain
a candidate episode.

Theorem 5.3: Let G1 and G2 be two transitively closed
episodes with identical nodes and N edges. Assume that
G1 and G2 share N − 1 mutual edges. Let e1 = (x1, y1) ∈
E(G1) − E(G2) be the unique edge for G1 and let e2 =
(x2, y2) ∈ E(G2) − E(G1) be the unique edge of G2. Let
H = G1 + e2. Assume that H has no cycles. Then H
is transitively closed if and only if one of the following
conditions is true

1) x1 6= y2 and x2 6= y1.
2) x1 6= y2, x2 = y1, and (x1, y2) is an edge in G1.
3) x1 = y2, x2 6= y1, and (x2, y1) is an edge in G1.

Moreover, if H is transitively closed, then e1 is a skeleton
edge in H .

Proof: We will first show that e1 is a skeleton edge in
H . If it is not, then there is a path from x1 to y1 in H not
using e1. The edges along this path also occur in G2, thus
forcing e1 to be an edge in G2, which is a contradiction.

The ”only if” part is trivial so we only prove the ”if” part.
Let v be a child of y2 in G1 and f = (y2, v) an edge in

G1.
If the first or second condition holds, then x1 6= y2, and

consequently f 6= e1, so f ∈ G2. The path (x2, y2, v) con-
nects x2 and v in G2 so there must be an edge h = (x2, v)
in G2. Since h 6= e2, h must also occur in G1. If the third
condition holds, it may be the case that f = e1 (if not,
then we can use the previous argument). But in such a case
v = y1 and the edge h = (x2, y1) occurs in G1.

If now u is a parent of x2 in G1, we can make a similar
argument that u and y2 are connected, so Proposition 5.2
now implies that H is transitively closed.

Theorem 5.3 provides with the means to generate tran-
sitively closed episodes in the following manner. Since
our nodes are ordered, we can also order the edges using
a lexicographical order. Given an episode G we define

last(G) to be the last proper skeleton edge in G. Let H
be a transitively closed episode. Let e2 = last(H) be
its last proper skeleton edge. Define G1 = H − e2. Let
e1 = last(G1) be the last proper skeleton edge in G1

and assume that e1 is also a proper skeleton edge in H .
Then in order for H to be transitively closed, G1 and G2,
defined as H − e1, must satisfy one of the conditions given
in Theorem 5.3.

In other words, to generate a candidate, we take two
previously discovered episodes with identical nodes , say
G1 and G2, with N edges. Let e1 and e2 be the last proper
skeleton edges in G1 and in G2, respectively. Assume that
e1 < e2 and that G1 and G2 share the rest of the edges. Then
if G1 + e2 satisfies one of the conditions in Theorem 5.3,
we will generate it for the next stage.

This approach will not generate all candidates. The crucial
assumption we made above is that e1 is also a skeleton
edge in H . Hence to generate all candidates we also need
to generate episodes from G1 such that e1, the last proper
skeleton edge of G1, is no longer a skeleton edge in G1+e2.

Theorem 5.4: Let G be a transitively closed episode, let
e1 = (x1, y1) be a skeleton edge of G, and let e2 = (x2, y2)
be an edge not occuring in G and define H = G + e2.
Then H is a transitively closed episode such that e1 is not
a skeleton edge in H only if either y2 = y1 and (x1, x2) is
a skeleton edge in G or x1 = x2 and (y2, y1) is a skeleton
edge in G.

Proof: Assume that e1 is no longer a skeleton edge in
H , then there is a path of skeleton edges going from x1
to y1 in H not using e1. The path must use e2, otherwise
we have a contradiction. The theorem will follow if we can
show that the path must have exactly two edges. Assume
otherwise. Assume, for simplicity, that the edge e2 does not
occur first in the path and let z be the node before x2 in the
path. Then we can build a new path by replacing the edges
(z, x2) and e2 with (z, y2). This path does not use e2, hence
it occurs in G, making e1 a non-skeleton edge in G, which
is a contradiction. If e2 is the first edge in the path, we can
select the next node after y2 and repeat the argument.

