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Next-generation sequencing projects are generating vast amounts of genomic data.
It is impractical to analyse these several-terabyte datasets without leveraging cloud
computing. Interactive applications such as interactive visualization, in which latency
needs to be minimized, are particularly affected by the dataset size. A cloud-hosted
backend, though providing the computational power necessary, brings latency issues of
its own.
This Thesis explains how the interactive zooming feature of the Chipster data analysis
and visualization platform can be made performant on large datasets by using genome
data preprocessing in the cloud. The implementation of a summarizing tool and
its supporting library, hadoop-bam, is described. The programming model used,
MapReduce, is explained, as well as some details concerning the Hadoop framework on
which the tools are built. In particular, a heuristic approach to splitting the genomic
data files for distributed processing is presented and compared to an indexing-based
strategy.
Finally, experimental timings are shown: notably, a 50 gigabyte dataset can be
summarized in well under an hour using only eight worker nodes. In addition, the
heuristic splitting method is found to perform comparably to indexing without incurring
the additional cost of computing the index.

Keywords: BAM, Chipster, cloud, Hadoop, interactive
Language: English

i



Contents

Abbreviations iii

1 Introduction 1

2 Related work 2

3 Problem description 3
3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Solution 4
4.1 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Hadoop Distributed File System . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 hadoop-bam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3.1 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 The summarizing tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4.1 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4.2 Partition and sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4.3 Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Experiments 12
5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Summary and conclusions 15

References 16

ii



Abbreviations
BAM Binary Alignment/Map
BGZF gzip-compatible binary compression format used for BAM
DNA deoxyribonucleic acid
ID identifier
I/O input/output
HDFS Hadoop Distributed File System
GATK Genome Analysis Toolkit
NFS network file system
NGS next-generation sequencing
RNA ribonucleic acid
SAM Sequence Alignment/Map

iii



1 Introduction

In recent years, with the advent of the genome sequencing technology known as next-
generation sequencing (NGS), the rate at which genomic information is being generated
has begun to grow too quickly for electronic storage to keep up. Given that the datasets’
sizes are often measured in terabytes, it is too inefficient to just store them somewhere
on the Internet for users to download: there is simply too much data for this to be
feasible. [Ste10]
This is a so-called Big Data problem. In some cases, such as NGS, storage capacity has
trouble keeping up with data generation. But even when this is not the case, hard disk
access speeds are insufficient when compared to the storage capacity. Nowadays, one
must wait hours just to read all of the data from a single hard disk [Whi09, p. 2–3]. This
means that performing any kind of analysis on Big Data is a nontrivial task.
A solution to this issue is the model known as cloud computing: the computation is
brought to the data instead of the other way around. More generally, the definition of
cloud computing in this Thesis refers to server-side computing and scaling out as opposed
to scaling up: using more computers instead of more powerful computers [BH09]. The
practicalities of how this is arranged, i.e. renting of virtual machines, web-based user
interfaces, etc., are outside the scope of this Thesis, but the idea is the same in all of them.
Huge amounts of data no longer have to be redundantly transported between locations;
one can instead perform the analyses one requires remotely.
The other benefit of cloud computing is the ability to access computer clusters, which
can provide computational power far exceeding that of desktops. Given that the datasets
produced by NGS, like Big Data in general, can easily be too large to fit on a single
modern hard disk1, it is clear that performing any kind of analysis on them is a time-
consuming process: recall that scanning through the contents of just one disk can take
hours. Because cloud computing clusters can access the dataset from multiple disks at
once, the process is much more efficient.
How much interactive applications stand to benefit from this kind of architecture is not
so clear. Certainly, avoiding local storage of large datasets is important, but remote
access, in addition to the typically bandwidth-oriented designs of distributed computing
frameworks, can increase the latency of operations greatly. And, especially as latency is
improving much slower than bandwidth [Pat04], latency is a highly relevant concern in
interactivity.
The Chipster2 data analysis and visualization platform is one such interactive application.
Among its various features, it provides a graphical user interface that can be used to
visualize genomic data.
In particular, this Thesis concerns the zooming feature of Chipster. With it, one can
transition from viewing an entire genome at once all the way down to the nucleotide level.
Certain areas of the genome have typically been sequenced more than once: a higher
concentration of sequences implies that the area is of relatively greater interest. At outer
zoom levels one can, and need, only see precisely the concentration, so that one can focus
one’s attention to these areas. This kind of zooming always worked well for small datasets,

