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Abstract

The concepts of similarity and distance are crucial in data mining. We consider the problem of
defining the distance between two data sets by comparing summary statistics computed from the
data sets. The initial definition of our distance is based on geometrical notions of certain sets of
distributions. We show that this distance can be computed in cubic time and that it has several
intuitive properties. We also show that this distance is the unique Mahalanobis distance satisfying
certain assumptions. We also demonstrate that if we are dealing with binary data sets, then the
distance can be represented naturally by certain parity functions, and that it can be evaluated in
linear time. Our empirical tests with real world data show that the distance works well.
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1. Introduction

In this paper we will consider the following problem: Given two data sets D1 and D2 of dimension
K, define a distance between D1 and D2. To be more precise, we consider the problem of defining the
distance between two multisets of transactions, each set sampled from its own unknown distribution.
We will define a dissimilarity measure between D1 and D2 and we will refer to this measure as CM
distance.

Generally speaking, the notion of dissimilarity between two objects is one of the most funda-
mental concepts in data mining. If one is able to retrieve a distance matrix from a set of objects,
then one is able to analyse data by using for example, clustering or visualisation techniques. Many
real world data collections may be naturally divided into several data sets. For example, if a data
collection consists of movies from different eras, then we may divide the movies into subcollec-
tions based on their release years. A distance between these data (sub)sets would provide means to
analyse them as single objects. Such an approach may ease the task of understanding complex data
collections.

Let us continue by considering the properties the CM distance should have. First of all, it should
be a metric. The motivation behind this requirement is that the metric theory is a well-known area
and metrics have many theoretical and practical virtues. Secondly, in our scenario the data sets have
statistical nature and the CM distance should take this into account. For example, consider that both
data sets are generated from the same distribution, then the CM distance should give small values
and approach 0 as the number of data points in the data sets increases. The third requirement is that
we should be able to evaluate the CM distance quickly. This requirement is crucial since we may
have high dimensional data sets with a vast amount of data points.
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The CM distance will be based on summary statistics, features. Let us give a simple example:
Assume that we have data sets D1 = {A,B,A,A} and D2 = {A,B,C,B} and assume that the only
feature we are interested in is the proportion of A in the data sets. Then we can suggest the distance
between D1 and D2 to be |3/4−1/4| = 1/2. The CM distance is based on this idea; however,
there is a subtle difficulty: If we calculate several features, then should we take into account the
correlation of these features? We will do exactly that in defining the CM distance.

The rest of this paper is organised as follows. In Section 2 we give the definition of the CM
distance by using some geometrical interpretations. We also study the properties of the distance and
provide an alternative characterisation. In Section 3 we study the CM distance and binary data sets.
In Section 4 we discuss how the CM distance can be used with event sequences and in Section 5 we
comment about the feature selection. Section 6 is devoted for related work. The empirical tests are
represented in Section 7 and we conclude our work with the discussion in Section 8.

2. The Constrained Minimum Distance

In the following subsection we will define our distance using geometrical intuition and show that
the distance can be evaluated efficiently. In the second subsection we will discuss various properties
of the distance, and in the last subsection we will provide an alternative justification to the distance.
The aim of this justification is to provide more theoretical evidence for our distance.

2.1 The Definition

We begin by giving some basic definitions. By a data set D we mean a finite collection of samples
lying in some finite space Ω. The set Ω is called sample space, and from now on we will denote
this space by the letter Ω. The number of elements in Ω is denoted by |Ω|. The number of samples
in the data set D is denoted by |D|.

As we said in the introduction, our goal is not to define a distance directly on data sets but rather
through some statistics evaluated from the data sets. In order to do so, we define a feature function
S : Ω → R

N to map a point in the sample space to a real vector. Throughout this section S will
indicate some given feature function and N will indicate the dimension of the range space of S. We
will also denote the ith component of S by Si. Note that if we have several feature functions, then we
can join them into one big feature function. A frequency θ ∈ R

N of S taken with respect to a data
set D is the average of values of S taken over the data set, that is, θ = 1

|D| ∑ω∈D S(ω). We denote this
frequency by S (D).

Although we do not make any assumptions concerning the size of Ω, some of our choices are
motivated by thinking that |Ω| can be very large—so large that even the simplest operation, say,
enumerating all the elements in Ω, is not tractable. On the other hand, we assume that N is such that
an algorithm executable in, say, O(N3) time is feasible. In other words, we seek a distance whose
evaluation time does not depend of the size of Ω but rather of N.

Let P be the set of all distributions defined on Ω. Given a feature function S and a frequency θ
(calculated from some data set) we say that a distribution p∈P satisfies the frequency θ if Ep [S] = θ.
We also define a constrained set of distributions

C+ (S,θ) = {p ∈ P | Ep [S] = θ}
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to be the set of the distributions satisfying θ. The idea behind this is as follows: From a given
data set we calculate some statistics, and then we examine the distributions that can produce such
frequencies.

We interpret the sets P and C+ (S,θ) as geometrical objects. This is done by enumerating the
points in Ω, that is, we think that Ω = {1,2, , . . . , |Ω|}. We can now represent each distribution p ∈ P

by a vector u ∈R
|Ω| by setting ui = p(i). Clearly, P can be represented by the vectors in R

|Ω| having
only non-negative elements and summing to one. In fact, P is a simplex in R

|Ω|. Similarly, we can
give an alternative definition for C+ (S,θ) by saying

C+ (S,θ) =

{

u ∈ R
|Ω| | ∑

i∈Ω
S(i)ui = θ, ∑

i∈Ω
ui = 1,u ≥ 0

}

. (1)

Let us now study the set C+ (S,θ). In order to do so, we define a constrained space

C (S,θ) =

{

u ∈ R
|Ω| | ∑

i∈Ω
S(i)ui = θ, ∑

i∈Ω
ui = 1

}

,

that is, we drop the last condition from Eq. 1. The set C+ (S,θ) is included in C (S,θ); the set
C+ (S,θ) consists of the non-negative vectors from C (S,θ). Note that the constraints defining
C (S,θ) are vector products. This implies that C (S,θ) is an affine space, and that, given two different
frequencies θ1 and θ2, the spaces C (S,θ1) and C (S,θ2) are parallel.

Example 1 Let us illustrate the discussion above with a simple example. Assume that Ω = {A,B,C}.
We can then imagine the distributions as vectors in R

3. The set P is the triangle having (1,0,0),
(0,1,0), and (0,0,1) as corner points (see Figure 1). Define a feature function S to be

S(ω) =

{

1 ω = C
0 ω 6= C.

The frequency S (D) is the proportion of C in a data set D. Let D1 = (C,C,C,A) and D2 =
(C,A,B,A). Then S (D1) = 0.75 and S (D2) = 0.25. The spaces C (S,0.25) and C (S,0.75) are
parallel lines (see Figure 1). The distribution sets C+ (S,0.25) and C+ (S,0.75) are the segments of
the lines C (S,0.25) and C (S,0.75), respectively.

The idea of interpreting distributions as geometrical objects is not new. For example, a well-known
boolean query problem is solved by applying linear programming to the constrained sets of distri-
butions (Hailperin, 1965; Calders, 2003).