We can now combine Theorem 5.3 and Theorem 5.4 into
the GENERATECANDIDATE algorithm given in Algorithm 3.
We will first generate candidates by combining episodes
from the previous rounds using Theorem 5.3. Secondly, we
use Theorem 5.4 and for each episode from the previous
rounds we add edges such that the last proper skeleton edge
is no longer a skeleton edge in the candidate.

C. Testing the Candidate Episode

Following the level-wise discovery, before computing
the frequency of the episode, we need to test that all
its subepisodes are discovered. Using transitively closed
episodes has another important benefit.

Corollary 5.5 (of Theorem 3.3): Let G be a transitively
closed episode. Let e be a proper skeleton edge of G. If H

Algorithm 3: GENERATECANDIDATE. Generates candi-
date episodes from the previously discovered episodes.

input : A collection of previosly discovered episodes
G. Episodes in G have N edges.

output: A collection of i-closed candidate episodes
with N + 1 edges.

1 foreach G1 ∈ G do
2 e1 = (x1, y1)← last(G1);

{Case where e1 remains a skeleton edge.}

3 H ←
{
H ∈ G

∣∣∣∣ |E(H) ∩ E(G)| = N − 1,
last(H) > e1

}
;

4 foreach G2 in H do
5 e2 ← last(G2);
6 if G1 and G2 satisfy Thr. 5.3 and e2 /∈ icl(G1)

then output G1 + e2;

{Case where e1 does not remain a skeleton edge.}
7 foreach f = (x1, x2) skeleton edge in G1 such that

x2 6= y1 do
8 e2 ← (x2, y1);
9 if e2 /∈ icl(G1) then

10 H ← G1 + e2;
11 if e2 = last(H) and Prop. 5.2 holds then
12 output G1 + e2;

13 foreach f = (y2, y1) skeleton edge in G1 such that
y2 6= x1 do

14 e2 ← (x1, y2);
15 if e2 /∈ icl(G1) then
16 H ← G1 + e2;
17 if e2 = last(H) and Prop. 5.2 holds then
18 output G1 + e2;

is an episode obtained by removing e from G, then there
exists no episode H1, such that H ≺ H1 ≺ G.

Corollary 5.5 implies that using transitively closed
episodes will guarantee the strongest conditions for an
episode to pass to the frequency computation stage.

If e is a skeleton edge of a transitively closed episode
G, then G − e is transitively closed. Thus, for G to be
frequent, G − e had to be discovered previously. This is
the first test in TESTCANDIDATE (given in Algorithm 4).
In addition, following the level-wise approach for mining
closed patterns [2], we test that G is not a subepisode of
icl(G− e), and if it is, then we can discard G.

The second test involves testing whether G− v, where v
is a node in G, has also been discovered. Note that G − v
has less nodes than G so, if G is frequent, we must have
discovered G−v. Not all nodes need to be tested. If a node v
has an adjacent proper skeleton edge, say e, then the episode
G− e has a frequency lower than or equal to that of G− v.
Since we have already tested G− e we do not need to test

G− v. Consequently, we need to test only those nodes that
have no proper skeleton edges. This leads us to the second
test in TESTCANDIDATE. Note that these nodes will either
have no edges, or will have edges to the nodes having the
same label. If both tests are passed we test the candidate
episode for frequency.

Algorithm 4: TESTCANDIDATE. An algorithm that
checks if an episode is a proper candidate.

input : An episode G.
output: Boolean value, true if all subepisodes of G are

frequent.
1 foreach proper skeleton edge e in G do
2 if G− e is not discovered or e ∈ E(icl(G− e))

then return false;

3 foreach v in G not having a proper skeleton edge do
4 if G− v is not discovered then return false;

5 return true;

D. Proof of Correctness

In this section we will prove that all frequent i-closed
episodes are discovered. We will prove this by induction
over the number of edges. To that end, we say that a skeleton
edge e in an episode G is derivable if there is a subepisode
H such that e ∈ E(icl(H)) − E(H). Note that Lemma 2
in [2] implies that icl(G) = icl(G− e). Hence, it is enough
to show that either G has derivable edges or it is discovered.
An episode G is discovered if an episode G′ = G − e is
discovered for each skeleton edge e. If G′ does not contain
derivable edges then, by the induction assumption, it is
discovered. If it has derivable edges, they turn into non-
skeleton edges by adding e. Start removing derivable edges,
one by one, until you reach an episode H without derivable
edges. It is easy to see that all removed edges are part of
icl(H). H is discovered due to the induction assumption
and G′ is discovered due to Line 13 in MINEDAG.