1Two-terabyte hard disks are the current high-end norm.
2http://chipster.csc.fi/, last fetched May 4, 2011.
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but prior to the solutions presented here it tended to rapidly become unresponsive when
confronted with large amounts of NGS data. This is a situation in which cloud computing
is not of direct help: even if the calculations are performed in the cloud, the round-trip
latency is prohibitively high.
The problem can be solved by preprocessing the data: simplifying it in such a way that
the result is as visually indistinguishable from the original as possible, but takes up much
less storage space. This separates the visualizing frontend and user interface from the
backend that performs the heavy computation required for visualization. Now the best of
both worlds is achieved: the frontend can be highly interactive while still being relatively
lightweight, with reasonable system requirements, while delivering sufficient performance
for handling huge datasets.
This work details the implementation of a summarizing tool enabling interactive zooming
of large NGS datasets, as well as the supporting library of the tool, hadoop-bam3. The
distributed programming model applied, MapReduce, is also explained.

2 Related work

In recent years the MapReduce programming model, and in particular the Hadoop4

MapReduce framework which is also used by hadoop-bam, has been harnessed for analysing
NGS data in many ways. In this section, some of the approaches that are relatively closely
related to hadoop-bam and the summarizing tool are detailed.
The Genome Analysis Toolkit (GATK) [MHB+10] is a programming framework for NGS
analysis tools using MapReduce. It offers a rich set of methods for crafting high-level
solutions to analysis problems. In contrast, hadoop-bam is a more low-level approach,
providing only the most basic support for accessing NGS data. The GATK’s options for
distribution have various limitations and full distribution is currently in an experimental
stage5. hadoop-bam can split data up more freely, without placing additional restrictions
on the program’s behaviour.
The SeqWare Query Engine [OMN10] is a database system built on top of HBase6.
Accessing the database with MapReduce is a promising and performant way of analysing
NGS data. This method was deemed unnecessarily complicated for the summarizing tool,
which has no need for the features of the database.
Several other NGS-related applications of MapReduce and Hadoop exist; there are too
many to even list here. The GATK and SeqWare and other similar approaches were two
primary candidates for the summarizing tool before it was decided that making a new
library, hadoop-bam, is appropriate. For a far more comprehensive overview of Hadoop
usage in bioinformatics, see e.g. [Tay10].

3http://sourceforge.net/projects/hadoop-bam/, last fetched May 4, 2011.
4http://hadoop.apache.org/, last fetched May 4, 2011.
5See e.g. http://www.broadinstitute.org/gsa/wiki/index.php/Parallelism_and_the_GATK,

last fetched May 4, 2011.
6http://hbase.apache.org/, last fetched May 4, 2011.
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3 Problem description

The following section describes the constraints on the inputs and outputs of hadoop-bam
and the summarizing tool. Thereafter the method used to produce the desired output
will be described, without delving into implementation details.

3.1 Goal

The summarizing tool and hadoop-bam work on BAM (Binary Alignment/Map) files.
BAM is the binary version of the textual SAM (Sequence Alignment/Map) file format.
Both formats encode, along with some metadata, a number of reads a.k.a. genetic
sequences: the compositions of nucleic acid molecules such as DNA (deoxyribonucleic
acid) or RNA (ribonucleic acid). Often they are also referred to as alignments, as they are
typically utilized in a procedure known as sequence alignment: comparing two or more
sequences in an effort to find similar regions. [Mou01, LHW+09, SAM11] BAM files are
stored in the BGZF compression format: a BGZF archive is composed of gzip-compatible
blocks, providing good compression and efficient random access [SAM11].
The goal of the summarizing tool is to allow rapid computation of a zoomed-out view
of the reads in a BAM file. To that end it preprocesses the file, creating “summary
files” which hold sufficient information to describe the zoomed-out view of the original.
Since, at these outer zoom levels, the only visible information is the number of sequences
encompassing a given area, this is exactly the data that needs to be stored.
Summary files are in a BGZF-compressed line-based textual format, with each line
consisting of four integers separated by horizontal tab characters7. The most important
three fields are the last three: the leftmost and rightmost coordinates of an area and the
number of reads that are in that area.
The first datum is the reference sequence identifier (ID). Each BAM file can contain,
for example, reads from different species. For differentiation, they are tagged with the
reference sequence, which is typically a complete genome sequence of the species in
question [SAM11]. The ID needs to be carried through to the summary file to make sure
that the visualization can also differentiate between them.