Let us revise some elementary Euclidean geometry: Assume that we are given two parallel affine
spaces A1 and A2. There is a natural way of measuring the distance between these two spaces. This
is done by taking the length of the shortest segment going from a point in A1 to a point in A2 (for
example see the illustration in Figure 1). We know that the segment has the shortest length if and
only if it is orthogonal with the affine spaces. We also know that if we select a point a1 ∈ A1 having
the shortest norm, and if we similarly select a2 ∈ A2, then the segment going from a1 to a2 has the
shortest length.

The preceding discussion and the fact that the constrained spaces are affine motivates us to
give the following definition: Assume that we are given two data sets, namely D1 and D2 and a
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(0, 1, 0)

C(S, 0.25)
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P
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Figure 1: A geometrical interpretation of the distribution sets for |Ω| = 3. In the left figure, the
set P, that is, the set of all distributions, is a triangle. The constrained spaces C (S,0.25)
and C (S,0.75) are parallel lines and the distribution sets C+ (S,0.25) and C+ (S,0.75) are
segments of the constrained spaces. In the right figure we added a segment perpendic-
ular to the constraint spaces. This segment has the shortest length among the segments
connecting the constrained spaces.

feature function S. Let us shorten the notation C (S,S (Di)) by C (S,Di). We pick a vector from each
constrained space having the shortest norm

ui = argmin
u∈C (S,Di)

‖u‖2 , i = 1,2.

We define the distance between D1 and D2 to be

dCM (D1,D2 | S) =
√

|Ω|‖u1 −u2‖2 . (2)

The reasons for having the factor
√

|Ω| will be given later. We will refer to this distance as Con-
strained Minimum (CM) distance. We should emphasise that u1 or u2 may have negative elements.
Thus the CM distance is not a distance between two distributions; it is rather a distance based on
the frequencies of a given feature function and is motivated by the geometrical interpretation of the
distribution sets.

The main reason why we define the CM distance using the constrained spaces C (S,Di) and
not the distribution sets C+ (S,Di) is that we can evaluate the CM distance efficiently. We discussed
earlier that Ω may be very large so it is crucial that the evaluation time of a distance does not depend
on |Ω|. The following theorem says that the CM distance can be represented using the frequencies
and a covariance matrix

Cov [S] =
1
|Ω| ∑

ω∈Ω
S(ω)S(ω)T −

(

1
|Ω| ∑

ω∈Ω
S(ω)

)(

1
|Ω| ∑

ω∈Ω
S(ω)

)T

.

Theorem 1 Assume that Cov [S] is invertible. For the CM distance between two data sets D1 and
D2 we have

dCM (D1,D2 | S)2 = (θ1 −θ2)
T Cov−1 [S] (θ1 −θ2) ,

where θi = S (Di).
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The proofs for the theorems are given in Appendix.
The preceding theorem shows that we can evaluate the distance using the covariance matrix and

frequencies. If we assume that evaluating a single component of the feature function S is a unit
operation, then the frequencies can be calculated in O(N |D1|+ N |D2|) time. The evaluation time
of the covariance matrix is O(|Ω|N2) but we assume that S is such that we know a closed form for
the covariance matrix (such cases will be discussed in Section 3), that is, we assume that we can
evaluate the covariance matrix in O(N2) time. Inverting the matrix takes O(N3) time and evaluating
the distance itself is O(N2) operation. Note that calculating frequencies and inverting the covariance
matrix needs to be done only once: for example, assume that we have k data sets, then calculating
the distances between every data set pair can be done in O

(

N ∑k
i |Di|+N3 + k2N2

)

time.

Example 2 Let us evaluate the distance between the data sets given in Example 1 using both the
definition of the CM distance and Theorem 1. We see that the shortest vector in C (S,0.25) is
u1 =

(

3
8 , 3

8 , 1
4

)

. Similarly, the shortest vector in C (S,0.75) is u2 =
(

1
8 , 1

8 , 3
4

)

. Thus the CM distance
is equal to

dCM (D1,D2 | S) =
√

3‖u1 −u2‖2 =
√

3

[

22

82 +
22

82 +
22

42

]1/2

=
3√
8
.

The covariance of S is equal to Cov [S] = 1
3 − 1

3
1
3 = 2

9 . Thus Theorem 1 gives us

dCM (D1,D2 | S) =

[

Cov−1 [S]

(

3
4
− 1

4

)2
]1/2

=

[

9
2

(

2
4

)2
]1/2

=
3√
8
.

From Theorem 1 we see a reason to have the factor
√

|Ω| in Eq. 2: Assume that we have two data
sets D1 and D2 and a feature function S. We define a new sample space Ω′ = {(ω,b) | ω ∈ Ω,b = 0,1}
and transform the original data sets into new ones by setting D′

i = {(ω,0) | ω ∈ Di}. We also expand
S into Ω′ by setting S′(ω,1) = S′(ω,0) = S(ω). Note that S(Di) = S′(D′

i) and that Cov [S] = Cov [S′]
so Theorem 1 says that the CM distance has not changed during this transformation. This is very
reasonable since we did not actually change anything essential: We simply added a bogus variable
into the sample space, and we ignored this variable during the feature extraction. The size of the
new sample space is |Ω′| = 2 |Ω|. This means that the difference ‖u1 −u2‖2 in Eq. 2 is smaller by
the factor

√
2. The factor

√

|Ω| is needed to negate this effect.

2.2 Properties

We will now list some important properties of dCM (D1,D2 | S).

Theorem 2 dCM (D1,D2 | S) is a pseudo metric.

The following theorem says that adding external data set to the original data sets makes the
distance smaller which is very reasonable property.

Theorem 3 Assume three data sets D1, D2, and D3 over the same set of items. Assume further that
D1 and D2 have the same number of data points and let ε = |D3|

|D1|+|D3| . Then

dCM (D1 ∪D3,D2 ∪D3 | S) = (1− ε)dCM (D1,D2 | S) .

135



TATTI

Theorem 4 Let A be a M ×N matrix and b a vector of length M. Define T (ω) = AS(ω)+ b. It
follows that dCM (D1,D2 | T ) ≤ dCM (D1,D2 | S) for any D1 and D2.

Corollary 5 Adding extra feature functions cannot decrease the distance.

Corollary 6 Let A be an invertible N × N matrix and b a vector of length N. Define T (ω) =
AS(ω)+b. It follows that dCM (D1,D2 | T ) = dCM (D1,D2 | S) for any D1 and D2.

Corollary 6 has an interesting interpretation. Note that T (D) = AS (D) + b and that S (D) =
A−1 (T (D)−b). This means that if we know the frequencies S (D), then we can infer the frequencies
T (D) without a new data scan. Similarly, we can infer S (D) from T (D). We can interpret this
relation by thinking that S (D) and T (D) are merely different representations of the same feature
information. Corollary 6 says that the CM distance is equal for any such representation.

2.3 Alternative Characterisation of the CM Distance

We derived our distance using geometrical interpretation of the distribution sets. In this section
we will provide an alternative way for deriving the CM distance. Namely, we will show that if
some distance is of Mahalanobis type and satisfies some mild assumptions, then this distance is
proportional to the CM distance. The purpose of this theorem is to provide more theoretical evidence
to our distance.