E. Computing Closures

During the mining we need to compute the closure of
an episode. We do this by discovering all possible valid
instances of an episode in the sequence and using Def-
inition 4.2. In order to discover the instances efficiently,
we enumerate recursively all possible serial episodes H by
removing sources (nodes without incoming edges) from the
candidate episode G, such that G ≺ H .

More specifically, assume that we have an episode G
and that we have already removed K sources in the order
(n1, . . . , nK). For each source v in G, we first test whether
there are instances (lab(n1) , . . . , lab(nK) , lab(v)) in the
sequence. If there are, we set nK+1 = v and test recursively
G−v. Once G is empty, we have discovered a subsequence
and its corresponding serial episode H such that H � G.

The caveat of this approach is that the number of such serial
episodes can be exponential. However, our experiments
demonstrate that this is not a problem in practice. The
pseudo-code is given in Algorithms 5 and 6.

Algorithm 5: I-CLOSURE. An algorithm for computing
the i-closure of an episode G. The parameter ρ is the
size of the window.

input : An episode G.
output: i-closure of G.

1 foreach v ∈ sources(G) do
2 W ← { (si) | si = lab(v) };
3 if W 6= ∅ then
4 FINDSERIALS(G− v,W, ρ);

5 W ← all sequences outputted by FINDSERIALS;
6 V (H)← V (G);
7 E(H)←

⋂
w∈W E(Gw);

8 return H;

Algorithm 6: FINDSERIALS(G,W, ρ). A recursive sub-
routine used by I-CLOSURE. Discovers all instances of
episode G.

input : An episode G. Partial candidate occurences W
discovered so far. The size of the window ρ.

output: Instances of G in the sequences.
1 if G has no nodes then
2 output any sequence in W ;

3 foreach v ∈ sources(G) do
4 R← ∅;
5 foreach w ∈W do
6 i← index of the first element in w;
7 if there is sj s.t. lab(v) = sj and j− i < ρ then
8 Add w concatenated with sj into R;

9 if R 6= ∅ then
10 FINDSERIALS(G− v,R, ρ);

After the actual mining process we can further reduce the
output by keeping only frequency-closed episodes. A naive
approach would be to compare each pair of instance-closed
episodes G and H and if fr(G) = fr(H) and G ≺ H ,
remove G from output. This approach can be considerably
sped up by realizing that we need only to test episodes with
identical nodes and episodes of form G − v. The pseudo-
code is given in Algorithm 7. The algorithm can be further
sped up by exploiting the subset relationship between the
episodes. Our experiments demonstrate that this comparison
is feasible in practice.

Algorithm 7: F-CLOSURE. Postprocessing for comput-
ing f -closed episodes from i-closures.

input : i-closed episodes C.
output: f -closed episodes.

1 foreach G ∈ C do
2 foreach H ∈ C with V (G) = V (H), H 6= G do
3 if G ≺ H and fr(G) = fr(H) then Mark G;
4 if H ≺ G and fr(G) = fr(H) then Mark H;

5 foreach v ∈ V (G) do
6 F ← G− v;
7 foreach H ∈ C, with V (F) = V (H) do
8 if H � F and fr(G) = fr(H) then
9 Mark H;

10 return all unmarked episodes;

VI. EXPERIMENTS

We tested our algorithm1 on three text datasets, address,
consisting of the inaugural addresses by the presidents of
the United States2, merged to form a single long sequence,
moby, the novel Moby Dick by Herman Melville3, and
abstract, consisting of the first 739 NSF award abstracts
from 19904, also merged into one long sequence. All three
sequences were preprocessed using the Porter Stemmer5 and
the stop words were removed.

We used a window of size 15 for all our experiments
and varied the frequency threshold σ. The main goal of our
experiments was to demonstrate how we tackle the problem
of pattern explosion. Figures 3(a), 3(b) and 3(c) show how
the total number of frequent episodes compared with the
identified i-closed and f -closed episodes we discovered in
the three datasets. The results suggest that improvement is
only visible at small thresholds and is less than a factor of
10. The reason for this is that the major part of the output
consists of episodes with a small number of nodes. Such
episodes tend to be closed.

