TEKNILLINEN KORKEAKOULU

Tietotekniikan osasto

Kimmo Varpaaniemi

UNIX-YMPARISTOSSA TOIMIVAN OHJELMISTOLIITANNAN
SUUNNITTELU JA VERKKOTEOREETTINEN ANALYSOINTI

Diplomityo, joka on jatetty opinnaytteena tarkastettavaksi
diplomi-insinoorin tutkintoa varten Espoossa 30.5.1991

Tyo6n valvoja Leo Ojala

Tyon ohjaaja Veli-Matti Taavitsainen

Alkusanat

Tama tyo on tehty Teknillisen korkeakoulun digitaalitekniikan laboratoriossa Kemi-
ra Oy:n toimeksiannosta.

Kiitan Kemira Oy:td, digitaalitekniikan laboratoriota, sdatotekniikan laboratoriota
ja Control CAD Oy:ta saamastani avusta. Erityisesti kiitdn professori Leo Ojalaa,
joka ehdotti tata tyota ja toimi tyon valvojana, FL Veli-Matti Taavitsaista ja dosent-
ti Heikki Haariota, jotka ohjasivat tyotani Kemira Oy:n taholta, seka yliassistentti
Ilkka Niemelaa, jonka esittamista kommenteista oli paljon apua tyon kirjoittamises-
sa.

Kimmo Varpaaniemi

Sisallysluettelo

1 Johdanto
1.1 Ohjelmistoliitdnnéistd
1.2 Verkkoteoriasta
1.3 Tyon tausta L

1.3.1 Mallittaminen, simulointi, estimointi ja kokeiden suunnittelu .

1.3.2 Modest ja Simnon. L oL

1.4 Modest-Simnon-liitantao oL oo
1.5 Johdatus seuraaviin lukuihin o000 o000 0oL L

2 Simnon
2.1 Simnonin eri versioto
2.2 Jatkuvat systeemito
2.3 Diskreetit systeemit Lo
2.4 Yhdistavat systeemito oo Lo
2.5 Tarkeimpiad Simnonin komentoja
2.6 UNIX-Simnonin plus-version ulkoiset systeemit

3 Modest
3.1 Modestin keskeisia piirteita
3.1.1 Mallit . . .o
3.1.2 Tehtavat
3.1.3 Koesarjat
3.14 Parametrito
3.2 Modestin kayttoliittymao Lo
3.2.1 Kayttoliittyman yleisluonneo 0L
3.2.2 Havaintojen kuvaus

i

3.2.3 Mallin kuvaus 15

3.2.4 Ongelman ja toimintojen tarkka maarittely 15
3.2.5 Tulostustiedostot 16
4 Prosessien valinen kommunikointi yleisesti tarkasteltuna 18
4.1 Synkronointi.o 18
4.2 Muistin jakaminen ja sanomien valitys 19
4.3 Kommunikaatioyhteyden looginen toteutus 19
4.4 Suora kommunikointi 20
4.5 Postilaatikkokommunikointi o000 21
4.6 Yhteyden jonotusvara 22
4.7 Sanomien koko tai tyyppi 22
4.8 Poikkeustilanteeto 22
4.9 OSI-malli ja Internet-malli 23
4.10 Internet-mallin kuljetuskerroksen sovellusohjelmalle tarjoamien pal-
velujen tyyppi 24
4.11 Asiakas-palvelija-malli 26
5 Prosessien valinen kommunikointi UNIXissa 27
5.1 Signaalit L 27
5.2 Tavanomaiset tiedostot 28
5.3 Jaettumuisti 28
5.4 Semaforit o 29
0.5 Viestijonot L 30
5.6 Nimeamattomat putket L. 31
5.7 Nimetyt putketo 33
5.8 Vastakkeet L 34

il

5.9 Kaksoisvirrat 38

510 TLI. o o e 40
5.11 HP:n NetIPC 40
Modest-Simnon-liitannan keskeiset piirteet 41
6.1 Prosessit L e 41
6.2 Modest-ajon kulku Modest-prosessin osalta 41
6.3 Perustelut ulkoisen systeemin kaytolle 43
6.4 Kommunikaatiomekanismio 0L 45
6.5 Interpolointi Lo 46
6.6 Mallien kirjo. oL 48
6.7 SiirrettAvyys L 48

