Distributed Sleep Scheduling in Wireless Sensor
Networks via Fractional Domatic Partitioning

André Schumacher and Harri Haanpaa

Helsinki University of Technology, Department of Information and Computer Science,
P.O. Box 5400, FI-02015 TKK, Finland
Andre.Schumacher@tkk.fi, Harri.Haanpaa@tkk.fi

Abstract. We consider setting up sleep scheduling in sensor networks.
We formulate the problem as an instance of the fractional domatic par-
tition problem and obtain a distributed approximation algorithm by ap-
plying linear programming approximation techniques. Our algorithm is
an application of the Garg-Kénemann (GK) scheme that requires solving
an instance of the minimum weight dominating set (MWDS) problem as
a subroutine. Our two main contributions are a distributed implemen-
tation of the GK scheme for the sleep-scheduling problem and a novel
asynchronous distributed algorithm for approximating MWDS based on
a primal-dual analysis of Chvétal’s set-cover algorithm. We evaluate our
algorithm with ns2 simulations.

1 Introduction

In sleep scheduling, sensor-network nodes switch between active and inactive
states to save energy, thus extending network lifetime. A variety of protocols
have been proposed for having a sensor network self-organize by choosing subsets
of nodes to be active and serve as a backbone for routing or providing coverage;
see e.g. [1I2J3/4]. Many protocols are heuristic and do not provide performance
guarantees.

The sleep-scheduling problem can be modeled using a pairwise redundancy
relationship between sensor nodes. In the resulting redundancy graph adjacent
nodes represent sensors that can measure the same data. When backbone con-
nectivity is not a concern, e.g., because data generation and collection phases
are separated, the network can be considered operational as long as at any time
each inactive node has an active neighbor in the redundancy graph. Although our
coverage model is very simple, we consider it useful when node density is rather
large, so that nodes nearby typically measure similar data. In graph-theoretic
terms, the problem reduces to finding dominating sets in the redundancy graph
and computing an assignment of dominating sets to time slots that achieves
maximum length while satisfying node-battery constraints. This notion of sleep
scheduling assumes a global clock to determine at any time the set of active
nodes. It is usually sufficient, however, that nodes are loosely synchronized.

Floréen et al. [5] and Suomela [6] use the same redundancy model. Carbunar
et al. [7] consider a geometric setting where nodes have a fixed sensing radius.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 640-654] 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Sleep Scheduling in Wireless Sensor Networks 641

They construct a graph of nodes which each individually could become inactive
without sacrificing coverage. By introducing edges between nodes that share
an edge in the Voronoi diagram and searching for large independent sets in this
graph, battery capacity of some nodes can be preserved while retaining network-
wide coverage.

Assuming uniform battery capacities and a node can only participate in one
dominating set during the operation of the network, the sleep-scheduling problem
is also known as the domatic partition problem. In the version we consider, dom-
inating sets can be active for an arbitrarily long period while satisfying battery
constraints. Removing integrality constraints enables us to apply approximation
techniques for Linear Programming (LP) and allows for a longer lifetime in some
networks, such as the five-cycle with unit capacities.

In Section 2, we formulate the sleep-scheduling problem as an LP packing
problem and apply the Garg-Konemann [8] (GK) technique to obtain a dis-
tributed approximation algorithm for general redundancy graphs. General re-
dundancy graphs are interesting for sensor networks, as other models, such as
unit-disk graphs, do not capture non-uniform sensing capabilities or obstacles
in the terrain. We also present a novel asynchronous distributed algorithm for
approximating the minimum weight dominating set (MWDS) problem, which
we will then use within the GK scheme. We develop our algorithm in Section
3 and first describe a centralized implementation. In Section @ we present an
efficient distributed implementation which does not require network-wide clock-
synchronization. Further, in Section 5 we provide ns2 [9] simulation data, which
indicate a low number of messages required in practice. Section 6 presents our
conclusions.

2 Domatic Partition

The domatic partition problem is a well-known problem in graph theory. The
maximum number of disjoint dominating sets of a graph is called the domatic
number. Feige et al. [10] show that the domatic number can be approximated
in polynomial time within a factor of O(logn), where n is the number of nodes,
but that it is hard to approximate it within a (1 — €)Inn factor for any € > 0.
Moscibroda and Wattenhofer [I1] extend the results of Feige et al. and obtain a
distributed, randomized algorithm for the same problem.