3.2 Method

A simple way of producing the summarized areas is to traverse reads tagged with the
same reference sequence ID, grouping together reads at the same location, and outputting
the location and the number of reads found there. Thus, for example, two reads with ID
0 at coordinates [5, 15] would result in 0 5 15 2 (where “ ” represents the horizontal
tab character).
In practice, reads at the same general location are very rarely in exactly the same place.
Instead of two reads at [5, 15] it’s more likely to have e.g. [4, 15] and [7, 16]. To deal with
this, the summarizer computes the mean range encompassed by the reads and outputs that
as the summarized area. For the example, [b(4 + 7)/2c , b(15 + 16)/2c] = [b5.5c, b15.5c] =

7This precise format, including the order of the fields, was chosen because it is the format supported
by the tabix tool (http://samtools.sourceforge.net/tabix.shtml, last fetched May 4, 2011).
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[5, 15]. This introduces some lossiness into the summarizing process: one cannot know
where the [5, 15] came from, only that there were two reads at approximately that location.
Computing means also introduces a question: what reads should be grouped together? For
example, [0, 10] and [1000000, 1000020] result in [500000, 500015]. In practice, BAM files
are very dense: consecutive reads are not separated by such a long distance. Therefore,
if the reads are first sorted by their position (rather, first by the reference sequence ID
and then the position), this kind of pathological situation can be avoided.
However, sorting by position can be done in more than one way. Reads can be of varying
length: while unlikely, it is not unheard of to have, for instance, [0, 10] and [0, 1000] in
the same BAM file for the same reference sequence. Thus sorting by the leftmost position
may result in poor approximations of the underlying data. A significant improvement is
achieved by sorting by the centre of mass i.e. the mean of the start and end coordinates:
this brings reads like [0, 10] and [1, 11] close together, while [0, 1000] may get grouped
with [500, 510].
The remaining issue is that of the group size: how many reads should be summarized
together? In the visualizer, as one zooms further and further inwards, one needs more
detailed information i.e. a smaller group size. The tool lets the user decide which sizes
they want: in practice, increasing powers of two until the summary file is “very small” (a
few kilobytes) gives a sufficient spread of sizes for the visualizer to choose from so that it
can display the sequences sufficiently accurately and quickly.
In summary, the task is to:

1. Extract the coordinates and reference sequence IDs of each read from the given
BAM file.

2. Sort the resulting records first by their ID and second by their centre of mass.

3. For each consecutive group of records of size at most N with the same ID, output
their ID, mean position, and the group size. N here is the user-requested group
size. Some groups may have size less than N : for example, if N = 4 and there are
5 reads with ID 0 in the BAM file, the second group will have size 1.

4 Solution

Knowing the required tasks established in the previous section, it is now necessary to
determine how they can be performed quickly in a distributed fashion. This section details
how the summarizing tool and hadoop-bam achieve the requirements.
The foundation used to facilitate distributed computation in all stages of the solution
is the Hadoop MapReduce framework. MapReduce is fully described in [DG04, DG08].
The following section summarizes the model and explains how it works without going
into excessive detail.

