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Abstract. Practical problem of missing values estimation of phospho-
rus concentration is addressed in this paper. There are several covariates
which can be used to estimate phosphorus in Pyhäjärvi lake, however
some of them also contain missing data. In addition, variable selection
needs to be done in order to increase accuracy of modeling and facili-
tate understanding of underlying dependencies. We address the problem
by first, Delta test variable selection and then by regression approach
with Ridge Regression, SVM and LS-SVM accompanied with wrapper
variable selection. It is shown that for some time periods it is possible
to improve estimations from regression by averaging them with missing
values imputation methods like Empirical Orthogonal Functions (EOF).
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1 Introduction and Work Motivation

Pyhäjärvi lake is a large lake located on the south-west of Finland. The lake
plays an important role in the local agriculture and fishing industries. Due to
the human activity and changing climate the ecology of the lake has been chal-
lenged [1]. The main substance that influence the ecological balance in the lake
is phosphorus. Therefore, it is very important to model and analyze phosphorus
concentration in order to develop adequate measures for the lake protection.

Complication, which is frequently encountered when dealing with environ-
mental data, is the presence of missing values. Measurements are often taken
manually by humans and cases like spoiling the sample or sickness of a particu-
lar person are not exceptions. Selecting the best subset of covariates is also an
important step in the modeling. In this work, the goal is to estimate concen-
tration of phosphorus in various locations of Pyhäjärvi lake for the time period



26.03.1991 - 21.04.2008. Some values of phosphorus are given but many are miss-
ing. Some covariates also contain missing values. To shorten the exposition, data
only for one location is considered in what follows.

The paper organization is the following: in the next section description of
the dataset is provided. In the Section 3 regression approach to phosphorus
concentration estimation is given. Then follows the missing values approach and
finally conclusions.

2 Dataset Description

The dataset is shown in the Table 1. There are 16 variables (columns) and
1230 rows in the dataset. Each row correspond to averaged value of correspond-
ing variable over 5 day interval. This interval is called “Week” for brevity.
In the column “Complete dataset” number of present values of different vari-
ables is given. The variable to estimate is the second one - “Total P S11”.

Table 1. Dataset and amounts of present values in vari-
ables

Dataset
No. Variable name Complete dataset Part 1 Part 2

(1230 rows) (351 rows) (271 rows)
1 “Flow S11” 1230 (full) 351 (full) 271 (full)
2 “Total P S11” 227 59 58
3 “Total P S10” 225 60 58
4 “Total P S12” 226 58 72
5 “Temperature” 1228 351 (full) 271 (full)
6 “Integrated Flow S11” 1230 (full) 351 (full) 271 (full)
7 “Smoothed Flow S11” 1230 (full) 351 (full) 271 (full)
8 “Rains” 1230 (full) 351 (full) 271 (full)
9 “Sin Week” 1230 (full) 351 (full) 271 (full)
10 “Cos Week” 1230 (full) 351 (full) 271 (full)
11 “Time shift 1 Ph. S11” 226 58 57
12 “Time shift 2 Ph. S11” 226 58 57
13 “Time shift 1 Ph. S10” 225 59 57
14 “Time shift 2 Ph. S10” 225 59 57
15 “Time shift 1 Ph. S12” 225 57 71
16 “Time shift 2 Ph. S12” 225 57 71

The sparsity of the
dataset is 46% i. e.
almost half of all the
values are absent. How-
ever, missing values are
distributed in time non
uniformly. For variable
“Total P S11” there
are large periods (up to
a year) when no data
is present and periods
where gaps are relatively
small (several “Weeks”).
Preliminary tests showed
that missing values
imputation methods
provide good estimation

of “Total P S11”, when there are no large gaps between given values of this
variable. Therefore, missing values imputation methods are applied only to
datasets named “Part 1” (03.1991-02.1996) and “Part 2” (03.1997-12.2000)
which correspond to time intervals with no big gaps between given values of
“Total P S11”. Regression modeling is conducted for the complete dataset.