In this section, we give a formal description of the sleep-scheduling problem
that allows arbitrary activation periods and formulate it as an LP. We then
describe the application of the Garg-Koénemann algorithm and a distributed
implementation that is suitable for wireless sensor networks. For simplicity, we
assume that all nodes have unit battery capacity. We note, however, that the
extension to arbitrary capacities is possible.

2.1 Problem Formulation

We assume a given connected transmission graph G(V, E') that models the sensor
network with unique node identifiers. The edges in E represent the links between

642 A. Schumacher and H. Haanpaa

the radio nodes, which we assume to be undirected. Denote by N (v) the neigh-
bors of v in G and define N (v) to be the extended neighborhood N(v) U {v}
of v. Define § = min,ecy N(v) and 6 = min,ey N1 (v) to be the minimum de-
gree and minimum extended degree, respectively. Similarly, define A and A% to
be size of the largest neighborhoods. By N, (v) we denote the k-hop extended
neighborhood of v, i.e., all nodes at a hop-distance of at most k£ from v and
define N (v) = {v}, so that Ni"(v) = N*(v).

For simplicity of exposition, we consider the redundancy graph and G to be
identical, so that the problem involves finding dominating sets in G. This as-
sumption could be removed, when nodes know their neighbors in the redundancy
graph and can communicate with them over only a few hops in G. However, note
that we do not require any specific structural properties on either graph.

We introduce variables xp that correspond to the total activation time of
dominating set D. The domatic partition problem can be formulated as the
following LP with a possibly exponential number of variables.

FRAC_DOMPART_PRIMAL max » ap
D

s.t. Z zp <1 YoeV (1)
D:weD

{EDZO VD

The objective), xp is the length of the sleep schedule and () is the capacity
constraint for node v. From () and since there is a node that can be dominated
by at most 5T different dominating sets it follows that §* is an upper bound on
the total lifetime of any feasible solution. For the domatic number problem xp
must be integral. As we assume that nodes can participate in several dominating
sets, we do not require integrality of xp. This problem has only been rarely ad-
dressed in the literature. It was shown in [6] that the hardness of approximation
result of [I0] for the domatic number problem also holds in this case. Floréen
et al. [5] propose a local algorithm that achieves a constant approximation fac-
tor in so-called marked graphs, which are bounded-degree graphs that contain
specially distributed marked nodes for breaking symmetry. Since we consider
general graphs we can only aim at a logarithmic approximation factor.

We propose a distributed version of the Garg-Kénemann scheme for approx-
imating LP packing problems, which requires a solution to the following dual
problem. The dual is formulated by introducing dual variables v, for the capacity
constraints of node v.

FRAC_DOMPART _DUAL min Yy,
st. > yo>=1 VD (2)
veD

Yy >0 YoeV

Validating constraint (2]) for given y, corresponds to solving an instance of the
minimum weight dominating set (MWDS) problem with y, as constant node

Distributed Sleep Scheduling in Wireless Sensor Networks 643

weights. Our algorithm for approximating MWDS does not require network-wide
synchronization or geometric restrictions on the dependency graph. Suomela [6]
applies the GK scheme in a centralized setting to so-called local graphs, where
V C R%, all edges have length at most 1 and node density is bounded by a con-
stant. It was shown in [6] that the MWDS problem in these graphs can be solved
efficiently. Berman et al. [I2] propose to use the greedy set-cover approximation
algorithm by Chvétal [13] within the GK scheme. Although their approach is
similar to ours, their algorithm is centralized. See also [4] for a survey of al-
gorithms for variations of lifetime maximization problems within the context
of sensor network coverage, which can be also seen as heuristics for problems
similar to domatic partition.

2.2 Garg-Koénemann Scheme

For simplicity of exposition, we first describe the GK scheme as applied to prob-
lem FRAC_DOMPART _PRIMAL in a centralized setting and then elaborate on
a distributed version suitable for implementation in sensor networks. The GK
scheme takes as input an LP packing problem and a small positive constant e.
After termination the primal objective value is guaranteed to be at least (1 —¢)?
times the optimum (for details see []). The algorithm proceeds in iterations, as
described in Algorithm [II

initially :
B (1+e)((1+eL)
for all D: zp(0) — 0
for all ve V:y,(0) —f

in iteration k >1
use oracle to find MWDS D* using y,(k — 1) as node weights
i, ye(k—1) 2 1)

zp(k—1
for all D:xp(k) — ﬁ

return
else
:rD*(k) — xD*(k — 1) +1
for all veV
if v& D" then yu(k) — (1 + €)yu(k —1)
else yu(k) — yu(k—1)

Algorithm 1. GK scheme for fractional domatic partition

Denote by y,(k — 1) the value of the dual variable y, at the beginning and by
y» (k) its value at the end of iteration k and define xp (k) similarly. In iteration k
one selects the MWDS D* depending on the current node weights and increases
its activation time by one. If the total weight of all nodes in the networks is
at least one, the primal variables are scaled down by a value depending on the
size of the instance, and the algorithm terminates. Otherwise, the dual variables

644 A. Schumacher and H. Haanpaa

for the nodes in D* are multiplied by (1 + €). For the value L in the scaling
factor it is sufficient to choose L = |V, the maximum size of any dominating
set. Note that the dominating sets found in different iterations do not need to
be disjoint.