We say that a distance d is of Mahalanobis type if

d (D1,D2 | S)2 = (θ1 −θ2)
T C(S)−1 (θ1 −θ2) ,

where θ1 = S (D1) and θ2 = S (D2) and C(S) maps a feature function S to a symmetric N×N matrix.
Note that if C(S) = Cov [S], then the distance d is the CM distance. We set M to be the collection of
all distances of Mahalanobis type. Can we justify the decision that we examine only the distances
included in M? One reason is that a distance belonging to M is guaranteed to be a metric. The most
important reason, however, is the fact that we can evaluate the distance belonging to M efficiently
(assuming, of course, that we can evaluate C(S)).

Let d ∈ M and assume that it satisfies two additional assumptions:

1. If A is an M ×N matrix and b is a vector of length M and if we set T (ω) = AS(ω)+ b, then
C(T ) = AC(S)AT .

2. Fix two points ω1 and ω2. Let σ : Ω → Ω be a function swapping ω1 and ω2 and mapping
everything else to itself. Define U(ω) = S(σ(ω)). Then d (σ(D1),σ(D2) |U) = d (D1,D2 | S).

The first assumption can be partially justified if we consider that A is an invertible square matrix. In
this case the assumption is identical to d (·, · | AS +b) = d (·, · | S). This is to say that the distance is
independent of the representation of the frequency information. This is similar to Corollary 6 given
in Section 2.2. We can construct a distance that would satisfy Assumption 1 in the invertible case
but fail in a general case. We consider such distances pathological and exclude them by making a
broader assumption. To justify Assumption 2 note that the frequencies have not changed, that is,
U (σ(D)) = S (D). Only the representation of single data points have changed. Our argument is that
the distance should be based on the frequencies and not on the values of the data points.

Theorem 7 Let d ∈ M satisfying Assumptions 1 and 2. If C(S) is invertible, then there is a constant
c > 0, not depending on S, such that d (·, · | S) = cdCM (·, · | S).
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3. The CM distance and Binary Data Sets

In this section we will concentrate on the distances between binary data sets. We will consider
the CM distance based on itemset frequencies, a very popular statistics in the literature concerning
binary data mining. In the first subsection we will show that a more natural way of representing the
CM distance is to use parity frequencies. We also show that we can evaluate the distance in linear
time. In the second subsection we will provide more theoretical evidence why the CM distance is a
good distance between binary data sets.

3.1 The CM Distance and Itemsets

We begin this section by giving some definitions. We set the sample space Ω to be

Ω = {ω | ω = (ω1, . . . ,ωK) ,ωi = 0,1} ,

that is, Ω is the set of all binary vectors of length K. Note that |Ω| = 2K . It is custom that each
dimension in Ω is identified with some symbol. We do this by assigning the symbol ai to the ith

dimension. These symbols are called attributes or items. Thus when we speak of the attribute ai we
refer to the ith dimension. We denote the set of all items by A = {a1, . . . ,aK}. A non-empty subset
of A is called itemset.

A boolean formula S : Ω → {0,1} is a feature function mapping a binary vector to a binary
value. We are interested in two particular boolean formulae: Assume that we are given an itemset
B = {ai1 , . . . ,aiL}. We define a conjunction function SB to be

SB(ω) = ωi1 ∧ωi2 ∧·· ·∧ωiK ,

that is, SB results 1 if and only if all the variables corresponding the itemset B are on. Given a
data set D the frequency SB(D) is called the frequency of the itemset B. Conjunction functions are
popular and there are a lot of studies in the literature concerning finding itemsets that have large
frequency (see e.g., Agrawal et al., 1993; Hand et al., 2001). We also define a parity function TB to
be

TB(ω) = ωi1 ⊕ωi2 ⊕·· ·⊕ωiK ,

where ⊕ is the binary operator XOR. The function TB results 1 if and only if the number of active
variables included in B are odd.

A collection F of itemsets is said to be antimonotonic or downwardly closed if each non-empty
subset of an itemset included in F is also included in F . Given a collection of itemsets F =
{B1, . . . ,BN} we extend our definition of the conjunction function by setting SF = [SB1 , . . . ,SBN ]T .
We also define TF = [TB1 , . . . ,TBN ]T .

Assume that we are given an antimonotonic family F of itemsets. We can show that there is an
invertible matrix A such that TF = ASF . In other words, we can get the parity function TF from the
conjunction function TF by an invertible linear transformation. Corollary 6 now implies that

dCM (D1,D2 | SF ) = dCM (D1,D2 | TF ) , (3)

for any D1 and D2. The following lemma shows that the covariance matrix Cov [TF ] of the parity
function is very simple.
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Lemma 8 Let TF be a parity function for a family of itemsets F , then Cov [TF ] = 0.5I, that is, the
covariance matrix is a diagonal matrix having 0.5 at the diagonal.

Theorem 1, Lemma 8, and Eq. 3 imply that

dCM (D1,D2 | SF ) =
√

2‖θ1 −θ2‖2 , (4)

where θ1 = TF (D1) and θ2 = TF (D2). This identity says that the CM distance can be calculated
in O(N) time (assuming that we know the frequencies θ1 and θ2). This is better than O(N3) time
implied by Theorem 1.

Example 3 Let I =
{{

a j
}

| j = 1 . . .K
}

be a family of itemsets having only one item. Note that
T{a j} = S{a j}. Eq. 4 implies that

dCM (D1,D2 | SI ) =
√

2‖θ1 −θ2‖2 ,

where θ1 and θ2 consists of the marginal frequencies of each a j calculated from D1 and D2, re-
spectively. In this case the CM distance is simply the L2 distance between the marginal frequencies
of the individual attributes. The frequencies θ1 and θ2 resemble term frequencies (TF) used in text
mining (see e.g., Baldi et al., 2003).

Example 4 We consider now a case with a larger set of features. Our motivation for this is that
using only the feature functions SI is sometimes inadequate. For example, consider data sets with
two items having the same individual frequencies but different correlations. In this case the data
sets may look very different but according to our distance they are equal.

Let C = I ∪
{

a jak | j,k = 1 . . .K, j < k
}

be a family of itemsets such that each set contains
at most two items. The corresponding frequencies contain the individual means and the pair-
wise correlation for all items. Let Sa jak be the conjunction function for the itemset a jak. Let
γ jk = Sa jak (D1)− Sa jak (D2) be the difference between the correlation frequencies. Also, let γ j =
Sa j (D1)−Sa j (D2). Since

Ta jak = Sa j +Sak −2Sa jak

it follows from Eq. 4 that

dCM (D1,D2 | SC )2 = 2 ∑
j<k

(

γ j + γk −2γ jk
)2

+2
K

∑
j=1

γ2
j . (5)

3.2 Characterisation of the CM Distance for Itemsets

The identity given in Eq. 4 is somewhat surprising and seems less intuitive. A question arises:
why this distance is more natural than some other, say, a simple L2 distance between the itemset
frequencies. Certainly, parity functions are less intuitive than conjunction functions. One answer is
that the parity frequencies are decorrelated version of the traditional itemset frequencies.

