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Abstract

In this paper two common discriminative training criteria, max-

imum mutual information (MMI) and minimum phone error

(MPE), are investigated. Two main issues are addressed: sensi-

tivity to different lattice segmentations and the contribution of

the parameter estimation method. It is noted that MMI andMPE

may benefit from different lattice segmentation strategies. The

use of discriminative criterion values as the measure of model

goodness is shown to be problematic as the recognition results

do not correlate well with these measures. Moreover, the pa-

rameter estimation method clearly affects the recognition per-

formance of the model irrespective of the value of the discrim-

inative criterion. Also the dependence on the recognition task

is demonstrated by example with two Finnish large vocabulary

dictation tasks used in the experiments.

Index Terms: speech recognition, discriminative training,

acoustic models, parameter estimation, lattice segmentation

1. Introduction

Discriminative training is today the de-facto standard for

training high quality large scale speech recognition systems.

Whereas maximum likelihood (ML) training aims at finding

models that best match the observed distributions, discrimina-

tive methods define more explicit goals related to the recogni-

tion process itself. Discriminative methods differ in the way

they address the goodness of the models. Maximum mutual in-

formation (MMI) criterion [1] still considers distributions, but

uses conditional probabilities of the speech classes instead of

probabilities of observations as in ML. A more recent minimum

phone error (MPE) criterion [2] formulates a more direct ex-

pression for the expected phone error of the training sentences.

This paper investigates the sensitivity of these two common

discriminative training criteria to two training aspects: lattice

segmentation and parameter estimation method. For both as-

pects two strategies have been implemented and different com-

binations are applied to MMI and MPE training. The perfor-

mance of the resulting models are tested on two Finnish large

vocabulary dictation tasks.

The next two sections review different parameter estima-

tion methods and lattice handling strategies. Then experimental

results are presented, after which discussion and conclusions

follow.

2. Parameter estimation

HMM parameter estimation can be seen as an optimization

problem. Given a function that measures the goodness of the

model, one aims to optimize it by changing the parameters of

the HMMs. Because of the large scale of the optimization prob-

lem, few off-the-self algorithms are applicable to the optimiza-

tion of acoustic models. The most widely used parameter esti-

mation method for discriminative training, the extended Baum-

Welch algorithm, is an extension of the traditional ML model

estimation, specifically tuned for the given purpose.

There are not many comparisons between different param-

eter estimation methods of discriminative training in the litera-

ture. An early experiment tested a few methods in the context

of MMI training of continuous phoneme recognition system [3].

It chose the extended Baum-Welch method as the best one, but

the result was based solely on comparing the MMI criterion val-

ues, not the recognition performance. We will see in Sections 4

and 5 that when comparing parameter estimation methods, it is

important to evaluate the actual recognition performance.

A more recent comparison found out it was possible to out-

perform the baseline extended Baum-Welch algorithm in dis-

criminative HMM parameter estimation using the constrained

line search algorithm [4].

2.1. Extended Baum-Welch

The most commonly used method for estimating HMMparame-

ters under discriminative criterion is the extended Baum-Welch

(EBW) algorithm [1]. The method uses re-estimation formu-

lae that can be seen as extensions to the Baum-Welch algorithm

used for ML parameter estimation. However, several heuristics

are needed in order to get EBW to work well. Most notably, the

method is rather sensitive to the smoothing parameter which

determines the speed of convergence. Also directly applying

EBW to mixture weight estimation is not feasible. Woodland

and Povey [1] have presented now widely applied improve-

ments to the original algorithm. This works also as the baseline

estimation method for the experiments in this paper.

To promote generalization of discriminatively trained

acoustic models, it is beneficial to smooth the EBW statistics

with ML ones. This has been noted to be very important with

the MPE criterion, for which the I-smoothing technique has

been proposed to guarantee good generalization [2].

2.2. Gradient based methods

The gradient descent algorithm in its simplest form is a very

straightforward optimization method that can be applied to any

smooth and differentiable function. However, gradient methods

may suffer from low convergence speed due to difficulty of set-

ting a proper step size. Schlüter et al. [5] have demonstrated

that in the context of discriminative HMM training the gradi-

ent method can be made to resemble EBW algorithm by using

a step size that depends on certain model statistics. This way,

results comparable to EBW can be obtained.