Modest-Simnon-liitdnnan kommunikointitapahtumien analysointia

P /T-verkkojen avulla 49
71 P/T-verkot 49
7.1.1 P/T-verkon médritelmd 49
7.1.2 P/T-verkon merkinnét. Saavutettavuus 50
7.1.3 P/T-verkkojen lineaarialgebrallinen esittdminen 92
714 S-invariantito 0oL 52
7.1.5 T-invariantit. Lo 93
7.1.6 P/T-verkkojen graafinen esittdminen 54
7.2 Prena 54

7.3 Modestin ja Simnonin valisen vastakeyhteyden muodostamisen analysointi 55

7.3.1 Modestin ja Simnonin valisen vastakeyhteyden muodostamis-

ta mallittava P/T-verkko 55
7.3.2 S-invariantti-analyysi o7
7.3.3 T-invariantti-analyysi. oL, 59

v

7.3.4 Saavutettavuusanalyysi. 60

7.4 Simulointitulosten vélittdmisen analysointi 61
7.4.1 Simulointitulosten vilittdmistd mallittava P/T-verkko 61

7.4.2 S-invariantti-analyysi 63

7.4.3 T-invariantti-analyysi. 64

7.4.4 Saavutettavuusanalyysi. 64

8 Yhteenveto 66
Lahdeluettelo 68

Liitteet

1 Modestin ja Simnonin valisen vastakeyhteyden muodostamista mallit-
tavan P /T-verkon saavutettavuusanalyysi Prenalla

2 Simulointitulosten vilittdmistd mallittavan P/T-verkon saavutetta-
vuusanalyysi Prenalla

Kuvat

1 Modestin ja Simnonin vilisen vastakeyhteyden muodostamista mallit-
tava P /T-verkko 56

2 Modestin ja Simnonin vilisen vastakeyhteyden muodostamista mallit-
tavan P/T-verkon insidenssimatriisi, alkumerkintidvektori, S-invariantti-
en kantavektorit ja T-invarianttien kantavektorit 58

3 Simulointitulosten vilittdmista mallittava P/T-verkko 62

4 Simulointitulosten valittdmistd mallittavan P /T-verkon insidenssimat-
riisi, alkumerkintavektori, S-invarianttien kantavektorit ja T-invariantti-
en kantavektorit 63

vi

Lyhennysten ja merkintojen luettelo

ASCII American Standard Code for Information Interchange
C/E-verkko ehto-tapahtuma-verkko

Cn verkon NN insidenssimatriisi

dz

pm funktion x derivaatta muuttujan ¢ suhteen

FIFO first in first out

Fy verkon N kaarien joukko

I/0 input-output

IP Internet Protocol

IPC Interprocess Communication

ISO International Organization for Standardization
Ky verkon N kapasiteettifunktio

My verkon N alkumerkintafunktio tai -vektori
Mt > M’ merkinndstd M paastddn merkintdén M’

laukaisemalla transitio ¢

N verkko
0 matriisi, jonka kaikki alkiot ovat nollia
OSI Open Systems Interconnection

P /T-verkko paikka-transitio-verkko

vil

Pr/T-verkko predikaatti-transitio-verkko

Sn verkon N paikkojen joukko
TCP Transmission Control Protocol
TLI Transport Layer Interface

Ty verkon N transitioiden joukko
UDP User Datagram Protocol

W verkon N kaaripainofunktio
XT matriisin X transpoosi

XY matriisien X ja Y tulo

¥4 transition ¢ etujoukko

t- transition ¢ jalkijoukko

— lukujen, matriisien, funktioiden tai joukkojen erotus

N joukkojen leikkaus

U joukkojen unioni

v universaalikvanttori

3 eksistentiaalikvanttori

viii

1 Johdanto

1.1 Ohjelmistoliitannoista

Ohjelmistoliitanta liittaa ohjelmia tavalla tai toisella yhteen uudeksi kokonaisuudek-
si. Usein jonkin kokonaisuuden suunnittelu ja toteutus ohjelmistoliitinnan avulla
on taloudellisesti kannattavampaa kuin vastaavan itseriittoisen ohjelman luominen.