4.1 MapReduce

MapReduce is a programming model based on two functions specified by the user: a
map function, which takes a key-value pair and transforms it into a list of intermediate
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key-value pairs, and a reduce function whose job it is to merge intermediate values that
are associated with the same key. These functions can be typed as:

map : (k1, v1) → (k2, v2)k

reduce : (k2, v
m
2 ) → vn

3

In the above, k is short for “key” and v for “value”, and the subscripts serve to differentiate
the types beyond that division. The superscripts k, m, and n denote differing list lengths.
vn

3 is thus the end result which gets written to the output files.
The execution model of MapReduce is a simple sequence. The following summarizes the
most important parts, common to all MapReduce jobs: [Ven09, p. 178–182]

1. The input files are divided into splits: large files are separated into blocks that can
be mapped over. This splitting enables parallelism within a file as well as across
files.

2. A number of map tasks, or mappers, begin executing. The number of tasks
is determined by various factors and can be anywhere from just one to several
thousands. Each input split is sent to a task as soon as the mapper becomes
available. Note that the file data is not sent, only a file path and beginning and
ending offsets: reading the actual data can be done without any network I/O
(input/output) if the mapper has a local copy of it. The map function is run across
the split.

3. The output of the map function is partitioned according to which reduce task it
should be sent to, and each partition is sorted. This is known also as the shuffle
step.

4. A job-defined number of reduce tasks are started. Each reducer fetches, from all
the mappers, the map outputs that are assigned to its partition, and merge-sorts
them together.

5. At each reducer, the reduce function is run on the resulting set of key-value groups.
When all are complete, the job is done, having produced (typically) one output file
for each reduce task.

A graphical representation of the MapReduce model using the canonical example, word
counting, is shown in Figure 1.
Other notable features of the MapReduce pipeline not detailed here include the system’s
fault tolerance and failure semantics as well as the combiner function [DG04, DG08,
Ven09, Whi09].

4.2 Hadoop Distributed File System

Hadoop includes the Hadoop Distributed File System (HDFS) [SKRC10]. It has been
designed with the application of MapReduce in mind, and as such they are almost always
used together. hadoop-bam and the summarizing tool are also based around it.
Originally based on the design of the Google File System [GGL03], HDFS is a scalable
distributed file system with a few key features:
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Figure 1: The MapReduce process performing a word count.

• Reliability. This is achieved primarily by replication: each block of data is stored
on multiple hosts. By default, all data is stored on three different machines.

• Being tuned for batch processing of large files. In accordance with this assumption,
files can be written only once: when closed after creation, they are immutable.
File readers typically use linear instead of random access, and files tend to be very
large, so the HDFS default block size is 64 megabytes: this aids in providing high
bandwidth streaming of the data.

• Interaction with the Hadoop MapReduce system. Hadoop attempts to schedule
both map and reduce tasks in such a way that network I/O is minimized. HDFS
can inform Hadoop of the physical locations of the blocks that the task needs to
access [DG04, Ven09]. Note that as a side effect of replication for reliability, it is
more likely that a task can be scheduled where a copy of the data resides.

4.3 hadoop-bam

MapReduce is a good fit for the summarizing task because it is naturally expressed as a
map followed by a reduce on sorted key-value pairs. Clearly, extracting the coordinates and
reference sequence IDs of each read is a map function and grouping consecutive ranges
together is a reduce function. Sorting is also provided “for free” by the MapReduce
execution process, and thus all the needed operations are cleanly supported.
Practical considerations apply as well, of course: Hadoop is a mature framework, known
to perform and function well. It has been used by large companies such as Yahoo! and
Facebook with clusters composed of thousands of servers and accessing petabytes of
data [SKRC10, TSA+10, Whi09]. Therefore one does not need to worry about running
into show-stopping issues, although a great deal of configuration can be necessary to
achieve desired performance levels [SRC10, Ven09, ZKJ+08].
Before going into details of the summarizer, the following section explains hadoop-bam’s
primary contribution to the solution of the summarizing task: the custom splitting
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function. Basic input and output of BAM files is provided by the Picard library8 and is
thus not a concern here.

4.3.1 Splitting

Hadoop’s default file splitting simply divides the input evenly into parts, each part
having approximately the same byte length. Due to the nature of the input format,
this cannot be relied upon: having a record-oriented file be split along the middle of a
record is problematic, since then that record cannot be handled on either side of the
split. Typically, it is possible to work around the issue using a simple technique shown in
Algorithm 1.