A more recent method derived from the gradient perspec-



tive is the constrained line search (CLS) algorithm [4]. Instead

of using specific step sizes it uses some approximations to solve

the critical points where derivatives are zero. The algorithm

also explicitly assigns constraints that ensure the feasibility of

the new estimates. In experiments the CLS has compared very

well with the EBW.

2.3. Second-order methods

Second-order optimization methods use information about the

Hessian matrix to find a better search direction than the plain

gradient direction and can thus speed up the optimization.

In larger optimization tasks the Hessian matrix becomes in-

tractably large and some means to circumvent the computation

and storing of the full matrix are needed.

One of the simplest second-order methods is the Quick-

prop algorithm, which uses a rough approximation of the di-

agonal of the Hessian. It has been used successfully at least

in the context of minimum classification error criterion [6]. A

more refined way of applying the second order information is

used in conjugate gradient methods, which speed up the gradi-

ent search by taking into account the previous search direction

and conjugacy of the gradients. Nevertheless, conjugate gradi-

ent methods have not been popular among speech recognition

field.

One well-known set of second-order methods is the quasi-

Newton family, including methods such as BFGS. These meth-

ods have some advantages over the conjugate gradient methods

relating to the convergence speed and the accuracy of the line

search [7]. Although the traditional implementation requires ex-

plicitly storing the Hessian matrix, there exists a rather simple

limited-memory version that avoids this requirement [8].

For the current experiments the limited-memory BFGS

(lBFGS) was chosen as the alternative HMM parameter opti-

mization method due to its reported good performance. In pre-

liminary testings it was noted that the maximum allowed pa-

rameter change at any optimization step needed to be limited.

Otherwise some HMM parameters were prone to obtain unfea-

sible values and wreck the overall performance of the model.

This is actually an issue that the constrained line search method

[4] addresses directly. However, in this work a simpler con-

straint was applied, namely allowing maximum of 20% relative

change for each parameter. The weights of one mixture were

considered in a group as well as the means and covariances of

one Gaussian when changing the optimization steps of these

groups separately to meet the required limits.

2.4. Constraining the parameters

Usually the optimization algorithms are formulated in an un-

constrained setting where parameters are free to obtain any real

value. However, the HMM parameters must represent a proper

probability distribution, and must therefore fulfill certain con-

straints. Specifically, the covariances must be positive definite

and mixture weights of one mixture must sum to one.

In estimation methods developed for HMMs these con-

straints can be taken into account directly. In EBW the smooth-

ing constant is determined so that covariances remain valid, and

a special iterative estimation for mixture weights is used to en-

sure the sum-to-one constraint [1]. In CLS the explicit quadratic

constraints avoid the possibility of improper covariances. For

the mixture weights, the Lagrange multiplier method is used to

constraint their estimation [4].

For a general purpose optimization method the easiest ways

to apply constraints are penalty functions and parameter trans-

formations. In the present work the latter was used. For opti-

mization purposes the diagonal covariance parameters are trans-

formed according to

σ̃i,k =
p

σi,k − MV , (1)

where σi,k is the variance of the i:th dimension of Gaussian

component k, and MV is the minimum allowed variance. An

inverse transformation is applied after the optimization step to

decode the covariance values. Mixture weights need to sum to

one, so a soft max scaling is applied:

w̃i,m = log wi,m, (2)

wi,m =
exp w̃i,m

P

j
exp w̃j,m

. (3)

These transformations need to be taken into account in the gra-

dient computations as well.

3. Lattice segmentation

In order to address the recognition problems, discriminative

training methods need to do similar kind of recognition of the

training material as is done in the target system. The full recog-

nition is usually too time consuming so an approximate recog-

nition model is used instead. Lattices have been found to give

good results with discriminative training [1] as they effectively

restrict the available hypotheses during the training but are loose

enough to allow a realistic model of the recognition.

Although lattices already restrict the search space for state

segmentation, it is usually necessary to further limit the search

to reduce the computational load. Beam pruning is an easy

and effective way to ignore the improbable hypotheses. It is

also well justified as similar technique is used also in the actual

recognition. Even more strict pruning is possible by storing

time stamps of an initial segmentation to the lattice and using

these to guide the search. In the extreme case, the state occu-

pancies are kept fixed during the training.