To get a more detailed picture we examined the ratio
of the number of frequent episodes and the number of f -
closed episodes (Figure 4(a)) and the ratio of the number
of i-closed episodes and the number of f -closed episodes
(Figure 4(b)) as a function of the number of nodes. We see
that while there is no improvement with small episodes,
using closed episodes is essential if we are interested in
large episodes. In such a case we were able to reduce the
output by several orders of magnitude. For example, in the
address dataset, with a threshold of 30, there were 1226

1The implementation of the algorithm is given at http://adrem.ua.ac.be/
implementations/

2taken from http://www.bartleby.com/124/pres68
3taken from http://www.gutenberg.org/etext/15
4taken from http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
5http://tartarus.org/∼martin/PorterStemmer/

frequent episodes of size 7, of which only 2 were f -closed.
Clearly, the number of discovered i-closed episodes remains
greater than the number of f -closed episodes, but does not
explode, guaranteeing the feasibility of our algorithm. For
example, in the abstract dataset, with a threshold of 200,
there were 15976 frequent episodes of size 5, of which 912
were i-closed and 250 f -closed.

500
200

100
503020

threshold σ

103

104

105

D
is

co
v
er

ed
ep

is
o
d

es all

i-cl.

f-cl.

(a) Adresses

2000
1000

500
400

300
200

100

threshold σ

102

103

104

(b) Abstracts

500
200

100
50403020

threshold σ

103

104

105

(c) Moby

Figure 3. The number of frequent, i-closed and f -closed episodes with
varying frequency thresholds for the address, abstract and moby datasets,
respectively. Note that both axes are represented in log-scale.

The runtimes of our experiments varied between a few
seconds and 30 minutes for the largest experiments. How-
ever, with low thresholds, our algorithm for finding closed
episodes ran faster than the algorithm for finding all frequent
episodes, and at the very lowest thresholds, our algorithm
produced results, while the frequent-episodes algorithm
ran out of memory. This demonstrates the infeasibility of
approaching the problem by first generating all frequent
episodes, and then pruning the non-closed ones. The i-closed
episodes are the necessary intermediate step.

VII. RELATED WORK

Searching for frequent patterns in data is a very common
data mining problem. The first attempt at discovering se-
quential patterns was made by Wang et al. [3]. There, the
dataset consists of a number of sequences, and a pattern
is considered interesting if it is long enough and can be
found in a sufficient number of sequences. The method

http://adrem.ua.ac.be/implementations/
http://adrem.ua.ac.be/implementations/
http://www.bartleby.com/124/pres68
http://www.gutenberg.org/etext/15
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
http://tartarus.org/~martin/PorterStemmer/

1 2 3 4 5 6 7

of nodes in episodes

100

101

102

103

104

#
o
f

fr
eq

.
ep

s.
/
#

o
f

f-
cl

o
se

d
ep

s.
addr., σ = 30

moby, σ = 30

abs., σ = 200

(a) Frequent / f -closed

1 2 3 4 5 6 7

of nodes in episodes

1

2

3

4

5

6

#
o
f

i-
cl

o
se

d
ep

s.
/
#

o
f

f-
cl

o
se

d
ep

s.

addr., σ = 30

moby, σ = 30

abs., σ = 200

(b) i-closed / f -closed

Figure 4. (a) The ratio of frequent and f -closed episodes for various
episode sizes, with a fixed frequency threshold. (b) The ratio of i-closed
and f -closed episodes for various episode sizes, with a fixed frequency
threshold. Note that the y-axis of Figure 4(a) is in log-scale, while the
y-axis of Figure 4(b) is in linear scale.

proposed in this paper, however, was not guaranteed to
discover all interesting patterns, but a complete solution
to a more general problem (dropping the pattern length
constraint) was later provided by Agrawal and Srikant [4]
using an APRIORI-style algorithm [5].