Algorithm 1 Typical way of reading records from a part of a split file.
1: pos← 0
2: if this is not the first split then
3: skip input until the beginning of a record
4: pos← pos+ amount of data skipped
5: end if
6: while pos < end of this split do
7: r ← record at pos
8: handle r
9: pos← pos+ length(r)
10: end while

Unfortunately, for BAM files the implementation of line 3 is somewhat complex due to
the binary format and the BGZF compression applied on top of it. Two stages of heuristic
guesswork are required: one must find, first, the BGZF block containing the position
where the split begins; and second, the beginning of the next alignment.
The first task is easier: BGZF does have, at the start of each block, four bytes with
guaranteed values as well as more later on, as can be seen from Table 1. Note that the two
magic numbers are composed of multiple shorter fields, but they can be considered as units
for the purposes of hadoop-bam. Recognizing a BGZF block using solely these numbers
would unfortunately not work, since nothing prevents a sequence of bytes conforming
to these requirements from showing up within the compressed data as well: there is a
low probability of treating unrelated data as a BGZF block. Practically speaking, the
likelihood of just finding the identifier bits is very low, let alone an otherwise valid-looking
block with a correct CRC-32 hash of the uncompressed contents! Even in this ridiculously
unlikely situation, the probability of treating the input incorrectly can be further reduced:
when the “block” eventually terminates, it is most likely not followed by data that can
be again interpreted as a valid BGZF block. Upon noticing this, one can backtrack past
the misleading data and search for the next BGZF block.
The method of determining whether an arbitrary byte sequence appears to be a valid
BGZF block, based on the information in Table 1, is presented in Algorithm 2. The
CRC-32 hash is not checked at this guessing stage, since that would involve unpacking
the data and thus is a relatively expensive operation. Instead, the check can be performed
later, when the data is actually used.

8http://picard.sourceforge.net/, last fetched May 4, 2011.
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Description Type Value
BGZF block magic number uint32 0x04088b1f
Modification time uint32
Extra flags uint8 bit 2 is set
Operating system identifier uint8
Total length of extra subfields (XLEN) uint16 at least 6

Extra subfields
Other extra subfields

BGZF extra field magic number uint16 0x4342
BGZF extra field length uint16 2
Total block size minus 1 (BSIZE) uint16

Other extra subfields

Compressed data uint8[BSIZE−XLEN−19]
CRC-32 hash of the uncompressed data uint32
Length of the uncompressed data uint32

Table 1: The format of one block in the BGZF format. All integers are little-
endian. [SAM11]

Algorithm 2 Guessing whether a BGZF block starts at the given position.
Input: bpos, the position to examine
1: if read(bpos, 4) 6= 0x04088b1f then {Incorrect magic number: not a BGZF block.}
2: return false
3: end if
4: subpos← bpos+ 12 {The offset where the extra subfields begin.}
5: subend← subpos+ read(bpos+ 10, 2) {Add the value of the XLEN field.}
6: while subpos < subend do
7: magic← read(subpos, 2)
8: slen← read(subpos+ 2, 2)
9: subpos← subpos+ 4 + slen
10: if magic 6= 0x4342 ∨ slen 6= 2 then {This is not the BGZF extra field.}
11: continue
12: end if
13: while subpos < subend do {Skip over the rest of the extra subfields.}
14: slen← read(subpos+ 2, 2)
15: subpos← subpos+ slen+ 4
16: end while
17: return subpos = subend {XLEN must be exact for this to be a valid gzip block.}
18: end while {No BGZF extra field found.}
19: return false

8



The second issue, that of finding the next alignment, is somewhat more problematic since
BAM records have no clear identifying features. Fortunately, various fields cross-reference
each other enough that in practice, some guesswork succeeds.