It has been previously noted that resegmenting the lattices

during training slightly improves the results [1]. Therefore, for

the current paper the least restrictive lattice segmentation strat-

egy was sought. A full Baum-Welch (BW) segmentation was

implemented that applies only beam pruning and no other ap-

proximations. The segmentation is recomputed at every itera-

tion.

Unfortunately, the straightforward implementation of the

Baum-Welch segmentation poses some problems in the dis-

criminative training. To simulate the effect of the language

model scaling used in recognition and to increase the number of

competing hypotheses, discriminative training algorithms use

acoustic scaling to compress the likelihood values of the acous-

tic models [1]. The easiest way to accomplish this is to scale

the acoustic probabilities framewise and use them otherwise as

normally. This, however, has the adverse result that the likeli-

hoods of different state segmentations of the same hypothesis

no longer sum up properly if they are to be considered as a sin-

gle hypothesis. This is the case, for example, in the numerator

of the MMI criterion.

To circumvent the problem, a second lattice handling strat-

egy was experimented in this paper. The algorithm, referred

to as Multipath Viterbi (MPV), considers only the best state

segmentation of each hypothesis and therefore avoids the prob-

lem with likelihood summing. Using lattices preprocessed with

FST-tools [9] this kind of algorithm becomes fairly simple.
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Figure 1: Results of Speecon task over the development set.

Something similar can be accomplished using Viterbi segmen-

tation over fixed time alignments [1]. In some cases this even

improved results over less restrictive segmentations. Another

benefit from using Viterbi segmentations of hypotheses is that

this prevents the smearing of phoneme transitions that can oth-

erwise be problematic when acoustic scaling is used.

4. Experiments

In the experiments different combinations of lattice segmenta-

tion and parameter estimation strategies were tested with MMI

and MPE criteria in two Finnish large vocabulary dictation

tasks.

The simpler of the tasks was based on the Finnish Speecon

database [10], from which 15 hours of clean speech (sample

rate 16kHz) from 310 speakers were used for training. Separate

development and test sets were used with 40 distinct speakers

and about 1.9 hours of speech in both sets.

A slightly harder task was from the Finnish SpeechDat

database1, which consists of 4000 speakers recorded over fixed

telephone line. For that corpus, 55 hours from 3696 speakers

were used for training, and for both development and test sets

150 separate speakers were allocated, both containing about 2.2

hours of speech. Both tasks were dictation tasks, only read sen-

tences were used for training and testing. The latter task was

harder not only because of the lower sound quality, but also due

to the wider range of speakers, including children. No adapta-

tion was performed.

The experiments were run using a Finnish morph-based

large vocabulary speech recognition system [11]. In both tasks

the acoustic features were 39 dimensional MFCCs with cepstral

mean subtraction. The Gaussians had diagonal covariances and

a global diagonalising transform was used. In the Speecon task

the models contained 26126 Gaussians in 1186 mixtures. This

corresponds to the average of 255 frames in the training set for

each Gaussian. In the SpeechDat task the models had 85758

Gaussians in 1783 mixtures, equating 290 frames per a Gaus-

sian on average.

For MPE a frame based implementation was used, which

has been shown to give good results [12, 13]. The implementa-

tion details followed mostly the MPFE-nosil method described

by Povey [13], and the suggested I-smoothing value of 400 was

1http://www.speechdat.org/
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Figure 2: Results of SpeechDat task over the development set.

Table 1: Final test set results of Speecon task in LER. The base-

line ML model had a LER of 3.33%, which corresponds to word

error rate of 13.7%.

method EBW lBFGS

MMI/BW 3.15% 3.26%

MMI/MPV 3.12% 3.24%

MPFE/BW 3.30% -

MPFE/MPV 3.02% 3.02%

used. The numerator was segmented with Viterbi segmentation

also in BW case to have a unique reference for the phone ac-

curacy function. However, the preliminary experiments showed

that when using the MMI criterion with BW lattice segmenta-

tion it was crucial to have also the numerator lattice use full BW

instead of Viterbi.

For simplicity, I-smoothing was not used for any other case

than MPFE with EBW estimation. Specifically, the MPFE was

tested with lBFGS optimization without I-smoothing to see the

performance of the discriminative criterion in its simplest form.

Besides the maximum parameter change limitation discussed in

Section 2.3, the lBFGS method only needs an initial step size,

which was tuned in the preliminary tests to perform a step com-

parative to that of further iterations.