Not all variables might be useful for phosphorus concentration estimation.
One goal of this work is to select relevant variables and discard irrelevant.

Regression Dataset. Regression dataset (Table 2) is con-
structed from the complete dataset in the Table 1 by taking co-
variates where no missing data occurs (including “Temperature”).



Table 2. Regression
dataset

No. Variable name
To predict “Total P S11”

1 “Flow S11”
2 “Temperature”
3 “Integrated Flow S11”
4 “Smoothed Flow S11”
5 “Rains”
6 “Sin Week”
7 “Cos Week”
8 “Rains Int. 1”
9 “Rains Int. 2”
...

...
17 “Rains Int. 10”

The variable to predict is “Total P S11”. The num-
ber of training samples is 227 and equals the number
of present values in “Total P S11” variable. Having
trained the regression model, it is possible to estimate
phosphorus concentration on all other “Weeks” when
it is missing. This is called regression approach and
it is compared to missing values approach described
in details in Section 4. Since missing values approach
is studied only during periods “Part 1” and “Part 2”,
for all other “Weeks” regression approach is used to
estimate “Total P S11”. Ten additional variables No.

8-17 are added to the regression dataset. They are integrated values of “Rains”
over 1 “Week” and so forth up to 10 “Weeks”. The motivation for including
these variables is to check possibility that phosphorus concentration depends on
accumulated precipitation intensity during a long period.

In the following sections, we consider regression and then missing values
approaches.

3 Regression Approach to Phosphorus Concentration
Estimation

Regression approach has been applied to the data in Table 2. Three regression
models are evaluated, and the best one which has smallest normalized mean
square error (NMSE) is selected. First model is a linear one - Ridge Regression,
and the other two are nonlinear Support Vector Regression (SVR) and Least-
Squares Support Vector Regression (LS-SVR). Nonlinearity is obtained by using
Gaussian kernel.

One thing that can deteriorate regression models is the presence of irrele-
vant, redundant, or too noisy input variables. Those can increase computational
time, contribute to the curse of dimensionality and, finally, reduce accuracy of
the regression [2]. In addition, selecting of only useful variables facilitates inter-
pretability of the model.

3.1 Variable Selection

There exist many methods for variable selection. Overview of some of them is
presented in [2] and [3]. These methods can be divided into three main cate-
gories: filters, wrappers and embedded methods. Filter methods optimize some
external criteria and select a subset of input variables which corresponds to the
optimum. Advantage of filter methods is that they are usually faster to com-
pute than other types of methods, but disadvantage is that they doesn’t take
into account data model used during learning process. Wrapper methods utilize
learning machine as a black box method to score different subsets of input vari-
ables. Multiple retraining of learning algorithm and measuring performance on



a separate validation set are usually required. This is a main disadvantage of
this class of methods.

In this work, hierarchical variable selection is applied. On the first step less ac-
curate but more computationally efficient filter method is used - Delta test [4],[5],
on the second step, when less variables are left for analysis, wrapper method is
utilized.

Based on the results of Delta test variables are divided onto 3 groups. First
group is completely irrelevant variables which are discarded from subsequent in-
vestigation. The second group is important variables which are always kept. And
finally to the third group attributed variables which are investigated through
wrapper approach by passing all possible their combinations through the regres-
sion algorithm and measuring NMSE on validation set.

Table 3. Variable selection via Delta test for regression datasets

No. of
samples

Relevant variables Variables to be investigated further

227
“Flow S11” , “Temperature”,
“Integrated Flow S11”

“Smoothed Flow S11”, “Rains”, “Sin Week”,
“Cos Week”, “Rain int 1”, “Rain int 4”

Variables in the right most column are investigated further through a wrapper
approach. Actually, three regression models are considered and selection of the
best subset of variables is done along with selection of the best model.

3.2 Regression Models

Three regression models have been analyzed in this work. One linear - Ridge re-
gression, and two nonlinear Support Vector Regression (SVR) and Least Squares
Support Vector Regression (LS-SVR) [6].