Ohjelmistoliitanta voidaan rakentaa yhteisten muistialueiden, muuttujien, aliohjel-
mien tai tiedostojen varaan. Moniajoymparistossa, kuten UNIX, prosessien valisen
kommunikoinnin keinoin voidaan ohjelmistoliitantoja tehda sujuvasti koskematta
juuri lainkaan liitettavana olevien ohjelmien lahdetiedostoihin tai tarvitsematta edes
nahda kaikkien liitettavana olevien ohjelmien lahdetiedostoja.

1.2 Verkkoteoriasta

Verkkoteoria on rinnakkaisiin ja hajautettuihin jarjestelmiin erikoistunut tietojen-
kasittelyteorian osa-alue. Jotakin jarjestelmaa voidaan mallittaa verkolla, jossa
on esitetty jarjestelman kannalta keskeiset synkronointi- ja kommunikointitapah-
tumat. Jarjestelman ominaisuuksia voidaan selvittaa suorittamalla verkolle saavu-
tettavuusanalyysi ja/tai invarianttianalyysi. Jarjestelmén eri osia voidaan mallittaa
erikseen omilla verkoillaan, mika antaa mahdollisuuden tarkempaan analysointiin.

1.3 Tyon tausta
1.3.1 Mallittaminen, simulointi, estimointi ja kokeiden suunnittelu

Kemiallista prosessia tutkittaessa pyritaan muun muassa selvittamaan eri suurei-
den vilisia riippuvuuksia mahdollisimman tarkasti ja taloudellisesti. Asioiden sel-
vittdminen laskennallisin keinoin on yleensia huomattavasti taloudellisempaa kuin
samojen asioiden selvittdminen puhtaan kokeellisesti.

Tehtyjen kokeiden seka mahdollisesti alan teorian perusteella tutkittavalle ilmiol-
le rakennetaan malli. Malli antaa riippuvuuden saadettavien eli riippumattomien
ja mitattavien eli riippuvien muuttujien valille. Naita nimityksia mallin eri muut-
tujille on kéytetty lihteessd [3]. Tavallisia sdddettdvid muuttujia ovat esimerkiksi

aika, lampotila, paine ja reaktoriin syotettavien aineiden maarat. Tavallisia mitat-
tavia muuttujia ovat puolestaan esimerkiksi lopputuotteen laatu ja saanto seka eri
aineiden konsentraatiot. Mallin parametreiksi kutsutaan jotakin valittua mallissa
esiintyvien muuttumattomien suureiden joukkoa.

Mekanistisessa mallissa, ldhteen [3] mukaan, sdddettdvien ja mitattavien muuttu-
jien vélinen yhteys pyritdan perustamaan fysiikan ja kemian lakeihin. Empiirisessi
mallissa sdddettdvien ja mitattavien muuttujien valinen riippuvuus on puhtaasti
laskennallinen.

Kaisitteelld simulointi tarkoitetaan malliin perustuvaa riippuvien muuttujien arvojen
laskemista valituilla riippumattomien muuttujien arvoyhdistelmilla.

Parametrien estimointi on parametrien optimaalisten arvojen arviointia pyrittaessa
hakemaan mahdollisimman hyvin havaintoihin sopiva malli. Yleisessa tapauksessa
estimoinnissa lahdetaan liikkeelle jostakin mallista ja luodaan parametrien arvoja
muuttamalla iteratiivisesti uusia malleja, kunnes joko on saavutettu riittavan hy-
vaksi katsottu malli tai on suoritettu sovittu maksimimaara iteraatioita. Mallin
vertaamisessa havaintoihin kaytetaan yleensa pienimman neliGsumman Kkriteeria.
NeliGsummassa esiintyvat riippuvien muuttujien arvot saadaan simuloimalla. Esti-
moinnin tuloksena saadaan parametreille estimaatit sekd estimaateille virhearviot.
Parametrin sanotaan identifioituvan hyvin, jos ko. parametrille saadun estimaatin
suhteellinen virhe on pieni.