Instead of solving the MWDS subproblem in each iteration exactly, we use
an approximation oracle with approximation factor ¢ > 1. The resulting sleep
schedule is guaranteed to have a length of at least (1 — €)?/¢ times the optimal
length, where € can be chosen arbitrarily small. For details on the application of
the GK scheme in combination with an approximation oracle see the paper by
Tsaggouris and Zaroliagis [14].

In Section Bl we propose a distributed MWDS algorithm with an approxima-
tion factor of ¢ = O(In AT), so that the combined algorithm is asymptotically
optimal for the sleep-scheduling problem. By choosing a different MWDS ap-
proximation algorithm it is likely that better approximation guarantees can be
achieved for certain graph classes.

2.3 Distributed GK Implementation

We now describe a distributed implementation of Algorithm [and how we com-
bine it with the MWDS subroutine of Section [4. We assume the existence of a
single initiator node which knows the number of nodes |V]|.

First we construct a spanning tree of the transmission graph in style of the
Shout protocol [15]. The spanning tree is used to send and receive control mes-
sages within the network. While constructing the spanning tree, the node weights
are initialized to [, as in Algorithm [l

In the first iteration, the initiator node broadcasts an initiate message in the
network. This is a signal for the nodes to solve the subproblem within the inner
loop of the GK algorithm, in our case the MWDS problem. The nodes then solve
the subproblem, and a convergecast follows, whereby the initiator obtains the
sum of the weights y,(0) that is needed for testing the termination condition.

Until the termination condition is met, in subsequent iterations the nodes up-
date their weight ¥, according to the solution of the subproblem in the previous
iteration. In our case, the nodes found to be in the dominating set in the previous
iteration set y, «— (1 + €)y, before solving the MWDS problem in the current
iteration. When the termination condition is satisfied, the initiator broadcasts a
final message to inform the other nodes of the termination.

In our implementation, nodes need to remember the iterations in which they
were in the dominating set. The sleep schedule results from this information. As
an implementation note, during the broadcast and convergecast in each itera-
tion, we let the nodes collect some data they need for the MWDS computation.
Namely, at the start of the MWDS algorithm the nodes have to know not only
their own weight but also the weights of their neighbors, as well as the number
of neighbors each neighbor has. Instead of having separate phases for collecting
this data, this is convenient to embed in the GK scheme.

Distributed Sleep Scheduling in Wireless Sensor Networks 645

3 Minimum Weight Dominating Set Approximation

This section describes an approximation algorithm for MWDS inspired by par-
allel algorithms based on linear programming duality proposed by Rajagopalan
and Vazirani [I6] for weighted set-cover. Although we use it within the GK
scheme, we consider the more general MWDS setting. Dominating sets can be
used among other purposes for network coverage, routing, and sleep scheduling.
For an overview of the relevant literature see [17].

3.1 Problem Formulation

We first formulate an LP for the problem. Introduce variable z, for each v
corresponding to v being selected for the dominating set, whereby we initially
do not require integrality of z,. Denote the weight of node v by w,.

FRAC_DOMSET _PRIMAL min Y w, 2
veV
S.t. Z Zu>1 YoeV
uEN*(v)

2, >0 YveV

Algorithm 2 is Chvatal’s algorithm applied to MWDS that obtains an integral
solution to the previous LP. It repeatedly adds to the dominating set the node
with the lowest ratio of weight to span, the number of uncovered nodes that the
node would cover, until all nodes are covered. The algorithm gives a dominating
set with weight at most ¢ = H A+ times the optimum, where H; = Z;’:l Gt
is the i-th harmonic number. This follows from the results in [13], as AT is the
size of the largest set in the corresponding set-cover instance.

initially :
C—10
for all veV:z, 0

while C # V
v’ « arg min, MW
Zyt 1

C—CUNT@")

Algorithm 2. Greedy algorithm MWDS based on [13]

When one assumes unit node weights, one can easily obtain approximation
algorithms that achieve a constant approximation factor in unit-disk graphs [I8§],
and even polynomial-time approximation schemes (PTAS) are possible [19]. In
general graphs, however, the inapproximability results for the set-cover problem
[20] imply that Chvétal’s algorithm is essentially the best-possible polynomial
time approximation algorithm under standard complexity assumptions.