It has been argued that not all discovered patterns are
of interest to the user, and some research has gone into
outputting only closed sequential patterns, where a sequence
is considered closed if it is not properly contained in any
other sequence which has the same frequency. Yan et al. [6],
Tzvetkov et al. [7], and Wang and Han [8] proposed methods
for mining such closed patterns, while Garriga [9] further
reduced the output by post-processing it and representing
the patterns using partial orders. Despite their name, the
patterns discovered by Garriga are different from the tra-
ditional episodes. A sequence covers an episode if every
node of the DAG can be mapped to a symbol such that
the order is respected, whereas a partial order discovered by
Garriga is covered by a sequence if there is a subsequence
corresponding to a path in the DAG from a source node to

a sink node, that is, not all nodes need to be visited.

In another attempt to trim the output, Garofalakis et
al. [10] proposed a family of algorithms called SPIRIT which
allow the user to define regular expressions that specify the
language that the discovered patterns must belong to.

Looking for frequent episodes in a single event sequence
was first proposed by Mannila et al. [1]. The WINEPI
algorithm finds all episodes that occur in a sufficient number
of windows of fixed length. The frequency of an episode
is defined as the fraction of all fixed-width sliding win-
dows in which the episode occurs. The user is required to
choose the width of the window and a frequency threshold.
Specific algorithms are given for the case of parallel and
serial episodes. However, no algorithm for detecting general
episodes (DAGs) is provided.

The same paper proposes the MINEPI method, where the
interestingness of an episode is measured by the number
of minimal windows that contain it. As was shown by
Tatti [11], MINEPI fails due to an error in its definition. Zhou
et al. [12] proposed mining closed serial episodes based on
the MINEPI method, without solving this error. Laxman et
al. introduced a monotonic measure as the maximal number
of non-overlapping occurrences of the episode [13].

Pei et al. [14] considered a restricted version of our
problem setup. In their setup, items are allowed to occur only
once in a window (string in their terminiology). This means
that the discovered episodes can contain only one occurence
of each item. This restriction allows them to easily construct
closed episodes. Our setup is more general since we do not
restrict the number of occurences of a symbol in the window
and the miner introduced by Pei cannot be adapted to our
problem setting since the restriction imposed by the authors
plays a vital part in their algorithm.

Garriga [15] pointed out that WINEPI suffers from bias
against longer episodes, and proposed solving this by in-
creasing the window length proportionally to the episode
length. However, as was pointed out by Méger and Rigotti
[16], the algorithm given in this paper contained an error.

An attempt to define frequency without using any win-
dows has been made by Calders et al. [17] where the authors
define an interestingness measure of an itemset in a stream to
be the frequency starting from a point in time that maximizes
it. However, this method is defined only for itemsets, or
parallel episodes, and not for general episodes. Cule et
al. [18] proposed a method that uses neither a window of
fixed size, nor minimal occurrences, and an interestingness
measure is defined as a combination of the cohesion and the
frequency of an episode — again, only for parallel episodes.
Tatti [11] and Gwadera et al. [19], [20] define an episode as
interesting if its occurrences deviate from expectations.

Finally, an extensive overview of temporal data mining
has been made by Laxman and Sastry [21].

VIII. CONCLUSIONS

In this paper, we tackled the problem of pattern explosion
when mining frequent episodes in an event sequence. In
such a setting, much of the output is redundant, as many
episodes have the same frequency as some other, more
specific, episodes. We therefore output only closed episodes,
for which this is not the case. Further redundancy is found
in the fact that some episodes can be represented in more
than one way. We solve this problem by restricting ourselves
to strict, transitively closed episodes.

Defining frequency-closed episodes created new prob-
lems, as, unlike in some other settings, a non-closed frequent
episode can have more than one closure. To solve this,
we defined instance-closed episodes, and showed that the
instance-closure of any given episode is unique. We further
proved that every f -closed episode must also be i-closed.
Based on this, we developed an algorithm that efficiently
identifies i-closed episodes, as well as f -closed episodes,
in a post-processing step. Experiments have confirmed that
the reduction in output is considerable, and essential for
large episodes, where we reduced the output by several
orders of magnitude. Moreover, thanks to introducing i-
closed episodes, we can now produce output for thresholds
at which finding all frequent episodes is infeasible.

ACKNOWLEDGMENTS

Nikolaj Tatti is funded by a FWO postdoctoral mandate.