Regularization parameter λ in Ridge regression is adjusted via second in-
ternal cycle of cross validation. Gaussian kernel functions are used in SVR and
LS-SVR. There are three hyper-parameters to adjust in SVR formulation: C
- regularization parameter, ε - width of a tube inside which no penalty for a
point occurs, and σ - width of a Gaussian kernel. We have utilized method of
Cherkassky and Ma [7] followed by pattern search [8] to tune these parameters.
LS-SVM Toolbox for Matlab has been used for LS-SVR modelling. Param-
eter optimization in this toolbox is done through coupled simulated annealing
algorithm [9] and fine tuning through simplex method and cross-validation.

3.3 Regression Results

Before applying regression modeling all input variables and output variable have
been normalized to have zero mean and unit variance. Generalization error of



different models and different subsets of input variables is measured by Monte-
Carlo 15-fold cross-validation which is repeated 50 times. Number of folds is
increased in comparison with standard 10 because number of samples in each
dataset is small, and there is a need to increase number of samples for training.
Regression model and subsets of variables which have the smallest NMSE are
presented in the Table 4. We see that the best model is LS-SVM and the worst

Table 4. Relevant variables and best models for the regression dataset

Best model Relevant variables NMSE ± (std)

LS-SVR
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Smoothed flow S11”, “Sin Week”, “Cos Week”

0.530± (0.312)

Ridge R.
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Sin Week”, “Int. Rain 2”, “Int. Rain 5”

0.675± (0.394)

SVM
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Smoothed flow S11”, “Sin Week”, “Cos Week”

0.570± (0.359)

one is Ridge Regression. This indicates the fact that dataset is highly nonlinear.
SVM is the second best model. We suppose that the hyper-parameter selection
strategy of LS-SVM toolbox is superior over the method we use for SVM.

The most relevant variables are the same for LS-SVM and SVM. Except
“Rains” variable, all relevant variables form the application domain point of
view are selected as important. Several subsets of variables are analyzed further
in the missing values imputation approach.

4 Missing Values Approach to Phosphorus Concentration
Estimation

Missing values datasets have been described in the Section 2. There are two
datasets named “Part 1” and “Part 2”. They correspond to time intervals when
measurements of phosphorus are not very sparse. They include all 16 variables
from the Table 1.

Regression modeling allows estimating phosphorus concentration when it is
unknown. However, in regression modeling the sequential nature of the data
is not taken into account. By utilizing missing values approach we are able to
account for this and also include additional predictors (covariates) which them-
selves contain missing values. Importance of several subsets (Table 5) of input
variables has been analyzed as well. Therefore, for periods for which missing val-
ues datasets are constructed, improved estimation of phosphorus concentration
is obtained.

Generally, missing values imputation is a wide area of research with many
applications [10], so it is hardly possible to try all the methods. Therefore, only



a subset from different classes of methods is selected and subsequent ensemble
averaging is utilized to lighten possible disadvantages of a single method. Each
method takes as input a matrix with missing values, fills missing values and
returns the complete matrix. Due to the space constraints we describe only one
method - Empirical Orthogonal Functions (EOF) [11]. It is a widely used method
in meteorology and climate research for missing values imputation and is based
on Singular Value Decomposition (SVD) (Algorithm 1). For other two: Mixture
of Gaussians (MoF) [12],[13] and Singular Value Thresholding (SVT) [14] we
redirect to the original articles.

Algorithm 1 Empirical Orthogonal Functions

Given the incomplete matrix X ∈ Rm,n

1: Make initial imputation X0, for example, by column means
2: i = 0 (iteration number)
3: repeat
4: Perform SVD: Xi = U iDi(V i)T to obtain U i,Diand(V i)T

5: Nullify K smallest singular values of Di. Denote this modified matrix as Di
0

6: Do inverse transformation: Xi
0 = U iDi

0(V i)T

7: Restore exactly known values: known(Xi
0) = known(X0)

8: i = i + 1 (iteration number)
9: until Convergence

4.1 Model Selection for Missing Values Approach

Combining different models. It is possible to select only one model based
on the lowest NMSE of cross-validation, however there is s reason to keep all
three and do an ensemble (e.g. see [15, p. 656]) Since regression can provide
estimations of phosphorus it is also included in the ensemble.