646 A. Schumacher and H. Haanpaa

Distributed algorithms based on Chvatal’s algorithm have been proposed
for both unit and arbitrary weights. Most of them, however, assume a syn-
chronous message passing model. Jia et al. [21] remark that the straightforward
distributed implementation of the greedy algorithm in the synchronous model
has linear time complexity. They propose randomized algorithms with polylog-
arithmic time complexity and approximation guarantees similar to Chvatal’s
algorithm, but their implementation requires careful clock synchronization in
the network. Alternatively, synchronization techniques proposed by Awerbuch
[22] can be applied, which further complicate the algorithm and require message
overhead. Our algorithm is deterministic, requires no synchronization, is simple
to implement, and shares the approximation guarantee of Chvatal’s algorithm.

Wang et al. [23] propose a distributed asynchronous algorithm for connected
MWDS based on a hybrid approach between the independent set approach [18]
and Chvatal’s algorithm applied locally in each neighborhood. However, for gen-
eral graphs the approximation guarantee in [23] can be worse than for Chvétal’s
algorithm and may further depend on the weights of adjacent nodes.

3.2 Centralized Implementation

We first describe our algorithm for approximating MWDS in a centralized set-
ting. Introduce dual variables «,, for the coverage constraint of node v in problem
FRAC_DOMSET _PRIMAL. We formulate the dual as follows.

FRAC _ DOMSET_DUAL max Z Qy
veV
s.t. Z ay, <w, YveVv
uENT(v)

a, >0 YveV

Algorithm 2] can be translated into an algorithm that maintains a pair of primal
and dual solutions. The primal solution is initially infeasible and becomes feasible
at termination. The dual solution is initially feasible but may become infeasible.
However, as one is able to bound the maximum dual constraint infeasibility, a
dual feasible solution is obtained by the technique of dual fitting [24].

The algorithm is best explained in its continuous version. Denote by z(t) and
a(t) the value of a pair of primal and dual solutions at time ¢ respectively (not
necessarily feasible). At start, z(0) = «(0) = 0. Start increasing all a,(t) at
unit rate until the first dual constraint holds with equality, say the constraint
for z,. This happens at time ¢; = w,/ |NT(v)|, so the node first chosen has the
least ratio of weight to span. Fix z,(t) = 1 for ¢ > ¢; and for all v € NT(v)
let a, (t) = 0 for ¢t > t;. Keep raising the other dual variables and proceed as
before, breaking ties arbitrarily. As «,/(t) = 0 for all ¢ after v’ was covered, they
no longer contribute to the dual constraints. The order in which these get tight
is exactly the same in which Algorithm Pladds nodes to the dominating set, and
each node is chosen at a time that equals its weight divided by the number of
its uncovered neighbors. Assume that k& nodes got tight at time points ¢1, ..., tx.

Distributed Sleep Scheduling in Wireless Sensor Networks 647

One can show the following pair of primal and dual solutions is feasible and at
most a factor of H,+ apart, therefore establishing the approximation guarantee
based on weak duality.

2o = 2o(tg) VW EV,

= max ay(t;) Vo eV
Ha+ ti,te v(l)

4 Distributed MWDS Approximation

In this section we obtain a distributed approximation algorithm for the MWDS
problem from the centralized dual-increase algorithm described above. Although
the order in which nodes enter the dominating set can be different, the resulting
dominating set is guaranteed to be the same. We assume that each node is aware
of the weight and degree of all its neighbors and also knows its neighbors in a
spanning tree rooted at the initiator by executing the steps of Section

The previously described algorithm is only feasible in a strictly synchronized
setting, since nodes need to increase their «, variables uniformly. We now de-
scribe a voting scheme that does not require synchronization. After termination
each node knows all dominators in its one-hop neighborhood. We first explain
the basic ideas of the algorithm in[£1] and then describe it in more detail in

4.1 Algorithm Outline

Throughout the algorithm, each node is in one of three cover states: uncovered,
covered, or dominator. Denote by U the set of uncovered nodes, where initially
U = V. Each node v maintains its own price

— { Ao ENT)nU #0,
Pv = .
['s) otherwise.
In the continuous time version, node v would become a dominator at time p,, if
the set of its uncovered neighbors stayed unchanged until then. To estimate p,
node v must know the state of its neighbors.