REFERENCES

[1] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery
of frequent episodes in event sequences,” Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 259–289, 1997.

[2] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Dis-
covering frequent closed itemsets for association rules,” in
ICDT ’99: Proceedings of the 7th International Conference
on Database Theory, 1999, pp. 398–416.

[3] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro,
D. Shasha, and K. Zhang, “Combinatorial pattern discovery
for scientific data: some preliminary results,” ACM SIGMOD
Record, vol. 23, no. 2, pp. 115–125, 1994.

[4] R. Agrawal and R. Srikant, “Mining sequential patterns,” 11th
International Conference on Data Engineering (ICDE 1995),
vol. 0, pp. 3–14, 1995.

[5] ——, “Fast algorithms for mining association rules,” in
Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB 1994), 1994, pp. 487–499.

[6] X. Yan, J. Han, and R. Afshar, “Clospan: Mining closed
sequential patterns in large datasets,” in Proceedings of the
SIAM International Conference on Data Mining (SDM 2003),
2003, pp. 166–177.

[7] P. Tzvetkov, X. Yan, and J. Han, “Tsp: Mining top-k closed
sequential patterns,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Data Mining (ICDM 2003), 2003, pp.
347–354.

[8] J. Wang and J. Han, “Bide: Efficient mining of frequent
closed sequences,” 20th International Conference on Data
Engineering (ICDE 2004), vol. 0, p. 79, 2004.

[9] G. Casas-Garriga, “Summarizing sequential data with closed
partial orders,” in Proceedings of the SIAM International
Conference on Data Mining (SDM 2005), 2005, pp. 380–391.

[10] M. Garofalakis, R. Rastogi, and K. Shim, “Mining sequential
patterns with regular expression constraints,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 14, no. 3,
pp. 530–552, 2002.

[11] N. Tatti, “Significance of episodes based on minimal win-
dows,” in Proceedings of the 9th IEEE International Confer-
ence on Data Mining (ICDM 2009), 2009, pp. 513–522.

[12] W. Zhou, H. Liu, and H. Cheng, “Mining closed episodes
from event sequences efficiently,” in Proceedings of the 14th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining(1), 2010, pp. 310–318.

[13] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan, “A fast
algorithm for finding frequent episodes in event streams,”
in Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD
2007), 2007, pp. 410–419.

[14] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S. Yu,
“Discovering frequent closed partial orders from strings,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 11, pp. 1467–1481, 2006.

[15] G. Casas-Garriga, “Discovering unbounded episodes in se-
quential data,” in Knowledge Discovery in Databases: PKDD
2003, 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2003, pp. 83–94.

[16] N. Méger and C. Rigotti, “Constraint-based mining of episode
rules and optimal window sizes,” in Knowledge Discovery in
Databases: PKDD 2004, 8th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases,
2004, pp. 313–324.

[17] T. Calders, N. Dexters, and B. Goethals, “Mining frequent
itemsets in a stream,” in Proceedings of the 7th IEEE Inter-
national Conference on Data Mining (ICDM 2007), 2007, pp.
83–92.

[18] B. Cule, B. Goethals, and C. Robardet, “A new constraint
for mining sets in sequences,” in Proceedings of the SIAM
International Conference on Data Mining (SDM 2009), 2009,
pp. 317–328.

[19] R. Gwadera, M. J. Atallah, and W. Szpankowski, “Reliable
detection of episodes in event sequences,” Knowledge and
Information Systems, vol. 7, no. 4, pp. 415–437, 2005.

[20] ——, “Markov models for identification of significant
episodes,” in Proceedings of the SIAM International Confer-
ence on Data Mining (SDM 2005), 2005, pp. 404–414.

[21] S. Laxman and P. S. Sastry, “A survey of temporal data
mining,” SADHANA, Academy Proceedings in Engineering
Sciences, vol. 31, no. 2, pp. 173–198, 2006.

	Introduction
	Preliminaries and Notation
	Subset Relationship
	Closure
	Algorithm for Discovering Closed Episodes
	Overview of the algorithm
	Generating Transitively Closed Candidate Episodes
	Testing the Candidate Episode
	Proof of Correctness
	Computing Closures

	Experiments
	Related Work
	Conclusions
	References