Ensemble is done via arithmetic averaging of predictions from different mod-
els. However, even further improvement can be achieved if we choose which of the
models to include in the averaging. There are five models we are investigating,
namely “Regression”, “Mixture of Gaussians 1 component” (MM1), “Mixture of
Gaussians 2 components” (MM2), “SVT”, “EOF”.

Experimental Setup. Experiments are done in the similar way as regres-
sion experiments. Accuracy of imputation is characterized by Normalized Mean
Squared Error (NMSE) and is measured by Monte-Carlo 15-fold cross-validation.
There are 50 iterations in total, on each of those dataset is randomly permuted.
The final estimation of NMSE is an average over folds within one iteration and
total average over all iterations. Iterations of cross-validation are required be-
cause datasets are very small - only about 225 samples.

There are two missing values datasets “Part 1” and “Part 2” as described in
Section 2. They are processed simultaneously in the cross-validation cycle. For
each dataset, averaging estimations of all possible combinations of five models



and three subsets of variables (Table 5) is analyzed in terms of NMSE and
standard deviation (STD) of NMSE.

4.2 Model Selection Results

Results of the model selection are presented in the Table 5. Three groups of
variables which are interesting from the interpretation point of view have been
analyzed. In particular, usefulness of “Rains” variable which has been rejected
on the regression phase, as well as time shifted versions of phosphorus “Time
shift 1 Ph. S11”, “Time shift 2 Ph. S12”.

Table 5. Groups of variables which have been tested for missing values imputation

Missing Values Imputation Results

No. Variable Name Group 1 Group 2 Group 3

1 “Flow S11” X X X
2 “Total P S11” X X X
3 “Total P S10” X X X
4 “Total P S12” X X X
5 “Temperature” X X X
6 “Integrated Flow S11” X X X
7 “Smoothed Flow S11” X X X
8 “Rains” X
9 “Sin Week” X X X
10 “Cos Week” X X X
11 “Time shift 1 Ph. S11” X X
12 “Time shift 2 Ph. S11” X X
13 “Time shift 1 Ph. S10” X X
14 “Time shift 2 Ph. S10” X X
15 “Time shift 1 Ph. S12” X X
16 “Time shift 2 Ph. S12” X X

Best model combination 10001: “Regression LS-SVM”, “EOF”

NMSE ± std, Part 1 0.503± 0.599 0.504± 0.634 0.503± 0.637
NMSE ± std, Part 2 0.343± 0.611 0.340± 0.665 0.340± 0.662

It turns out that the best model combination is an average of estimations
of LS-SVM Regression and EOF. Actually, the best variable subset and best
model combination is selected as compromise between two “Part 1” and “Part
2” datasets. The reason is that sometimes one model combination is better for
“Part 1” and another one is better for “Part 2”. So, resulting table is produced
by manually inspecting NMSE and STD for various sets of variables and model
combinations, and choosing the one with good results for both “Part 1” and
“Part 2”. It is seen that the first group of variables is the best one in terms of
NMSE and STD, which means that all variables included in the dataset carry
some useful information.

It is seen that STD is higher than NMSE in all cases. This is an indicator of
the fact that some extreme values of phosphorus concentration is very hard to
predict.



5 Conclusions

Practical problem of phosphorus concentration estimation has been addressed
in this article. Two stage approach has been developed where on the first stage
regression problem with only complete covariates have been solved and on the
second stage improvements by missing values method has been made. Selection
of the best regression model and variable selection have been done along.

Empirical Orthogonal Functions(EOF) method in combination with LS-SVM
achieved the best accuracy for predicting phosphorus concentration.

In the future, other classes of methods are intended to be applied for the
problem. We plan to use existing methods or develop new ones which can do
nonlinear regression with missing values in the covariates.
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