The straightforward method of repeatedly having each node compute its price
and letting the node with the minimum p, in the network become a dominator
would be inefficient. Instead, it suffices to consider two-hop local neighborhoods
only. The crucial observation is that as the algorithm proceeds, p, can only
increase, as the number of uncovered neighbors can only decrease. Thus, if node
v has the minimum p,, in N, (v), it is guaranteed to become a dominator at time
Py, since NT(v)NU stays unchanged until then. Then the idea of the distributed
algorithm is clear: whenever node v has the minimum p, in N5 (v), add it to the
set of dominators and let its neighbors know they are dominated.

During the algorithm each node v monitors whether it has the minimum p,, in
N5 (v). If so, v declares itself a dominator and informs its neighbors, who then
mark themselves as covered. A node becoming covered may affect the prices of

648 A. Schumacher and H. Haanpaa

its neighbors, as the prices depend on the number of uncovered neighbors. The
algorithm terminates when all nodes are covered.

Each uncovered node v monitors the weights of the nodes in N*(v) and votes
for the neighbor with the lowest price. If some node receives votes from all of its
uncovered neighbors, and there is at least one of those, it has the lowest price
in N, (v) and may therefore declare itself dominator.

To reduce the number of messages, when u votes for v, it also informs v of a
limit; the vote is valid as long as the price of v does not exceed the limit. When
u votes, it votes for the neighbor with the lowest price and sets the limit to that
of the neighbor with the second-lowest price. If v raises its price above the limit,
it will notify w so that u can decide again which node to vote for.

As a technical point, nodes only inform the nodes that are currently voting
for them about price updates. If a node receives a vote with a limit that is lower
than the current price of the recipient (e.g., if the voter has old information
about the price of the recipient), then the recipient will reply by informing the
voter of its current price.

4.2 Voting Scheme

We now describe the distributed implementation given in Algorithm[3l Each node
v keeps a tuple NL,, = (id, weight, degree, span, limit, notify) for each u € N*(v),
which together form the neighbor list NL, where id = u, degree is the degree of
u, span is the number of uncovered nodes in N7 (u), limit is the highest price
limit received in any vote from wu for v, and notify is a boolean variable which
indicates whether u needs to be notified of a change in the price of v. The list
is kept in increasing order of price, where ties are broken using node identifiers.
Additionally, v maintains a set U(v) € N*(v) of uncovered neighbors, a set
D(v) € N7*(v) of neighbors that have become dominators, and a set S(v) C
N7 (v) of supporters of v, i.e., neighbors that are voting for v.

Initially, NL,, = (u, wy, 0y, 6, + 1,0, false) for all w € NT(v), where 4§, is the
degree of u, and v calculates its price p, = 51"11. Node v also initializes D(v),
S(v) and U(v) accordingly. After receiving an initialization message, node v
votes for the node at the head of the list NL. We denote the kth entry of the list
by NL(k), where 1 < k < |[N*(v)]. So v sends the message VOTE(limit) to the
node with id NL(1)[id], say u, where limit = pyp,(2)fia)- Note that [N (v)| > 1
because G is connected. When u receives the vote, it first checks whether the
vote is valid, i.e., it checks whether limit > p, = 5;"11. If it is valid, u records v
entering its set of supporters S(u) and stores the limit value in its local neighbor
list. If v and u are the same node, node v performs exactly the same changes in
its own neighbor list without transmitting the message.

Whenever v receives a valid vote or if one of its neighbor was covered, it checks
whether there is at least one uncovered node in NT(v) which also votes for v.
If so, i.e., if S(v) = U(v) and |S(v)| > 0, then v declares itself dominator and
informs all its neighbors with a DOMINATOR(N (v)) message. It includes the
ids of its one-hop neighbors to let each recipient v € N(v) update its own price
based on the number of nodes in N (v) N N (u) that were covered by v.

