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Abstract

We prove that a p-swap search algorithm for the K-means clustering problem has an approximation
bound 3 + 2

p
, assuming a binary data set and Euclidean distance. This is tighter than the general bound“

3 + 2
p

”2

. We also present an example resulting in a cost ratio of 3− ε. Thus, our bound is almost sharp
for the p-swap algorithm.

1 Introduction
Clustering, grouping similar data in groups, is perhaps the most widely used application in data mining.
In K-means we are asked to find k clusters such that the L2 cost is minimised. A popular variant of K-
means is K-median where the L1 cost is used instead. Both problems are known to be NP-hard for higher
dimensions [4].

A popular choice for approximating theK-means problem is Lloyd’s algorithm. However, this algorithm
can produce arbitrarily bad approximations [2]. In an alternative approach we translate the problem by
finding a (large) candidate set U such that an almost optimal solution is a subset of U [3]. This subset is
searched in a hill-climbing fashion by making swaps of at most p elements. The search is stopped when a
local minimum is reached. It has been proved that the ratio of any local minimum and the global minimum

is 3 + 2
p for K-median [1] and

(
3 + 2

p

)2

for K-means [2].
The reason for the larger ratio in K-means is that the triangle inequality does not hold for squared

distances. In this paper we will show that we can use the triangle inequality if our data set is binary and we
are using Euclidean distance. This result leads to a tighter ratio 3 + 2

p for K-means. We also provide an
almost tight example showing that the ratio cannot be improved.

2 Angle of data convex hull
In this section we will introduce a notion of angles. This variable essentially tells us how sharp are the angles
of the data convex hull. We will see in the next section that sharper angles imply better approximation ratio.

To be more specific given a dataset D let ch(D) be the convex hull of D, that is, the smallest convex set
containing D. Given a point t ∈ D, we define an angle at t to be

ang(D; t) = max
x,y∈ch(D)

− (x− t)T (y − t)
‖x− t‖ ‖y − t‖

.

This variable varies between −1 and 1, the smaller the number, the sharper the angle of the convex hull at t.
We also define a global angle of D to be

ang(D) = max
t∈D

ang(D; t) .
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3 Bound for Clustering
In this section we will state and prove our main theorem, that is, the approximation bound for the the K-
means clustering problem. Our proof is essentially the same than in [2], except that we are able to apply
Lemma ??.

Let us first introduce some notation. Given a set of centroids S and a data setD, a neighbourhoodNS(s)
for s ∈ S is the subset of D having s as the closest centroid among S. The cost of S is defined to be

C(S) =
∑
s∈S

∑
t∈NS(s)

d2(s, t).

Given a set of centroids S, a subset S′ ∈ S, and a set O′ disjoint with S such that |S′| = |O′|, a swap
(S′, O′) is a procedure where we replace S′ from S by O′. A set is called p-stable if its cost cannot be
decreased by a swap of at most p elements. Given two sets, say S and O, of centroids. We say that s ∈ S
captures o ∈ O if s is the closest point to o among S.

Theorem 1. Let D be a dataset and let α = ang(D). Assume that the centroid candidates are inside the
convex hull of D. Let S be a p-stable set and O be the optimal set. Write f = α(p+ 1)/p and g = 3 + 2/p.

Then the cost C(S) is bounded by
(
f +

√
f2 + g

)2

C(O).

To prove the result we need the following technical lemmas. The proofs of these lemmas can be found
in [2].

Lemma 1 ([2]). Given a candidate set U and two subsets S andO having k elements, there is a set of swaps
{(Si, Oi)} and a set of weights {wi} such that

1. For each o ∈ O,
∑

Oi3o wi = 1.

2. For each s ∈ S,
∑

Si3s wi ≤ 1 + 1
p .

3. Si does not capture elements outside Oi.

Lemma 2 ([2]). If v is a centroid for a set V , then for any w∑
t∈V

d2(t, w) =
∑
t∈V

(
d2(t, v) + d2(v, w)

)
.

Proof of Theorem 1. Let us consider a single swap (Si, Oi). Select s ∈ Si and o ∈ Oi. Let st ∈ S be the
closest centroid for a data point t, also let ot ∈ O be the closest centroid among O. During the swap we
need to reassign the data points. Assign the points inside NO(o) to o. This changes the cost by∑

t∈NO(o)

d2(t, o)− d2(t, st) = Ao.

The points t ∈ NS(s) −NO(Oi) need to be reassigned. Let ot ∈ O be such that t ∈ NO(o′). Let sot ∈ S
be the closest centroid to ot. Note that ot /∈ Oi so, according to Lemma 1, sot

is not swapped out. Assign t
to sot

. The cost change is ∑
t∈NS(s)−NO(Oi)

d2(t, sot)− d2(t, st) .