Kokeiden suunnittelussa etsitdan optimaalisia koepisteita. Koepisteet ovat optimaa-
lisia, jos parametrit kokonaisuutena ottaen identifioituvat ko. koepisteita kaytetta-
essa mahdollisimman hyvin.

1.3.2 Modest ja Simnon

Yleiskayttoisia matemaattisia tyokaluja on olemassa runsaasti. Puhtaita simuloin-
tiohjelmistojakin on tarjolla kohtalaisesti. Kansainvalisia seka simulointiin etta es-
timointiin tarkoitettuja ohjelmistoja ei ole kovinkaan paljon. SimuSolv on yksi har-
voista kansainvalisista seka simulointiin etta estimointiin tarkoitetuista ohjelmistois-
ta. Sen sijaan Simusolvia ei ilmeisestikain ole tarkoitettu kokeiden suunnitteluun,
tai ainakaan SimuSolvia kuvaavassa lihteessé [12] ei mainita kokeiden suunnittelua.

Modest on Kemira Oy:n Espoon tutkimuskeskuksessa kehitetty ohjelmisto mekanis-
tisten mallien parametrien estimointia ja kokeiden suunnittelua varten. Modestia

voi kayttaa myos simulointiin.
Simnon on Lundin teknillisessad korkeakoulussa kehitetty simulointiohjelmisto.

Modestissa kayttija kirjoittaa mallinsa FORTRANilla. Minkaénlaista modulaaris-
ta mallitusta Modest ei tue. Simnon tarjoaa sen sijaan korkeatasoisen kuvauskielen
seka mahdollisuuden mallittaa systeemeja modulaarisesti. Simnonin mallivalikoima
on laajempi kuin Modestin mallivalikoima.

Jos Modestin ja Simnonin hyvat puolet voitaisiin jotenkin yhdistaa, saattaisi tulok-
sena olla kansainvilisiin ohjelmistoihin verrattuna riittdvan kilpailukykyinen ohjel-
misto.

Askeiseen virkkeeseen on tiivistetty ne toiveet, joiden pohjalta tama diplomityo lahti
kayntiin.

1.4 Modest-Simnon-liitanta

Tyonéni toteutin Modest-Simnon-liitdnnan. Kyseessd on varsinaisesti Modest-ver-
sio, joka kayttda Simnonia hyvakseen. Kayttdja kirjoittaa mallinsa Simnonin ku-
vauskielella.

Modest-Simnon-liitinta paétettiin toteuttaa UNIX-ymparistéon, koska UNIX-Sim-
nonia oli Suomessa jo runsaasti kaytetty, kun taas Simnonin mahdollisista versioista
muissa moniajoymparistoissa ei ollut tietoja. Moniajoympéristo oli tarpeen, jotta
liitAnnan toteuttaminen prosessien valisen kommunikoinnin avulla olisi mahdollista.
Prosessien valinen kommunikointi valittiin ensisijaiseksi tavaksi tehda liitanta, kos-
ka suoremmat tavat kuten Simnonin globaalien muuttujien tai aliohjelmien kaytto
olisivat edellyttdneet Simnoniin liittyvien lupien ostamista.

Toteutusymparistona oli HP-UNIX, tietokoneina TKK:n saatotekniikan laboratori-
on HP 9000/300-sarjan tietokoneet tassu ja tossu. Varsinainen méadrdnpad uudella
Modestilla oli Kemira Oy:n Espoon tutkimuskeskus, jossa ei kuitenkaan vield ollut
UNIX-konetta.

Tehty liitanta toimii yhden prosessorin siséilla, toisin sanoen kaikki Modest-ajos-
sa mukana olevat prosessit sijaitsevat samassa prosessorissa. Hajautetun liitdnnan
tekemiseen ei ainakaan toistaiseksi ole ilmennyt tarvetta.