Distributed Sleep Scheduling in Wireless Sensor Networks 649

initially :

if

D(v) < 0;U(v) «— N*(v); S(v) — O;NL —
for all u e N*t(v)
NL « NL U (id: u, weight: w,, degree: 0., span: d, + 1, limit: 0, notify: false)
schedule price_update_timer() after Ti seconds
cast_vote () after 7> seconds

v receives VOTE(limit) from u
if (NLy [weight] /NL, [span] < limit) // vote is valid
S(v) «— S(v) U {u}
if (NL,, [limit] < limit) NL,[limit] < limit
if (check_all_covered_and _voted ()) declare_myself_dominator()
else send PRICE(NL,[span], v € U(v) ? UNCOVERED : COVERED) to u

v receives PRICE(new_span, new_state) from u // (either overheard or unicast)
old first « NL(1)
if (u € U(v) and new_state == COVERED) // u informs of becoming dominated
U(v) — U)\ {u}
NL,[span] « NL,[span] — 1
for all we S(v) do
if (NLy [limit] < NL, [weight]/NL,[span])
NLy, [notify] « true
S(v) — S(0) \ {w}
NL, [span] < new_span
if (v ¢ D(v) and check_all_covered_and _voted()) declare_myself_dominator()
else check_and_terminate()
if (v € U(v))
if (old_first != NL(1)[id] or (old_first == u and message was unicast))
cast_vote ()
if (old_first == NL(1)[id] and old_first == v)
NL, [limit] < NL(2)[weight]/NL(2)[span]
if (check_all_covered_and_voted ()) declare_myself_dominator()

v receives DOMINATOR(N (w)) from u
D(v) < D(v) U{u}
NL,[span] < 0
i (U (1) \ N* ()] < NLy [span])
NL, [span] — [U() \ N* ()]
for w € S(v) with NL,, [limit] < NL, [weight]/NL,[span]
NL, [notify] « true
S(0) — S(0) \ {w}
if (v € U(v))
for all we N(v)\ (N (u)UD(v))
send PRICE(NL, [span], COVERED) to w
NLy, [notify] < false
U(v) — U(o)\ N* (u)
if (v ¢ D(v) and check_all_covered_and _voted()) declare_myself_dominator/()
else check_and_terminate()

Algorithm 3. Distributed MWDS as executed by node v

650 A. Schumacher and H. Haanpaa

void function cast_vote() at v

limit « NL(2)[weight]/NL(2)[span]

if (NL(1)[id] # v)
send VOTE(limit) to NL(1)[id]

else
NL, [limit] « limit
S(v) «— S(v) U {v}
if (check_all_covered_and voted () and v ¢ D(v))

declare_myself_dominator ()

void function declare_myself_dominator() at v
D(v) < D(v) U{v}
Uv) — 0
for all u e N(v)

send DOMINATOR(N (v)) to w

NL,[span] < 0
stop price_update_timer()
check_and_terminate()

bool function check_all_covered_and_voted() at v
if (S(v) = U(v) and |S(v)| > 0) return true
else return false

void price_update_timer() at v
for all u € U(v) with NL, [notify] == true
NL, [notify] « false
if (NL,[limit] < NL,[weight]/NL,[span])
send PRICE(NL,[span], v € U(v) ? UNCOVERED : COVERED) to u
if (v ¢ D(v)) schedule price_update_timer() after 71 seconds

void check_and_terminate() at v // test for local termination, perform convergecast
if (U(v) = 0 and all child nodes in spanning tree have reported weight of their subtree

for current GK iteration)
send terminate message to parent, include sum of weights of local tree branch

Algorithm 3. (Continued)

If v receives from v an invalid VOTE(limit) (with limit < p,,), then v replies
with PRICE(span, state), informing of its current span and cover state instead
of recording the limit for u. The set S(v) remains unchanged in this case. When
receiving the reply, u updates the span and state for v in its local memory. This
update may initiate a price update to be transmitted by w if v indicated it is
covered but v € U(u) prior to receiving the price update from wv.

When the price of a node v changes because the number of uncovered nodes
in N(v) decreases, v goes through its set of supporters and sets the notify flag
for those nodes u # v that are required to leave S(v) because v’s price just
exceeded the limit NL,[limit] < p,. To these neighbors v later sends a price
update PRICE(span, state).

Distributed Sleep Scheduling in Wireless Sensor Networks 651

Upon receiving a price update, each uncovered node v checks whether the
lowest-price entry NL(1) has changed. Let u be the neighbor with the former
lowest entry and let u # v. If it has changed, i.e., if u # NL(1)[id], then v sends
a vote to the new best entry as described above. If it stayed the same and if the
price update message originated from wu, then v sends a new vote to u with a
—now larger— limit value than previously and thus reenters S(u). If u = v, then
v records the new limit value for NL,,.

If a node v receives a DOMINATOR(N (u)) from node u and if v was previ-
ously uncovered, it sends a message PRICE(span, state), where state = covered,
to all neighbors in N(v) \ N(u) that are not marked as dominators in D(v),
independently of their limit value.