However, we can clarify this situation from another point of view: Let A be the set of all
itemsets. Assume that we are given two data sets D1 and D2 and define empirical distributions p1

and p2 by setting

pi(ω) =
number of samples in Di equal to ω

|Di|
.
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The constrained spaces of SA are singular points containing only pi, that is, C (SA ,Di) = {pi}. This
implies that

dCM (D1,D2 | SA) =
√

2K ‖p1 − p2‖2 . (6)

In other words, the CM distance is proportional to the L2 distance between the empirical distribu-
tions. This identity seems very reasonable. At least, it is more natural than, say, taking L2 distance
between the traditional itemset frequencies.

The identity in Eq. 6 holds only when we use the features SA . However, we can prove that a
distance of the Mahalanobis type satisfying the identity in Eq. 6 and some additional conditions is
equal to the CM distance. Let us explain this in more detail. We assume that we have a distance d
having the form

d (D1,D2 | SF )2 = (θ1 −θ2)
T C(SF )−1 (θ1 −θ2) ,

where θ1 = SF (D1) and θ2 = SF (D2) and C(SF ) maps a conjunction function SF to a symmetric
N ×N matrix. The distance d should satisfy the following mild assumptions.

1. Assume two antimonotonic families of itemsets F and H such that F ⊂ H . It follows that
d (·, · | SF ) ≤ d (·, · | SH ).

2. Adding extra dimensions (but not changing the features) does not change the distance.

The following theorem says that the assumptions and the identity in Eq. 6 are sufficient to prove
that d is actually the CM distance.

Theorem 9 Assume that a Mahalanobis distance d satisfies Assumptions 1 and 2. Assume also that
there is a constant c1 such that

d (D1,D2 | SA) = c1 ‖p1 − p2‖2 .

Then it follows that for any antimonotonic family F we have

d (D1,D2 | SF ) = c2dCM (D1,D2 | SF ) ,

for some constant c2.

4. The CM distance and Event Sequences

In the previous section we discussed about the CM distance between the binary data sets. We will
use similar approach to define the CM distance between sequences.

An event sequence s is a finite sequence whose symbols belong to a finite alphabet Σ. We denote
the length of the event sequence s by |s|, and by s(i, j) we mean a subsequence starting from i and
ending at j. The subsequence s(i, j) is also known as window. A popular choice for statistics of
event sequences are episodes (Hand et al., 2001). A parallel episode is represented by a subset of
the alphabet Σ. A window of s satisfies a parallel episode if all the symbols given in the episode
occur in the window. Assume that we are given an integer k. Let W be a collection of windows of s
having the length k. A frequency of a parallel episode is the proportion of windows in W satisfying
the episode. We should point out that this mapping destroys the exact ordering of the sequence. On
the other hand, if some symbols occur often close to each other, then the episode consisting of these
symbols will have a high frequency.
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In order to apply the CM distance we will now describe how we can transform a sequence s to
a binary data set. Assume that we are given a window length k. We transform a window of length k
into a binary vector of length |Σ| by setting 1 if the corresponding symbol occurs in the window, and
0 otherwise. Let D be the collection of these binary vectors. We have now transformed the sequence
s to the binary data set D. Note that parallel episodes of s are represented by itemsets of D.

This transformation enables us to use the CM distance. Assume that we are given two sequences
s1 and s2, a collection of parallel episodes F , and a window length k. First, we transform the
sequences into data sets D1 and D2. We set the CM distance between the sequences s1 and s2 to be
dCM (D1,D2 | SF ).

5. Feature Selection

We will now discuss briefly about feature selection—a subject that we have taken for granted so far.
The CM distance depends on a feature function S. How can we choose a good set of features?

Assume for simplicity that we are dealing with binary data sets. Eq. 6 tells us that if we use
all itemsets, then the CM distance is L2 distance between empirical distributions. However, to get
a reliable empirical distribution we need an exponential number of data points. Hence we can use
only some subset of itemsets as features. The first approach is to make an expert choice without
seeing data. For example, we could decide that the feature function is SI , the means of the individual
attributes, or SC , the means of individual attributes and the pairwise correlation.

The other approach is to infer a feature function from the data sets. At first glimpse this seems
an application of feature selection. However, traditional feature selection fails: Let SI be the fea-
ture function representing the means of the individual attributes and let SA be the feature function
containing all itemsets. Let ω be a binary vector. Note that if we know SI (ω), then we can de-
duce SA(ω). This means that SI is a Markov blanket (Pearl, 1988) for SA . Hence we cannot use the
Markov blanket approach to select features. The essential part is that the traditional feature selection
algorithms deal with the individual points. We try to select features for whole data sets.

Note that feature selection algorithms for singular points are based on training data, that is,
we have data points divided into clusters. In other words, when we are making traditional feature
selection we know which points are close and which are not. In order to make the same ideas work
for data sets we need to have similar information, that is, we need to know which data sets are close
to each other, and which are not. Such an information is rarely provided and hence we are forced to
seek some other approach.

We suggest a simple approach for selecting itemsets by assuming that frequently occurring
itemsets are interesting. Assume that we are given a collection of data sets Di and a threshold σ.
Let I be the itemsets of order one. We define F such that B ∈ F if and only if B ∈ I or that B is a
σ-frequent itemset for some Di.

6. Related Work

In this section we discuss some existing methods for comparing data sets and compare the evaluation
algorithms. The execution times are summarised in Table 1.
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Distance Time

CM distance (general case) O(NM +N2 |Ω|+N3)
CM distance (known cov. matrix) O(NM +N3)

CM distance (binary case) O(NM +N)
Set distances O(M3)

Kullback-Leibler O(NM +N |Ω|)
Fischer’s Information O(NM +N2 |D2|+N3)

Table 1: Comparison of the execution times of various distances. The number M = |D1|+ |D2| is the
number of data points in total. The O(NM) term refers to the time needed to evaluate the
frequencies S (D1) and S (D2). Kullback-Leibler distance is solved using Iterative Scaling
algorithm in which one round has N steps and one step is executed in O(|Ω|) time.

6.1 Set Distances

One approach to define a data set distance is to use some natural distance between single data points
and apply some known set distance. Eiter and Mannila (1997) show that some data set distances
defined in this way can be evaluated in cubic time. However, this is too slow for us since we may
have a vast amount of data points. The other downsides are that these distances may not take into
account the statistical nature of data which may lead into problems.

6.2 Edit Distances

We discuss in Section 4 of using the CM distance for event sequences. Traditionally, edit dis-
tances are used for comparing event sequences. The most famous edit distance is Levenshtein dis-
tance (Levenshtein, 1966). However, edit distances do not take into account the statistical nature of
data. For example, assume that we have two sequences generated such that the events are sampled
from the uniform distribution independently of the previous event (a zero-order Markov chain). In
this case the CM distance is close to 0 whereas the edit distance may be large. Roughly put, the CM
distance measures the dissimilarity between the statistical characteristics whereas the edit distances
operate at the symbol level.