Field name Description Type
block_size Length of the rest of the record int32
refID Reference sequence ID int32
pos 0-based coordinate int32
l_read_name Length of read_name uint8
mapq Mapping quality (ignored) uint8
bin Bin number (ignored) uint16
n_cigar_op Length of cigar uint16
flag Flags bit field (ignored) uint16
l_seq Length of uncompressed seq int32
next_refID Reference sequence ID of next fragment int32
next_pos 0-based coordinate of next fragment int32
tlen Template length (ignored) int32
read_name Name, null-terminated uint8[l_read_name]
cigar CIGAR string (ignored) uint32[n_cigar_op]
seq Fragment sequence (ignored) uint8[(l_seq+1)/2]
qual Phred base probability (ignored) uint8[l_seq]

Auxiliary data until block_size is filled (all ignored)
tag Identifier (ignored) uint8[2]
val_type Type specifier (ignored) uint8
value Value (ignored) depends on

val_type

Table 2: The format of the fields of one alignment in the BAM format [SAM11]. All
integers are little-endian. Fields which are not used by the algorithms presented here
are marked as ignored.

The following constraints hold on the fields of the BAM record format, displayed in
Table 2. n_ref is not a field in each alignment; it is the number of reference sequences
and can be found at the beginning of the BAM file.

1. block_size ≥ 32 + l_read_name + 4 · n_cigar_op + (3 · l_seq + 1) /2
2. The reference IDs are −1 or in the range [0, n_ref):
−1 ≤ refID < n_ref ∧ −1 ≤ next_refID < n_ref

3. The positions are −1 or non-negative: pos ≥ −1 ∧ next_pos ≥ −1
4. Null-termination of read_name: read_name[l_read_name− 1] = 0

By using all of these constraints together, one can detect BAM alignments with sufficient
accuracy. Pseudocode for this is not given explicitly here, as it is a simple matter of
reading integers at constant offsets from each other and performing the comparisons listed
above.
Algorithm 3 gives a more detailed account of how the splitting can be made to work in
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all its complexity, with the help of Algorithm 2 and an equivalent algorithm for BAM
records based on the above constraints.

Algorithm 3 Reading BAM records from a part of a split file.
1: pos← cpos← 0
2: if this is not the first split then
3: for all pos ∈ apparent BGZF block positions in the split do
4: pos0 ← pos
5: for all cpos ∈ apparent BAM record positions in the block at pos do
6: cpos0 ← cpos
7: b← 0
8: while pos < end of this split and b < 2 do
9: if the data at (pos, cpos) does not form a valid BAM record then
10: continue at line 5 with pos0 and next cpos
11: end if
12: cpos← cpos+ length(r)
13: if cpos ≥ block size then
14: pos← position of next block after the one at pos
15: cpos← 0
16: if the data at pos does not form a valid BGZF block then
17: if pos ≥ 216 then
18: input file is invalid or data corruption occurred
19: end if
20: continue at line 3 with next pos
21: end if
22: b← b+ 1
23: end if
24: end while
25: pos← pos0
26: cpos← cpos0
27: goto 31
28: end for
29: end for
30: end if
31: while pos < end of this split do
32: r ← BAM record at (pos, cpos)
33: handle r
34: advance (pos, cpos) by length(r)
35: end while

The bulk of the algorithm is the while loop on lines 8–24. Having found a partially
validated BAM record, it is fed to a fully featured BAM decoder in order to verify its
validity fully (lines 9–11). One can then continue looping through BAM records without
any further guessing. The if on lines 13–23 handles advancing to the next BGZF block.
Note the increment of b: b is the number of BGZF blocks that have been traversed from
start to finish. The two on line 8 is the number of BGZF blocks that should be fully
deciphered before accepting the appropriate location to start reading from has indeed
been found. When that occurs, the while loop ends and the code proceeds to read records
as usual, now that it knows where to start from.
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On line 17, the 216 is the maximum allowed compressed size of a BGZF block. This
limitation can be clearly seen in Table 1: it arises due to the fact that the BSIZE field
is a 16-bit unsigned integer. Since the input is fully composed only of such blocks, if the
algorithm travels past that much space without finding a satisfactory block, something
has clearly gone wrong.
An alternative solution to the whole issue is to use an index: precompute positions of
reads and BGZF blocks in the BAM file. The MapReduce job would then build a search
structure such as a binary search tree from it, which could be used to find the appropriate
position to read from. This also works and is supported by hadoop-bam, but if the
summarizing task only needs to be performed once, computing the index can be a waste
of time.