Communication Complexity. Assuming fixed-length fields for node identi-
fiers, weights, and number of neighbors, the communication complexity of the
distributed algorithm is O(|V'|A?). The price of a node can change at most AT
times. Each price change can trigger at most A price updates, each of which may
require sending one vote. So the total number of vote and price update messages
is O(|V'|A?), each of constant size. At most |V| nodes may become dominators.
Each dominator sends at most A dominator messages to inform its neighbors,
and each dominator message contains information on at most A neighbors.

4.3 Practical Considerations

One advantage of wireless networks is their broadcast nature. As a further im-
provement, we let nodes overhear price updates sent between neighbors. Fur-
thermore, the length of network-interface queues is typically limited. To prevent
packet drops due to buffer overflows, instead of sending price updates immedi-
ately the neighbors are marked for notification, and marked nodes are notified
periodically. We study the effect of the price update interval by experiments.

5 Experimental Evaluation

We evaluate our algorithm in two parts. After generating a number of test in-
stances, we first use Matlab to compare the actual performance of the algorithm
with the theoretical guarantee and to compute the number of GK iterations re-
quired. After that, we simulate our distributed algorithm with ns2 to verify the
correctness of our algorithm and to determine the number of messages required.

5.1 Performance Evaluation of the Centralized GK Scheme

We generated a set of 20 disk graphs by scattering 150 nodes onto square areas
of various sizes uniformly at random. Connectivity was determined by the ns2
default transmission range. We varied the average node density by changing the
size of the area and discarded disconnected graphs.

Figure shows the performance for different ¢ compared to the approxi-
mation bound using the upper bound on network lifetime 5. One observes that

652 A. Schumacher and H. Haanpaa

e= 0.05
€= 0.10 =
08 e= 0.20 -
10000 f ¢= 0.3) E
0.6 [3 o dE
PO 4
1000 b e FE 5
0.4 kX
oK * i in)
O S B
02 &l
toof sE e 1
0
5 10 15 20 25 5 10 15 20 25

(a) Lifetime/6" for different e (b) Number of iterations for different e

Fig. 1. The x-axis shows the expected node degree on a logarithmic scale disregarding
terrain boundary effects; a) also shows the bound for the approximation factor

the total lifetime is close to its upper bound and the algorithm performs bet-
ter than what one might expect from the approximation guarantee. Figure
shows the required number of iterations for the same set of instances. In all plots
errorbars show the standard deviation over a set of 20 instances.

5.2 Network Simulations

We implemented the combined distributed algorithm of Sections and[M as a
routing agent in ns2 and consider the number of control messages and simulated
termination time for the same network instances used in the Matlab experiments.
Additionally, we evaluate the effect on the simulated running time achieved by
choosing different values for the length of the price update interval (PUI).
Figure shows the number of messages per node per iteration required
for a fixed value of PUI and € = 0.2. The total number of messages per node

13

ol] 125 1
12 q
25 b 1.5 F g
20 [i 1t i
10.5 q
15 7 10 | 1 q
10 | 4 95 | B
ol i
5r 1 85 1
0 s ‘ L
5 5 10 15 20 25
(a) Messages per node per itera- (b) Seconds per iteration for differ-
tion according to type for PUI=1.0 ent PUI length

Fig. 2. Number of messages and second per iteration versus expected node degree;
data on x-axis is shown on a logarithmic scale disregarding terrain boundary effects.
Message Counts also include retransmissions due to collisions.

Distributed Sleep Scheduling in Wireless Sensor Networks 653

generally lies between the maximum and the average degree in the graph. Figure
2(a)| also shows the number of messages split according to type. The price update
messages have the largest contribution to the number of messages, followed by
votes and dominator messages. Figure shows the average duration of a
single iteration of the algorithm for different lengths of PUI. One observes that
the actual value of PUI generally has a minor effect on the average duration of
a single iteration of the GK scheme, particularly when the network is dense.

6 Conclusions

We present a distributed approximation algorithm for the sleep-scheduling prob-
lem based on the Garg-Kénemann scheme and linear programming duality. A
key component of the algorithm is our efficient distributed implementation of
Chvatal’s greedy set-covering algorithm. The set-covering problem is a central
combinatorial problem and we believe our implementation to be useful also in
other problem settings; moreover, the LP duality technique used to obtain local-
ity may be useful also for other problems. Our algorithm is based on a mathe-
matical framework that provides a guarantee on the solution quality. Moreover,
our simulation results suggest that the algorithm also performs well in practice.

Acknowledgements. The authors thank Pekka Orponen for fruitful discus-
sions on the topic. A. Schumacher has been supported by the Helsinki Graduate
School of Computer Science and Engineering and by the Nokia Foundation.