6.3 Minimum Discrimination Approach

There are many distances for distributions (see Baseville, 1989, for a nice review). From these
distances the CM distance resembles the statistical tests involved with Minimum Discrimination
Theorem (see Kullback, 1968; Csiszár, 1975). In this framework we are given a feature function
S and two data sets D1 and D2. From the set of distributions C+ (S,Di) we select a distribution
maximising the entropy and denote it by pME

i . The distance itself is the Kullback-Leibler divergence
between pME

1 and pME
2 . It has been empirically shown that pME

i represents well the distribution
from which Di is generated (see Mannila et al., 1999). The downsides are that this distance is not a
metric (it is not even symmetric), and that the evaluation time of the distance is infeasible: Solving
pME

i is NP-hard (Cooper, 1990). We can approximate the Kullback-Leibler distance by Fischer’s
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information, that is,

D
(

pME
1 ‖pME

2

)

≈ 1
2

(θ1 −θ2)
T Cov−1 [S | pME

2

]

(θ1 −θ2) ,

where θi = S (Di) and Cov
[

S | pME
2

]

is the covariance matrix of S taken with respect to pME
2 (see

Kullback, 1968). This resembles greatly the equation in Theorem 1. However, in this case the
covariance matrix depends on data sets and thus generally this approximation is not a metric. In ad-
dition, we do not know pME

2 and hence we cannot evaluate the covariance matrix. We can, however,
estimate the covariance matrix from D2, that is,

Cov
[

S | pME
2

]

≈ 1
|D2| ∑

ω∈D2

S(ω)S(ω)T − 1

|D2|2

[

∑
ω∈D2

S(ω)

][

∑
ω∈D2

S(ω)T

]

.

The execution time of this operation is O(N2 |D2|).

7. Empirical Tests

In this section we describe our experiments with the CM distance. We begin by examining the effect
of different feature functions. We continue studying the distance by applying clustering algorithms,
and finally we represent some interpretations to the results.

In many experiments we use a base distance dU defined as the L2 distance between the itemset
frequencies, that is,

dU (D1,D2 | S) =
√

2‖θ1 −θ2‖2 , (7)

where θi are the itemset frequencies θi = S (Di). This type of distance was used in Hollmén et al.
(2003). Note that dU (D1,D2 | ind) = dCM (D1,D2 | ind), where ind is the feature set containing only
individual means.

7.1 Real World Data Sets

We examined the CM distance with several real world data sets and several feature sets. We had
7 data sets: Bible, a collection of 73 books from the Bible,1 Addresses, a collection of 55 inaugu-
ral addresses given by the presidents of the U.S.,2 Beatles, a set of lyrics from 13 studio albums
made by the Beatles, 20Newsgroups, a collection of 20 newsgroups,3 TopGenres, plot summaries
for top rated movies of 8 different genres, and TopDecades, plot summaries for top rated movies
from 8 different decades.4 20Newsgroups contained (in that order) 3 religion groups, 3 of poli-
tics, 5 of computers, 4 of science, 4 recreational, and misc.forsale. TopGenres consisted (in that
order) of Action, Adventure, SciFi, Drama, Crime, Horror, Comedy, and Romance. The decades for
TopDecades were 1930–2000. Our final data set, Abstract, was composed of abstracts describing
NSF awards from 1990–1999.5

1. The books were taken from http://www.gutenberg.org/etext/8300 on July 20, 2005.
2. The addresses were taken from http://www.bartleby.com/124/ on August 17, 2005.
3. The data set was taken from http://www.ai.mit.edu/~jrennie/20Newsgroups/, a site hosted by Jason Rennie,

on June 8, 2001.
4. The movie data sets were taken from http://www.imdb.com/Top/ on January 1, 2006.
5. The data set was taken from http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.data.html on January

13, 2006.
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Bible and Addresses were converted into binary data sets by taking subwindows of length 6
(see the discussion in Section 4). We reduced the number of attributes to 1000 by using the mutual
information gain. Beatles was preprocessed differently: We transformed each song to its binary
bag-of-words representation and selected 100 most informative words. In 20Newsgroups a trans-
action was a binary bag-of-words representation of a single article. Similarly, In TopGenres and
in TopDecades a transaction corresponded to a single plot summary. We reduced the number of
attributes in these three data sets to 200 by using the mutual information gain. In Abstract a data set
represented one year and a transaction was a bag-of-words representation of a single abstract. We
reduced the dimension of Abstract to 1000.

7.2 The Effect of Different Feature Functions

We begin our experiments by studying how the CM distance (and the base distance) changes as we
change features.

We used 3 different sets of features: ind, the independent means, cov, the independent means
along with the pairwise correlation, and freq, a family of frequent itemsets obtained by using APRI-
ORI (Agrawal et al., 1996). We adjusted the threshold so that freq contained 10K itemsets, where K
is the number of attributes.

We plotted the CM distances and the base distances as functions of dCM (ind). The results are
shown in Figure 2. Since the number of constraints varies, we normalised the distances by dividing
them with

√
N, where N is the number of constraints. In addition, we computed the correlation of

each pair of distances. These correlations are shown in Table 2.

dCM vs. dCM dU vs. dU dCM vs. dU

cov freq freq cov freq freq cov freq
Data set ind ind cov ind ind cov cov freq

20Newsgroups 0.996 0.725 0.733 0.902 0.760 0.941 0.874 0.571
Addresses 1.000 0.897 0.897 0.974 0.927 0.982 0.974 0.743

Bible 1.000 0.895 0.895 0.978 0.946 0.989 0.978 0.802
Beatles 0.982 0.764 0.780 0.951 0.858 0.855 0.920 0.827

TopGenres 0.996 0.817 0.833 0.916 0.776 0.934 0.927 0.931
TopDecades 0.998 0.735 0.744 0.897 0.551 0.682 0.895 0.346

Abstract 1.000 0.985 0.985 0.996 0.993 0.995 0.996 0.994
Total 0.998 0.702 0.709 0.934 0.894 0.938 0.910 0.607

Table 2: Correlations for various pairs of distances. A column represents a pair of distances and
a row represents a single data set. For example, the correlation between dCM (ind) and
dCM (cov) in 20Newsgroups is 0.996. The last row is the correlation obtained by using the
distances from all data sets simultaneously. Scatterplots for the columns 1–2 and 4–5 are
given in Fig. 2.

Our first observation from the results is that dCM (cov) resembles dCM (ind) whereas dCM ( f req)
produces somewhat different results.
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Figure 2: CM and base distances as functions of dCM (ind). A point represents a distance between
two data sets. The upper two figures contain the CM distances while the lower two contain
the base distance. The distances were normalised by dividing

√
N, where N is the number

of constraints. The corresponding correlations are given in Table 2. Note that x-axis in
the left (right) two figures are equivalent.

The correlations between dCM (cov) and dCM (ind) are stronger than the correlations between
dU (cov) and dU (ind). This can be explained by examining Eq. 5 in Example 4. If the dimension
is K, then the itemsets of size 1, according to Eq. 5, involve 1

2 K(K − 1) + K times in computing
dCM (cov), whereas in computing dU (cov) they involve only K times. Hence, the itemsets of size 2
have smaller impact in dCM (cov) than in dU (cov).

On the other hand, the correlations between dCM ( f req) and dCM (ind) are weaker than the cor-
relations between dU ( f req) and dU (ind), implying that the itemsets of higher order have stronger
impact on the CM distance.