4.4 The summarizing tool

With the BAM file split into usable chunks, one must move from the realm of hadoop-bam
to that of the summarizing tool. The following sections discuss the remaining phases in
the MapReduce execution sequence: the map function, the partitioning and sort, and the
reduce function.

4.4.1 Map

The map function of the summarizer extracts the coordinates and reference sequence IDs
of a read. Thus it produces, for each read, the pair of coordinates, keyed on the reference
sequence ID and the centre of mass in order to be sorted properly. The resulting key is
(conceptually9) a pair of the form (ID,centre), ordered lexicographically, and the value
is a (beg,end) pair.
This is a drastic reduction in the amount of data compared to the original read as seen
in Table 2. Such a reduction means that the performance of the sort stage is greatly
improved, as there is far less network traffic. As much as 90% of the data may be discarded
by the mappers.

4.4.2 Partition and sort

As the mappers complete their runs over input splits, they need to partition their output
i.e. assign a reduce task for each output key-value pair. Ideally, this results in a perfectly
even distribution, with each reducer getting exactly 1/R of the map tasks’ output, where
R is the number of reduce tasks.
Hadoop’s default partitioner for data simply uses hashing, which typically does rather
well: for each key k, the partition is hash(k) mod R. This is a fast way of getting a good
distribution, but it has one unfortunate side effect: the input will not be totally ordered.
There is no guarantee that all the input of reducer r is less than that of reducer r + 1.
For the purpose of summarizing, this is inadequate: the reducers should always consider
reads that are globally consecutive.

9For performance reasons, the implementation packs this pair of 32-bit integers into one 64-bit integer.
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Fortunately Hadoop provides a solution in the form of a partitioner that associates each
reduce task with a range of keys that should be sent to it. For example, with three reducers
and integer keys, the three ranges might be (−∞, 1000), [1000, 5000), and [5000,∞). This
ensures a global total ordering.
However, a new issue is introduced: how should the ranges be selected in order to get an
even distribution? The contents of BAM files can vary to a great extent, so presupposing
certain values is out of the question. Hadoop’s answer is sampling: examine some records
of the original input before even starting any map tasks, then base the distribution on
that. For example, if R = 2, the two partitions would be split around the median of the
sampled keys.
The choice of sampling strategy can have a noticeable effect on the performance of the
MapReduce job [Ven09]. For now, the summarizer uses a sampler intended for sorted
data, which examines the input at regular intervals. Since providers of BAM data tend
to sort the files before publication, this seems to be a sensible choice. In the future it
would be prudent to perform a comparison of the different sampling strategies provided
by Hadoop, but this has not been done yet.

4.4.3 Reduce

With the mappers’ output at the reducers, all that is left is to run the reduce function
over the data. That is, a certain predetermined amount of consecutive ranges need to be
grouped together.
The algorithm is simple: keep two sums, one for the beginning and one for the ending
coordinate, a count of how many pairs have been added into the sums, and the current
reference sequence ID. When the count reaches the requested amount, the input split
ends, or the ID changes, divide the sums by the count to get the arithmetic means and
output a summary record.
Note that this process can be done in parallel for any number of requested summary levels:
an arbitrary amount of summaries can be computed in only one pass over the BAM file.
This is a clear improvement over doing a separate MapReduce job for each summary.

5 Experiments

With hadoop-bam and the summarizer implemented, experiments were run to determine
how well the task performs and, in particular, scales when distributed across several
computers.

5.1 Environment

The Triton computing cluster was used as the test environment. Triton is a cluster of
112 computers or nodes, each of which has two six-core AMD Opteron 2435 CPUs with a
clock speed of 2.6 GHz. For RAM, 32 of the nodes have 64 gigabytes of 800 MHz DDR2
SDRAM each, while the remaining 80 have 32 gigabytes each. Each node also has 250
gigabytes of local disk space available for use.
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The nodes of Triton are physically split into seven enclosures holding 16 nodes each.
This has some implications for inter-node bandwidth, but in both the intra-enclosure
and inter-enclosure cases the InfiniBand link used has been tested to provide a TCP/IP
latency of about 23 µs and a bandwidth of about 700 megabytes per second.
Hadoop version 0.20.2 and hadoop-bam revision 1.0-6-g03b0ae1 (a development version
after 1.0) were used for the experiments. In addition, hadoop-lzo10 0.4.4 was used to
compress the data during the sort phase. This dramatically reduces network I/O between
the mappers and reducers.