References

1. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: an energy-efficient co-
ordination algorithm for topology maintenance in ad hoc wireless networks. Wirel.
Netw. 8(5), 481-494 (2002)

2. Basagni, S., Mastrogiovanni, M., Petrioli, C.: A performance comparison of pro-
tocols for clustering and backbone formation in large scale ad hoc networks. In:
Proc. IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems, pp. 70-79 (2004)

3. Wang, L., Xiao, Y.: A survey of energy-efficient scheduling mechanisms in sensor
networks. Mobile Networks and Applications 11(5), 723-740 (2006)

4. Dietrich, I., Dressler, F.: On the lifetime of wireless sensor networks. ACM Trans.
Sen. Netw. 5(1), 1-39 (2009)

5. Floréen, P., Kaski, P., Musto, T., Suomela, J.: Local approximation algorithms for
scheduling problems in sensor networks. In: Kutylowski, M., Cichoni, J., Kubiak, P.
(eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 99-113. Springer, Heidelberg
(2008)

6. Suomela, J.: Locality helps sleep scheduling. In: Working Notes of the Workshop
on World-Sensor-Web: Mobile Device-Centric Sensory Networks and Applications
(2006), http://www.sensorplanet.org/wsw2006/8_Suomela_WSW2006_final.pdf

7. Carbunar, B., Grama, A., Vitek, J., Carbunar, O.: Redundancy and coverage de-
tection in sensor networks. ACM Trans. Sen. Netw. 2(1), 94-128 (2006)

8. Garg, N., Konemann, J.: Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM J. Comput. 37(2), 630-652 (2007)

http://www.sensorplanet.org/wsw2006/8_Suomela_WSW2006_final.pdf

654

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Schumacher and H. Haanpaa

McCanne, S., Floyd, S., Fall, K., Varadhan, K.: The network simulator ns2, The
VINT project (1995), http://www.isi.edu/nsnam/ns/

Feige, U., Halldérsson, M.M., Kortsarz, G.: Approximating the domatic number. In:
Proceedings of the thirty-second annual ACM symposium on Theory of computing
(STOC 2000), pp. 134-143. ACM, New York (2000)

Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In:
Proceedings of The 19th IEEE International Parallel and Distributed Processing
Symposium (2005)

Berman, P., Calinescu, G., Shah, C., Zelikovsky, A.: Power efficient monitoring
management in sensor networks. In: Wireless Communications and Networking
Conference, WCNC 2004, pp. 2329-2334. IEEE, Los Alamitos (2004)

Chvatal, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research 4(3), 233-235 (1979)

Tsaggouris, G., Zaroliagis, C.: QoS-aware multicommodity flows and transporta-
tion planning. In: Jacob, R., Miiller-Hannemann, M. (eds.) ATMOS 2006 - 6th
Workshop on Algorithmic Methods and Models for Optimization of Railways, In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2006)

Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Par-
allel and Distributed Computing. Wiley-Interscience, Hoboken (2006)
Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM J. Comput. 28(2), 525-540 (1999)
Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sensor
Networks and MANETS, pp. 329-369. Kluwer Academic Publishers, Dordrecht
(2005)

Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple
heuristics for unit disk graphs. Networks 25, 59-68 (1995)

Nieberg, T., Hurink, J., Kern, W.: Approximation schemes for wireless networks.
ACM Trans. Algorithms 4(4), 1-17 (2008)

Feige, U.: A threshold of In n for approximating set cover. J. ACM 45(4), 634-652
(1998)

Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing
small dominating sets. Distrib. Comput. 15(4), 193-205 (2002)

Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804-823
(1985)

Wang, Y., Wang, W., Li, X.Y.: Distributed low-cost backbone formation for wire-
less ad hoc networks. In: Proceedings of the 6th ACM international symposium on
Mobile ad hoc networking and computing (MobiHoc 2005), pp. 2-13. ACM, New
York (2005)

Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facil-
ity location algorithms analyzed using dual fitting with factor-revealing LP. J.
ACM 50(6), 795-824 (2003)

http://www.isi.edu/nsnam/ns/

	Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
	Introduction
	Domatic Partition
	Problem Formulation
	Garg-Könemann Scheme
	Distributed GK Implementation

	Minimum Weight Dominating Set Approximation
	Problem Formulation
	Centralized Implementation

	Distributed MWDS Approximation
	Algorithm Outline
	Voting Scheme
	Practical Considerations

	Experimental Evaluation
	Performance Evaluation of the Centralized GK Scheme
	Network Simulations

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