7.3 Clustering Experiments

In this section we continue our experiments by applying clustering algorithms to the distances. Our
goal is to compare the clusterings obtained from the CM distance to those obtained from the base
distance (given in Eq. 7).
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We used 3 different clustering algorithms: a hierarchical clustering with complete linkage, a
standard K-median, and a spectral algorithm by Ng et al. (2002). Since each algorithm takes a
number of clusters as an input parameter, we varied the number of clusters between 3 and 5. We
applied clustering algorithms to the distances dCM (cov), dCM ( f req), dU (cov), and dU ( f req), and
compare the clusterings obtained from dCM (cov) against the clusterings obtained from dU (cov), and
similarly compare the clusterings obtained from dCM ( f req) against the clusterings obtained from
dU ( f req).

We measured the performance using 3 different clustering indices: a ratio r of the mean of
the intra-cluster distances and the mean of the inter-cluster distances, Davies-Bouldin (DB) in-
dex (Davies and Bouldin, 1979), and Calinski-Harabasz (CH) index (Calinski and Harabasz, 1974).

The obtained results were studied in the following way: Given a data set and a performance
index, we calculated the number of algorithms in which dCM (cov) outperformed dU (cov). The
distances dCM ( f req) and dU ( f req) were handled similarly. The results are given in Table 3. We also
calculated the number of data sets in which dCM (cov) outperformed dU (cov), given an algorithm
and an index. These results are given in Table 4.

dCM (cov) vs. dU (cov) dCM ( f req) vs. dU ( f req)

Data set r DB CH r DB CH Total P

1. 20Newsgroups 0/9 2/9 7/9 8/9 5/9 9/9 31/54 0.22
2. Speeches 9/9 6/9 3/9 9/9 9/9 9/9 45/54 0.00
3. Bible 9/9 7/9 2/9 9/9 7/9 9/9 43/54 0.00
4. Beatles 0/9 3/9 6/9 0/9 1/9 0/9 10/54 0.00
5. TopGenres 0/9 4/9 5/9 0/9 1/9 0/9 10/54 0.00
6. TopDecades 3/9 7/9 2/9 7/9 7/9 9/9 35/54 0.02
7. Abstract 9/9 8/9 1/9 0/9 2/9 1/9 21/54 0.08

Total 30/63 37/63 26/63 33/63 32/63 37/63 195/378 0.50
P 0.61 0.13 0.13 0.61 0.80 0.13

Table 3: Summary of the performance results of the CM distance versus the base distance. A single
entry contains the number of clustering algorithm configurations (see Column 1 in Table 4)
in which the CM distance was better than the base distance. The P-value is the standard
Fisher’s sign test.

We see from Table 3 that the performance of CM distance against the base distance depends on
the data set. For example, the CM distance has tighter clusterings in Speeches, Bible, and TopDecade
whereas the base distance outperforms the CM distance in Beatles and TopGenre.

Table 4 suggests that the overall performance of the CM distance is as good as the base distance.
The CM distance obtains a better index 195 times out of 378. The statistical test suggests that this
is a tie. The same observation is true if we compare the distances algorithmic-wise or index-wise.

7.4 Distance Matrices

In this section we will investigate the CM distance matrices for real-world data sets. Our goal is to
demonstrate that the CM distance produces interesting and interpretable results.
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dCM (cov) vs. dU (cov) dCM ( f req) vs. dU ( f req)

Algorithm r DB CH r DB CH Total P

1. K-MED(3) 4/7 2/7 5/7 4/7 4/7 4/7 23/42 0.44
2. K-MED(4) 4/7 4/7 3/7 4/7 4/7 4/7 23/42 0.44
3. K-MED(5) 4/7 4/7 3/7 4/7 4/7 4/7 23/42 0.44
4. LINK(3) 3/7 4/7 3/7 2/7 3/7 4/7 19/42 0.44
5. LINK(4) 3/7 4/7 3/7 4/7 3/7 4/7 21/42 0.88
6. LINK(5) 3/7 3/7 4/7 4/7 2/7 4/7 20/42 0.64
7. SPECT(3) 3/7 6/7 1/7 3/7 4/7 4/7 21/42 0.88
8. SPECT(4) 3/7 4/7 3/7 4/7 4/7 4/7 22/42 0.64
9. SPECT(5) 3/7 6/7 1/7 4/7 4/7 5/7 23/42 0.44

Total 30/63 37/63 26/63 33/63 32/63 37/63 195/378 0.50
P 0.61 0.13 0.13 0.61 0.80 0.13

Table 4: Summary of the performance results of the CM distance versus the base distance. A single
entry contains the number of data sets (see Column 1 in Table 3) in which the CM distance
was better than the base distance. The P-value is the standard Fisher’s sign test.

We calculated the distance matrices using the feature sets ind, cov, and freq. The matrices are
given in Figures 4 and 3. In addition, we computed performance indices, a ratio of the mean of
the intra-cluster distances and the mean of the inter-cluster distances, for various clusterings and
compare these indices to the ones obtained from the base distances. The results are given in Table 5.

cov freq

Data Clustering ind dCM dU dCM dU

Bible Old Test. | New Test. 0.79 0.79 0.82 0.73 0.81
Old Test. | Gospels | Epistles 0.79 0.79 0.81 0.73 0.81

Addresses 1–32 | 33–55 0.79 0.80 0.85 0.70 0.84
1–11 | 12–22 | 23–33 | 34–44 | 45–55 0.83 0.83 0.87 0.75 0.87

Beatles 1,2,4–6 | 7–10,12–13 | 3 | 11 0.83 0.86 0.83 0.88 0.61
1,2,4,12,13 | 5–10 | 3 | 11 0.84 0.85 0.84 0.89 0.63

20Newsgroups Rel.,Pol. | Rest 0.76 0.77 0.67 0.56 0.62
Rel.,Pol. | Comp., misc | Rest 0.78 0.78 0.79 0.53 0.79

TopGenres Act.,Adv., SciFi | Rest 0.74 0.73 0.64 0.50 0.32
TopDecades 1930–1960 | 1970–2000 0.84 0.83 0.88 0.75 0.88

1930–1950 | 1960–2000 0.88 0.88 0.98 0.57 1.06

Table 5: Statistics of various interpretable clusterings. The proportions are the averages of the
intra-cluster distances divided by the averages of the inter-cluster distances. Hence small
fractions imply tight clusterings.
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Figure 3: Distance matrices for 20Newsgroups, TopGenres, TopDecades, and Abstract. In the first
column the feature set ind contains the independent means, in the second feature set cov
the pairwise correlation is added, and in the third column the feature set freq consists of
10K most frequent itemsets, where K is the number of attributes. Darker colours indicate
smaller distances.

We should stress that standard edit distances would not work in these data setups. For example,
the sequences have different lengths and hence Levenshtein distance cannot work.

The imperative observation is that, according to the CM distance, the data sets have structure.
We can also provide some interpretations to the results: In Bible we see a cluster starting from the
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Figure 4: Distance matrices for Bible, Addresses, and Beatles. In the first column the feature set ind
contains the independent means, in the second feature set cov the pairwise correlation is
added, and in the third column the feature set freq consists of 10K most frequent itemsets,
where K is the number of attributes. Darker colours indicate smaller distances.