1.5 Johdatus seuraaviin lukuihin

Luvussa 2 esittelen Simnonin ja luvussa 3 Modestin. Naiden kahden luvun ensisi-
jaisena tarkoituksena on tarjota esitietoja lukuun 6.

Luvussa 4 kuvaan prosessien valista kommunikointia yleisesti.Tietoliikenneasioita en
ole katsonut voivani taysin sivuuttaa, koska prosessien valisessa kommunikoinnissa
yleinen suuntaus on kohti sellaista kaytantoa, jossa prosessien sijainnista riippumat-
ta asiat ohjelmoidaan yhdenmukaisella tavalla. Luku tarjoaa my6s sopivassa maarin
esitietoja lukuun 5.

Luvussa 5 kuvaan UNIXin prosessien valisen kommunikoinnin eri mekanismeja. Ta-
voitteena on koota asioita hieman yhteen. Yksinkertaistavaa vertailua olen valt-
tanyt. (Sovellutuksen erityispiirteilli on usein niin ratkaiseva merkitys, ettd me-
kanismien todenmukainen paremmuusjarjestykseen asettaminen edellyttaisi kaikkien
vertailtavina olevien mekanismien kokeilemista. Itse kokeilin ohjelmallisesti kolmea
eri mekanismia, eivatka kokeellisen vertailun tulokset olleet aivan ennakkokasitys-
teni mukaisia.)

Luvussa 6 esitin Modest-Simnon-liitdnnan keskeiset piirteet ja tehtyjen ratkaisujen
perustelut.

Luvussa 7 analysoin Modest-Simnon-liitdnnan kommunikointitapahtumia P /T-verk-
kojen avulla kahden keskeisen kommunikointivaiheen osalta.

2 Simnon

Simnon on ohjelma, joka on tarkoitettu tavallisten differentiaaliyhtaloiden ja diffe-
rensiyhtaldiden systeemien numeeriseen ratkaisemiseen ja dynaamisten systeemien
simulointiin. Simnon on kehitetty Ruotsissa Lundin teknillisessa korkeakoulussa.
Ensimmainen versio ilmestyi vuonna 1972.

Simnon on opetus- ja tutkimustyoviline. Sovellutusalueista mainittakoon siato-
tekniikka, biologia, kemian tekniikka, taloustiede, sahkotekniikka, matematiikka ja
konetekniikka.

Dynaaminen systeemi voidaan yleisimmassa muodossaan kuvata useana alisystee-
mind. Alisysteemi voi olla differentiaaliyhtélosysteemi tai differenssiyhtalosysteemi.
Kullakin alisysteemilld voi olla sisddntulomuuttujia ja ulostulomuuttujia. Alisys-
teemit kytkee yhteen ns. yhdistava systeemi. Dynaaminen systeemi voi olla myos
yksittdinen differentiaaliyhtalosysteemi tai differenssiyhtalosysteemi.

Simnon on vuorovaikutteinen ohjelma. Kayttdja antaa Simnonille komentoja. Ko-
mentojen avulla kayttaja voi simuloida systeemeja, piirtaa muuttujien arvoja kuvaa-
via kayria kuvaruudulle, tallettaa simulointituloksia tiedostoihin, asettaa systeemien
parametreja ja alkuarvoja sekd tehda paljon muutakin. Kayttaja voi koota komen-
toja makroiksi ja kutsua makroja, ja makrot voivat kutsua toisiaan.

Differentiaaliyhtalosysteemistd kiytetdan Simnonissa nimitystd jatkuva systeemi,
miki viittaa ajan jatkuvuuteen. Differenssiyhtalosysteemistd kaytetaan vastaavasti
nimitysta diskreetti systeemi.

Jatkuvat, diskreetit ja yhdistavat systeemit kuvataan kukin omassa tiedostossaan.
Kuvaukset kirjoitetaan erityisella kuvauskielelld, josta kaytan nimitysta Simnon-kie-
li.