5.2 Results

A 50 gigabyte BAM file11 was summarized with 16 different group sizes: the powers of
two from 2 to 65536. In the shown results, the heuristic approach for BAM file splitting
was used. Using a precomputed index for splitting gives practically identical MapReduce
performance, so those results are not shown. Indexing the file took about half an hour,
so indexing was simply half an hour slower than heuristic splitting.
Figure 2 displays, for five different Hadoop cluster sizes, mean times to complete four
tasks:

1. Importing the input BAM file from Triton’s network file system (NFS) to HDFS.
2. Running the actual summarizing MapReduce job.
3. Exporting the resulting summary files from HDFS to the NFS.
4. All of the above together.

These tasks were performed four times for each cluster size: the mean and the minimum
and maximum are shown in the figure.
The total time is well under an hour already with eight worker nodes. This is very
reasonable for a 50 gigabyte dataset. Extrapolating linearly, a five terabyte BAM file
would take around half a week to be summarized, which is still well within acceptable
ranges on so few machines.
As can be seen from Figure 3, the MapReduce job scales well up to about eight worker
nodes, after which scaling is minimal. This also has a significant effect on the total time:
starting at the four worker mark, the MapReduce job actually takes less time than the
file system transfers.
Unfortunately, the HDFS operations show zero scaling. One likely cause for this, other
than bottlenecks on the NFS side of things or the Triton network, is hardware limitations
on the Triton nodes: one 250 gigabyte disk is not considered sufficient even for CPU-
bound MapReduce tasks run under Hadoop12. Thus it is to be expected that disk I/O
would be a bottleneck.

10https://github.com/kevinweil/hadoop-lzo, last fetched May 4, 2011.
11NA19240.chrom6.SOLID.bfast.YRI.high_coverage.20100311.bam from the 1000 Genomes Project

(http://www.1000genomes.org/, last fetched May 4, 2011).
12See e.g. http://www.cloudera.com/blog/2010/03/clouderas-support-team-shares-some-

basic-hardware-recommendations/, last fetched May 4, 2011.
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6 Summary and conclusions

This Thesis has presented the implementation of core features of the hadoop-bam library
for cloud computing and a visualization-aiding tool for summarizing BAM files. The tool
has been benchmarked and found to perform sufficiently well: even with a relatively cheap
cluster of commodity hardware, one can expect to be able to visualize a several-hundred-
gigabyte BAM file within a day or two.
Two different approaches to the subproblem of BAM file splitting were compared: using
a precomputed index of sequence locations and heuristic on-the-fly calculation. The
heuristic approach won out, with MapReduce performance being practically identical, but
indexing incurring a noticeable additional cost.
The expensiveness of transferring large BAM files from traditional storage systems to
HDFS for MapReduce processing should be avoided in some way. Two ways of achieving
this are doing long-term data storage in HDFS and running Hadoop with a non-HDFS
distributed file system such as Lustre or a traditional NFS. Both have various pros and
cons whose investigation is outside the scope of this Thesis.
Clearly, preprocessing in the cloud is a viable way of visualizing BAM files. Cloud
computing provides performance: even with a relatively low speedup factor, one can
simply “throw more hardware at the problem” to reduce the time taken. Preprocessing
provides interactivity: latency between the user and the computing platform is made
irrelevant. By combining the two, robust methods for solving interactivity-related Big
Data problems can be created.
Using hadoop-bam currently requires writing the specific tool such as the summarizer by
hand, in a relatively low-level language such as Java. To make it more accessible, a future
direction is to evaluate using simpler and higher-level Hadoop-using platforms for working
with BAM files. Examples of such include Apache Pig [ORS+08] and Hive [TSJ+10].
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