46th book. The New Testament starts from the 47th book. An alternative clustering is obtained
by separating the Epistles, starting from the 52th book, from the Gospels. In Addresses we some
temporal dependence. Early speeches are different than the modern speeches. In Beatles we see
that the early albums are linked together and the last two albums are also linked together. The
third album, Help!, is peculiar. It is not linked to the early albums but rather to the later work.
One explanation may be that, unlike the other early albums, this album does not contain any cover
songs. In 20Newsgroups the groups of politics and of religions are close to each other and so are
the computer-related groups. The group misc.forsale is close to the computer-related groups. In
TopGenres Action and Adventure are close to each other. Also Comedy and Romance are linked. In
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TopDecades and in Abstract we see temporal behaviour. In Table 5 the CM distance outperforms
the base distance, except for Beatles and TopGenres.

8. Conclusions and Discussion

Our task was to find a versatile distance that has nice statistical properties and that can be evaluated
efficiently. The CM distance fulfils our goals. In theoretical sections we proved that this distance
takes properly into account the correlation between features, and that it is the only (Mahalanobis)
distance that does so. Even though our theoretical justifications are complex, the CM distance itself
is rather simple. In its simplest form, it is the L2 distance between the means of the individual
attributes. On the other hand, the CM distance has a surprising form when the features are itemsets.

In general, the computation time of the CM distance depends of the size of sample space that can
be exponentially large. Still, there are many types of feature functions for which the distance can
be solved. For instance, if the features are itemsets, then the distance can be solved in polynomial
time. In addition, if the itemsets form an antimonotonic family, then the distance can be solved in
linear time.

In empirical tests the CM distance implied that the used data sets have structure, as expected.
The performance of the CM distance compared to the base distance depended heavily on the data
set. We also showed that the feature sets ind and cov produced almost equivalent distances, whereas
using frequent itemsets produced very different distances.

Sophisticated feature selection methods were not compared in this paper. Instead, we either
decided explicitly the set of features or deduced them using APRIORI. We argued that we cannot use
the traditional approaches for selecting features of data sets, unless we are provided some additional
information.
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Appendix A.

In this section we will prove the theorems given in this paper.

A.1 Proof of Theorem 1

To simplify the notation denote S0(x) = 1, θ∗
1 = [1,θ11, . . . ,θ1N ]T and θ∗

2 = [1,θ21, . . . ,θ2N ]T . The
norm function restricted to the affine space has one minimum and it can be found using Lagrange
multipliers. Thus we can express the vectors ui in Eq. 2

ui j = λT
i S( j),
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where j ∈ Ω and λi is the column vector of length N +1 consisting of the corresponding Lagrange
multipliers. The distance is equal to

dCM (D1,D2 | S)2 = |Ω|‖u1 −u2‖2
2 ,

= |Ω| ∑
j∈Ω

(u1 j −u2 j)(u1 j −u2 j) ,

= |Ω| ∑
j∈Ω

(u1 j −u2 j)
(

λT
1 S( j)−λT

2 S( j)
)

,

= |Ω|(λ1 −λ2)
T ∑

j∈Ω
(u1 j −u2 j)S( j),

= |Ω|(λ1 −λ2)
T (θ∗

1 −θ∗
2) .

Since ui ∈ C (S,θi), the multipliers λi can be solved from the equation

θ∗
i = ∑

j∈Ω
S( j)ui j = ∑

j∈Ω
S( j)λT

i S( j) =

(

∑
j∈Ω

S( j)S( j)T

)

λi,

that is, θ∗
i = Aλi, where A is an (N +1)× (N +1) matrix Axy = ∑ j Sx( j)Sy( j). It is straightforward

to prove that the existence of Cov−1 [S] implies that A is also invertible. Let B be an N ×N matrix
formed from A−1 by removing the first row and the first column. We have

|Ω|‖u1 −u2‖2
2 = |Ω|(θ∗

1 −θ∗
2)

T A−1 (θ∗
1 −θ∗

2) ,

= |Ω|(θ1 −θ2)
T B(θ1 −θ2) .

The last equality is true since θ∗
10 = θ∗

20.
We need to prove that |Ω|B = Cov−1 [S]. Let [c;B] be the matrix obtained from A−1 by removing

the first row. Let γ = E [S] taken with respect to the uniform distribution. Since the first column of
A is equal to |Ω| [1,γ], it follows that c = −Bγ. From the identity

cxA(0,y) +
N

∑
z=1

B(x,z)A(z,y) = δxy

we have
N

∑
z=1

B(x,z)

(

A(z,y) −A(0,y)γz
)

=
N

∑
z=1

|Ω|B(x,z)

(

|Ω|−1 A(z,y) − γyγz

)

= δxy.

Since |Ω|−1 A(z,y)− γzγy is equal to the (z,y) entry of Cov [S], the theorem follows.

A.2 Proofs of Theorems given in Section 2.2

Proof [Theorem 2] The covariance matrix Cov [S] in Theorem 1 depends only on S and is positive
definite. Therefore, the CM distance is a Mahalanobis distance.

Proof [Theorem 3] Let θi = S(Di) for i = 1,2,3. The frequencies for D1 ∪D3 and D2 ∪D3 are
(1− ε)θ1 + εθ3 and (1− ε)θ2 + εθ3, respectively. The theorem follows from Theorem 1.

The following lemma proves Theorem 4.
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Lemma 10 Let A : R
N → R

M and define a function T (ω) = A(S(ω)). Let φ = T (D) and θ = S (D)
be the frequencies for some data set D. Assume further that there is no two data sets D1 and D2 such
that S (D1) = S (D2) and T (D1) 6= T (D2). Then dCM (D1,D2 | T ) ≤ dCM (D1,D2 | S). The equality
holds if for a fixed φ the frequency θ is unique.

Before proving this lemma, let us explain why the uniqueness requirement is needed: Assume that
the sample space Ω consists of two-dimensional binary vectors, that is,

Ω = {(0,0) ,(1,0) ,(0,1) ,(1,1)} .

We set the features to be S(ω) = [ω1,ω2]
T . Define a function T (x) = [ω1,ω2,ω1ω2]

T =
[S1(ω),S2(ω),S1(ω)S2(ω)]T . Note that uniqueness assumption is now violated. Without this as-
sumption the lemma would imply that dCM (D1,D2 | T )≤ dCM (D1,D2 | S) which is in general false.
Proof Let θ1 = S (D1) and φ1 = T (D1). Pick u ∈ C (S,θ1). The frequency of S taken with the
respect to u is θ1 and because of the assumption the corresponding frequency of T is φ1. It follows
that C (S,θi) ⊆ C (T,φi). The theorem follows from the fact that the CM distance is the shortest
distance between the affine spaces C (S,θ1) and C (S,θ2).

A.3 Proof of Theorem 7

It suffices to prove that the matrix C(S) is proportional to the covariance matrix Cov [S]. The notation
δ(ω1 | ω2) used in the proof represents a feature function δ : Ω → {0,1} which returns 1 if ω1 = ω2

and 0 otherwise.
Before proving the theorem we should point one technical detail. In general, C(S) may be

singular, especially in Assumption 1. In our proof we will show that C(S) ∝ Cov [S] and this does
not require C(S) to be invertible. However, if one wants to evaluate the distance d, then one must
assume that C(S) is invertible.