2.1 Simnonin eri versiot

Simnon on saatavilla ainakin MS-DOS-koneisiin ja UNIX-koneisiin. MS-DOS-Sim-
nonista saa tietoa lahteestd [11]. Ko. kdyttdopas soveltuu pitkalti myos UNIX-Sim-
nonin kayttédjille. UNIX-Simnonin erityispiirteista saa tietoa lahteesté [10].

MS-DOS-Simnonista on ldhteen [11] mukaan olemassa kolme erityyppista versiota:

1) Regular on yleisimmin kéytetty ja soveltuu suuriinkin ongelmiin.

5

2) Classroom Kit on Regularin kaltainen halvempi versio, joka soveltuu vain koh-
tuullisen pieniin ongelmiin. Nimensd mukaisesti sitd myydaan kouluihin ja
yliopistoihin.

3) Real Time Capability on Regularin laajennus, joka tukee analogista ja digi-
taalista syottoa ja tulostusta.

UNIX-Simnonista on ldhteen [10] mukaan olemassa kaksi erityyppisté versiota:

1) Regular on samanlainen kuin MS-DOSin vastaava versio.

2) Plus Version on Regularin laajennus, johon voidaan liittda ns. ulkoisia systee-
meja.

UNIX-Simnonin plus-version ulkoisia systeemeja kasittelevad osiota 2.6 lukuunot-
tamatta tassd luvussa esitettdva Simnonin kuvaus koskee kaikkia edella lueteltuja
Simnonin versioita.

2.2 Jatkuvat systeemit

Sanoja piste ja aikahetki kaytan synonyymeina toisilleen. Simuloinnin aikahetkihan
on piste aika-akselilla. Kaytan nimitysta ratkaisupiste niista pisteista, joissa jonkin
systeemin muuttujien arvot simuloitaessa lasketaan.

Jatkuva systeemi voidaan ldhteen [11] mukaan esittdd vektoriyhtéloparina

{‘fi—f = f(x,u,t) 1)

y = g(z,u,t),

missa u on sisaantulomuuttujien vektori, y ulostulomuuttujien vektori, x tilamuut-
tujien vektori ja t jatkuva aikamuuttuja.

Tilamuuttujien arvot alkupistettd seuraavissa pisteissid Simnon laskee numeerisesti
integroimalla. Kayttaja maaraa integroinnin maksimiaskelkoon ja sen, millaista in-
tegrointialgoritmia kaytetaan. Jotkut algoritmeista integroivat tasavalisesti, toiset
saatelevat askelpituutta tarpeen mukaan.

Jatkuvan systeemin Simnon-kielinen kuvaus sisaltaé seuraavat osat, jotka on kuvat-
tu ldhteessd [11]:

e Otsikko. Otsikko sisaltaa systeemin nimen. Systeemin nimi on taysin riippu-
maton sen tiedoston nimesta, jossa ko. systeemin kuvaus on annettu.

e Muuttujien julistaminen. Muuttujat voivat olla tyyppia TIME, INPUT, OUT-
PUT, STATE tai DER, ts. aika-, sisdantulo-, ulostulo-, tila- tai derivaatta-

tyyppia.

e Alkulaskenta. (Tdmé osa ei ole pakollinen.) Alkulaskentalohkossa tapahtuva
laskenta suoritetaan simuloinnin alussa. Alkulaskentalohkossa voidaan alus-
taa apumuuttujia ja tilamuuttujia. Nimitys apumuuttuja tarkoittaa tassa ja
jatkossakin sellaista systeemin sisaista muuttujaa, jota ei ole julistettu erik-
seen.

e Simulointiyhtalot. Tassa osassa tapahtuva laskenta suoritetaan aina, kun Sim-
non on jossakin simulointivalin ratkaisupisteessi. Asettaa voidaan apumuut-
tujia, ulostulomuuttujia ja derivaattoja.

e Tilojen alkuarvojen asetus. Tilojen oletusalkuarvot annetaan tassa osassa. Jos
jokin tila jatetddn mainitsematta, ko. tilan oletusalkuarvo on 0. Alkulasken-
talohkossa tapahtuva alustus kumoaa tissi osassa annetun asetuksen.

e Parametrien asetus. Parametrien oletusarvot annetaan tassa osassa. Para-
metri ei muuta arvoaan simuloinnin aikana. Kaikki parametrit on asetettava,
silla parametrit tunnistetaan taman osan perusteella.