We can bound this term by ∑
t∈NS(s)

d2(t, sot
)− d2(t, st) = Bs

because t is the closer to st than to sot
.



Since S is p-stable, by weighting with wi and summing up we get

0 ≤
∑

i

wi

(∑
o∈Oi

Ao +
∑
s∈Si

Bs

)

≤
∑

t

d2(t, ot)−
∑

t

d2(t, st) +
(

1 +
1
p

)∑
t

d2(t, sot
)− d2(t, st)

=
∑

t

d2(t, ot)−
(

2 +
1
p

)∑
t

d2(t, st) +
(

1 +
1
p

)∑
t

d2(t, sot
)

= C(O)−
(

2 +
1
p

)
C(S) +

(
1 +

1
p

)∑
t

d2(t, sot) .

By applying Lemma 2, the last term can be written as∑
t

d2(t, sot
) =

∑
o∈O

∑
t∈NO(o)

d2(t, so) =
∑

t

d2(t, ot) + d2(ot, sot
) .

Since sot
is the closest to ot, we have∑

t

d2(t, ot) + d2(ot, sot
) ≤

∑
t

d2(t, ot) + d2(ot, st)

Here we refine the proof in [2] and bound the last term by applying the assumption that the centroids are
inside the convex hull∑

t

d2(ot, st) ≤
∑

t

d2(t, ot) + d2(t, st) + 2αd(t, st) d(t, ot) ≤ C(O) + C(S) + 2α
√
C(O)

√
C(S),

where last inequality follows from Cauchy-Schwartz inequality. This gives us

0 ≤ C(O)−
(

2 +
1
p

)
C(S) +

(
1 +

1
p

)(
2C(O) + C(S) + 2α

√
C(O)

√
C(S)

)
= gC(O)− C(S) + 2f

√
C(O)

√
C(S).

The last equation can be viewed as a quadratic polynomial of
√
C(S) with a negative quadtratic coefficient.

Thus, the inequality implies that C(S) must be the smaller than the zero-point of the polynomial,√
C(S) ≤

√
C(O)

(
f +

√
f2 + g

)
.

4 A tight example
In this section we will provide an almost tight example. That is, given a parameter p and ε > 0, we construct
a binary data set D, a candidate set, and a p-stable set S such that the cost of S is at least 3− ε times as large
as the cost of the optimal set.

To ease the notation, we define a clone operator cM (x) taking a vector x = (x1, . . . , xN ) and resulting
in a vector of length MN such that each element xi is copied M times.

Let d, n, and m be integers to be specified later. Let Ω be the set of binary vectors having length d and
only one element equal to 1. We define the data set D to be

D = {(cn(x), cm(y)) | x, y ∈ Ω} .

Define two sets of centroids
O =

{(
cn(x), cmd(d−1)

)
| x ∈ Ω

}
and

S =
{(
cnd(d−1), cm(y)

)
| y ∈ Ω

}
.



It is clear that the neighbourhoods of the centroids are

NO(o) = {(cn(x), cm(y)) ∈ D | cn(x) = (o1, . . . , ond)} .

and
NS(s) =

{
(cn(x), cm(y)) ∈ D | cm(y) =

(
ond+1, . . . , o(n+m)d

)}
.

Our candidate set is O ∪ S.
The squared distances of a data point t to its closest centroids st and ot are

Co = d2(t, ot) = m
(

(d− 1)d−2 +
(
1− d−1

)2)
= mR

and
Cs = d2(t, st) = nR.

The cost ratio is now
C (S)
C (O)

=
Cs

Co
=

n

m
.

Next, we will demonstrate how to choose n and m such that S is a p-stable set and the ratio n/m is at least
3− ε. From now on, we assume that n > m.

Consider a p-swap (S′, O′). For each o ∈ O′, reassigning the data points NO′(o) to o changes the cost
by

d (Co − Cs) = d(n−m)R.

Swapping s ∈ S′ out leaves at least d− p points without a centroid. Let t be such a point. If t is reassigned
to the closest centroid in S − S′, then the cost change is 2m. It t is reassigned to a centroid in O′, then the
cost change is Co − Cs + 2n. Since R approaches 1 as d grows, we have

Co − Cs + 2n = (n−m)R+ 2n→ n−m+ 2n > 2m.

We can assume d is large enough so that the cost change for t is at least 2m.
For S to be a p-stable set it suffices to have

pd (Co − Cs) + p (d− p) 2m ≥ 0

and thus
n

m
≤ dR+ 2d− 2p

dR
. (1)

Note that R approaches 1 as d grows. Hence we have for sufficiently large d

dR+ 2d− 2p
dR

≥ (3− ε/2) .

Find n and m such that
(3− ε) ≤ n

m
≤ (3− ε/2) .

This satisfies the condition in Eq. 1 and thus making S a p-stable set.
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