Fix indices i and j such that i 6= j. Let T (ω) = [Si(ω),S j(ω)]T . If follows from Assumption 1
that

C(T ) =

[

Cii(S) Ci j(S)
C ji(S) C j j(S)

]

.

This implies that Ci j(S) depends only on Si and S j. In other words, we can say Ci j(S) = Ci j(Si,S j).
Let ρ : {1, . . . ,N} → {1, . . . ,N} be some permutation function and define U(x) =
[

Sρ(1)(x), . . . ,Sρ(N)(x)
]T

. Assumption 1 implies that

Cρ(i)ρ( j)(S) = Ci j(U) = Ci j(Ui,U j) = Ci j(Sρ(i),Sρ( j)).

This is possible only if all non-diagonal entries of C have the same form or, in other words, Ci j(S) =
Ci j(Si,S j) = C(Si,S j). Similarly, the diagonal entry Sii depends only on Si and all the diagonal
entries have the same form Cii(S) = C(Si). To see the connection between C(Si) and C(Si,S j) let
V (ω) = [Si(ω),Si(ω)]T and let W (ω) = [2Si(ω)]T . We can represent W (ω) = V1(ω)+V2(ω). Now
Assumption 1 implies

4C(Si) = C(W ) = C(V11)+2C(V12,V21)+C(V22),

= 2C(Si)+2C(Si,Si)
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which shows that C(Si) = C(Si,Si). Fix S j and note that Assumption 1 implies that C(Si,S j) is a
linear function of Si. Thus C has a form

C(Si,S j) = ∑
ω∈Ω

Si(ω)h(S j,ω)

for some specific map h. Let α ∈ Ω. Then C(δ(ω | α) ,S j) = h(S j,α) is a linear function of S j. Thus
C has a form

C(Si,S j) = ∑
ω1,ω2∈Ω

Si(ω1)S j(ω2)g(ω1,ω2)

for some specific g.
Let α, β, and γ be distinct points in Ω. An application of Assumption 2 shows that g(α,β) =

C(δ(ω | α) ,δ(ω | β)) = C(δ(ω | α) ,δ(ω | γ)) = g(α,γ). Thus g has a form g(ω1,ω2) =
aδ(ω1 | ω2)+b for some constants a and b.

To complete the proof note that Assumption 1 implies that C(S + b) = C(S) which in turns
implies that ∑x g(ω1,ω2) = 0 for all y. Thus b = −a |Ω|−1. This leads us to

C(Si,S j) = ∑
ω1,ω2∈Ω

Si(ω1)S j(ω2)
(

aδ(ω1 | ω2)−a |Ω|−1
)

,

= a ∑
ω∈Ω

Si(ω)S j(ω)−a

(

∑
ω∈Ω

Si(ω)

)(

∑
ω∈Ω

|Ω|−1 S j(ω)

)

,

∝ E [SiS j]−E [Si]E [S j] ,

where the means are taken with respect to the uniform distribution. This identity proves the theorem.

A.4 Proof for Lemma 8

Let us prove that Cov [TF ] = 0.5I. Let A be an itemset. There are odd number of ones in A in exactly
half of the transactions. Hence, E

[

T 2
A

]

= E [TA] = 0.5. Let B 6= A be an itemset. We wish to have
TB(ω) = TA(ω) = 1. This means that ω must have odd number of ones in A and in B. Assume that
the number of ones in A∩B is even. This means that A−B and B−A have odd number of ones.
There is only a quarter of all the transactions that fulfil this condition. If A∩B is odd, then we must
an even number of ones in A−B and B−A. Again, there is only a quarter of all the transactions for
which this holds. This implies that E [TATB] = 0.25 = E [TA]E [TB]. This proves that Cov [TF ] = 0.5I.

A.5 Proof of Theorem 9

Before proving this theorem let us rephrase it. First, note even though d (·, · | ·) is defined only on
the conjunction functions SF , we can operate with the parity function TF . As we stated before there
is an invertible matrix A such that TF = ASF . We can write the distance as

d (D1,D2 | SF )2 = (Aθ1 −Aθ2)
T (A−1)T

C(SF )−1A−1 (Aθ1 −Aθ2) .

Thus we define C(TF ) = AC(SF )AT . Note that the following lemma implies that the condition
stated in Theorem 9 is equivalent to C(TA) = cI, for some constant c. Theorem 9 is equivalent to
stating that C(TF ) = cI.

The following lemma deals with some difficulties due the fact that the frequencies should arise
from some valid distributions
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Lemma 11 Let A be the family of all itemsets. There exists ε > 0 such that for each real vector γ of
length 2K −1 that satisfies ‖γ‖2 < ε there exist distributions p and q such that γ = Ep [TA ]−Eq [TA ].

Proof To ease the notation, add T0(x) = 1 to TA and denote the end result by T ∗. We can consider T ∗

as a 2K ×2K matrix, say A. Let p be a distribution and let u be the vector of length 2K representing
the distribution. Note that we have Au = Ep [T ∗]. We can show that A is invertible. Let U some
2K − 1 dimensional open ball of distributions. Since A is invertible, the set V ∗ = {Ax | x ∈U} is a
2K −1 dimensional open ellipsoid. Define also V by removing the first coordinate from the vectors
of V ∗. Note that the first coordinate of elements of V ∗ is equal to 1. This implies that V is also
a 2K − 1 dimensional open ellipsoid. Hence we can pick an open ball N(θ,ε) ⊂ V . The lemma
follows.

We are now ready to prove Theorem 9:
Abbreviate the matrix C(TF ) by C. We will first prove that the diagonal entries of C are equal

to c. Let A be the family of all itemsets. Select G ∈ F and define R = {H ∈ F | H ⊆ G}. As we
stated above, C(TA) = cI and Assumption 2 imply that C(TR ) = cI. Assumption 1 implies that

d
(

·, · | SR
)2 ≤ d (·, · | SF )2 ≤ d (·, · | SA)2 . (8)

Select ε corresponding to Lemma 11 and let γA = [0, . . . ,ε/2, . . . ,0]T , that is, γA is a vector whose
entries are all 0 except the entry corresponding to G. Lemma 11 guarantees that there exist distri-
butions p and q such that d (p,q | SA)2 = c‖γA‖2

2. Let γF = Ep [TF ]−Eq [TF ] and γR = Ep
[

TR
]

−
Eq
[

TR
]

. Note that γR and γF has the same form as γA. It follows from Eq. 8 that

cε2/4 ≤CG,Gε2/4 ≤ cε2/4,

where CG,G is the diagonal entry of C corresponding to G. It follows that CG,G = c.
To complete the proof we need to show that CG,H = 0 for G,H ∈ F ,G 6= H. Assume that CX ,Y 6=

0 and let s be the sign of CG,H . Apply Lemma 11 again and select γA =
[0, . . . ,ε/4,0, . . . ,0,sε/4, . . . ,0]T , that is, γA has ε/4 and sε/4 in the entries corresponding to G
and H, respectively, and 0 elsewhere. The right side of Eq. 8 implies that

2cε2/16+2 |CG,H |ε2/16 ≤ 2cε2/16

which is a contradiction and it follows that CG,H = 0. This completes the theorem.
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