Edella ollut jako on tarkoitettu vain kuvaamaan systeemissa esitettavia asioita. To-
dellinen syntaksi on jossain maarin valjempi.

2.3 Diskreetit systeemit

Diskreetti systeemi voidaan ldhteen [11] mukaan esittdd vektoriyhtdlokolmikkona

tlc—f—l = h(ﬂ?(tk), ’U,(tk;),tk)
T(ter) = fz(tr), ulte), tr) (2)
y(te) = g(@(tr), ultr),)

missa v on sisaantulomuuttujien vektori, y ulostulomuuttujien vektori, z tilamuut-
tujien vektori ja tj k:s ratkaisupiste, £ = 1,2,.... (Sekaannusten vélttdmiseksi

muistutettakoon, etta kaikki muuttujat ovat aikamuuttujan funktioita. Jatkuvaa
systeemia kuvaavissa yhtaloissa vain ei tarvinnut tasmallisesti esittaa ko. funktio-
ominaisuutta.)

Diskreetin systeemin ratkaisupisteiden sijainnin maarad kayttaja systeemikuvauk-
sessa.

Diskreetin systeemin Simnon-kielinen kuvaus sisaltad seuraavat osat, jotka on ku-
vattu ldhteessa [11]:

o Otsikko.

e Muuttujien julistaminen. Muuttujat voivat olla tyyppia TIME, TSAMP, IN-
PUT, OUTPUT, STATE tai NEW. TSAMP-tyypin muuttuja kertoo seuraa-

van ratkaisupisteen ja NEW-tyypin muuttuja jonkin tilamuuttujan arvon seu-
raavassa ratkaisupisteessa.

e Alkulaskenta. Jatkuvan systeemin alkulaskentalohkosta poiketen diskreetin
systeemin alkulaskentalohkossa voidaan alustaa my0s ulostulo- ja TSAMP-
muuttujia.

e Simulointiyhtalot. Jatkuvan systeemin yhtéaloihin nahden diskreetin systeemin
yhtaloissa on se ero, ettd yhtaloiden vasemmalla puolella ei ole derivaattoja
mutta sen sijaan kyllakin TSAMP- ja NEW-muuttujia.

e Tilojen alkuarvojen asetus.

e Parametrien asetus.

2.4 Yhdistavat systeemit

Yhdistidvan systeemin kuvaus sisiltdi seuraavat osat, jotka on kuvattu ldhteessa [11]:

e Otsikko.
e Muuttujien julistaminen. Vain TIME-tyyppi kelpaa.

e Alisysteemien sisddntulomuuttujien asetus. Taméa osa suoritetaan aina, kun
Simnon on jossakin simulointivilin ratkaisupisteessi. (Alisysteemeilld voi olla

erilaisia ratkaisupisteitd, jolloin téssd kdytdneen ne kaikki 1dpi.) Alisystee-
min muuttujaan, joka voi olla sisdantulo-, ulostulo- tai tilamuuttuja, viitataan
loppuliitteella, joka sisaltaa sen systeemin nimen, jonka muuttujasta on kyse.
(Sisddntulomuuttuja voi esintya vain yhtalon vasemmalla puolella.)

e Parametrien asetus.