The parameter estimation methods were run at most 8 it-

erations in each case, and were in some cases stopped earlier

if clear overtraining was observed. The results of the exper-

iments were measured with letter error rate (LER) to have a

finer resolution for the results. This measure is well suitable for

Finnish in which words are relatively long and consist of several

morphs. The language model used morphs as its units [11].

Figure 1 shows the results of the Speecon task over the de-

velopment set at each iteration of the model estimation. The

MPFE/BW combination was not tested with the lBFGS esti-

mation due to low performance of the combination in other

settings. The figure shows clearly that in this task all but

the MPFE/MPV combination with EBW parameter estimation

exhibit overtraining. The best performing iteration for each

method was selected according to these results and the test set

was then recognized using these models. The test set results are

shown in Table 1.

Figure 2 shows the development set results for the Speech-



Table 2: Final test set results of SpeechDat task in LER. The

baseline ML model had a LER of 7.16%, which corresponds to

word error rate of 22.3%.

method EBW lBFGS

MMI/BW 6.05% 6.56%

MMI/MPV 6.47% 6.43%

MPFE/BW 6.78% -

MPFE/MPV 5.95% 6.35%

Dat task. Again, the lBFGS methods exhibit overtraining, but

now using EBW estimation leads to nice convergence except

for the MPFE/BW combination. The test set results are in Ta-

ble 2. Note that although MMI/BW/EBW model was the best

in the development set, MPFE/MPV/EBW is the best using the

separate test set.

5. Discussion

In the simpler Speecon task the differences between the results

of the different training strategies were not that large. Most

notably, the lBFGS estimation performed worse in MMI case

than the EBW and the BW segmentation failed to work with

the MPFE criterion. The best models were obtained with the

MPFE/MPV combination, for which both EBW and lBFGS ob-

tained equally good models.

The more difficult recognition task, SpeechDat, shows

more variation between the performances of different training

strategies. In this task EBW was better than lBFGS except with

the MMI/MPV combination, which was still worse than the

MMI/BW combination using the EBW estimation. It is inter-

esting that the best MMI model used Baum-Welch lattice seg-

mentation, whereas for MPFE the Multipath Viterbi segmenta-

tion was clearly the best. The suitability of MPV style lattice

segmentation for MPFE training is emphasized by the similar

results in the Speecon task. This suggests that with a discrim-

inative criterion such as MPE that closely matches the recog-

nition process, also the lattice segmentation should be done in

Viterbi style as is done in recognition.

Another important observation is that the values of the dis-

criminative criteria do not correlate with the recognition perfor-

mance of the models. In all cases, lBFGS was able to optimize

the criteria better than EBW, but only in the Speecon task with

MPFE criterion it was able to obtain equal recognition perfor-

mance. Surprisingly, in the SpeechDat task the EBW estimation

even decreased the MMI measure with the MMI/BW combina-

tion, although the resulting model was one of the best ones. This

anomaly may be due to problems in handling acoustic scaling

in Baum-Welch style lattice segmentation.

In the current implementations overtraining was much more

severe with lBFGS than with EBW. However, this shouldn’t

confuse the results as a development set was used to pick the

best model in each case. For lBFGS, a decreasing limit in the

maximum allowed parameter change might be used to alleviate

this problem as was done in Liu et al. [4].

The model complexity in the experiments was rather high,

but this was because the complexity was optimized for the best

baseline ML model performance. Generally the discriminative

methods work better if more training data is available, so with

that respect the rather large improvements (9.3% and 16.9% rel-

ative improvements over the MLmodel in Speecon and Speech-

Dat tasks, respectively) show very good performance of the best

tested discriminative training methods.

6. Conclusions

Lattice segmentation may have a large impact on the perfor-

mance of discriminatively trained acoustic models. A full

Baum-Welch segmentation seems to work well with MMI train-

ing, whereas a Viterbi style segmentation of different hypothe-

ses was better for MPE training.

The commonly used MMI and MPE criteria are not good

in a way that simply optimizing them is not guaranteed to lead

to good results. The extended Baum-Welch algorithm used to

estimate discriminative acoustic models interacts favorably with

the training criteria and is able to obtain better performing mod-

els than a general purpose optimization algorithm.
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