2.5 Tarkeimpia Simnonin komentoja

Seuraavassa on lyhyesti kuvattu tdrkeimpid Simnon-komentoja ldhteen [11] mu-
kaisesti. (Listassa ovat itse asiassa mukana ldhinnd vain ne komennot, joita olen
Modest-Simnon-liitdnnéssa tarvinnut.)

e ALGOR-komennolla valitaan se integrointialgoritmi, jota jatkuvia systeeme-
ja simuloitaessa kaytetddn. (Jos ko. komentoa ei ole Simnon-istunnon ai-
kana annettu, Simnon kiyttda jotakin oletusalgoritmia.) Kiintedn askelmitan
algoritmeista mainittakoon EULER ja muuttuvan askelmitan algoritmeista
DOPRI45R. Muuttuvan askelmitan algoritmit integroivat tarkemmin, joskin
ne myos kuluttavat hieman enemman aikaa kuin kiintean askelmitan algorit-
mit.

e ASHOW-komennolla voidaan piirtdd ns. store-tiedostoon talletettuja simu-
lointituloksia tai muita aika-tila-sarjoja. Simnon valitsee tyhjin diagrammin
ja skaalaa koordinaatiston siten, etta kaikki kayrat mahtuvat kuvaan mutta
myos tayttavat kuvan mahdollisimman hyvin.

e DISP-komennolla tulostetaan muuttujien arvoja kuvaruudulle, tarkemmin sa-
nottuna Simnonin standarditulostusvirtaan. Kyseeseen tulevat vallitsevien, ts.
SYST-komennolla viimeksi valittujen, systeemien muuttujat tai parametrit tai
sitten Simnonin globaalit muuttujat. (Sivuutettakoon globaalit muuttujat.)
Jonkun systeemin muuttujaan tai parametriin voi viitata loppuliitteettomal-
14 tai loppuliitteellisella nimelld. Loppuliite sisdltda systeemin nimen, ja sita
tarvitaan lahinna silloin, jos eri systeemien kaksi oliota ovat muuten samanni-
misia.

o EXPORT-komennolla store-tiedosto muunnetaan ASCII-tiedostoksi. Store-
tiedosto on bindirinen aika-tila-sarja-tiedosto, jonka formaatti on ainakin pe-
riaatteessa vain Simnonin tiedossa.

IMPORT-komennolla ASCII-muotoisen aika-tila-sarja-tiedosto muunnetaan sto-
re-tiedostoksi.

INIT-komennolla vallitsevan systeemin tilojen alkuarvoja muutetaan. (Argu-
menttisyntaksi sivuutettakoon.) Systeemin alkulaskentalohkossa tapahtuva
alustus kuitenkin kumoaa INIT-komennon vaikutuksen. (Ks. edelld ollutta
jatkuvan tai diskreetin systeemin kuvausta.)

PAR-komennolla vallitsevan systeemin parametrien arvoja muutetaan. (Ar-
gumenttisyntaksi sivuutettakoon.)

SHOW-komento muistuttaa paljolti ASHOW:ta. Ero on siini, ettd SHOW
piirtaa kayrat vanhaan diagrammiin. Mikaan koordinaatiston skaalaus ei tie-
tenkaan talloin onnistu.

SIMU-komennolla simuloidaan vallitsevia systeemeja jostakin aikapisteesta toi-
seen. Systeemien tilamuuttujat saavat valin alkupisteessa systeemikuvauksen
ja esiintyneiden INIT-komentojen maaraamaéat alkuarvot. Erinaisia valitsimia
on paljon. Esim. simuloinnin maksimiaskelkoko voidaan valita. Samoin voi-
daan tallettaa simulointituloksia argumenttina annettavaan store-tiedostoon.
(Tallettaminen tapahtuu aina johonkin tiedostoon, oletusarvoisesti esim. sto-
re.d, jos STORE-komennolla on méiratty yksikin muuttuja talletettavaksi.)

Valitsin -CONT on merkittava. Kun -CONT-valitsin on annettu, simuloinnin
alkuarvoiksi valitaan edellisen simuloinnin tilojen loppuarvot. Nain voidaan
simuloida patkittain pisteestd pisteeseen.

STORE-komennolla maariataan ne muuttujat, joiden arvot talletetaan simu-
loinnin aikana store-tiedostoon.

SYST-komennolla valitaan vallitsevat systeemit. (Edelliset vallitsevat systee-
mit unohdetaan.) Jos halutaan kerrallaan olevan useampia kuin yksi vallitse-
va systeemi, pitaa viimeisen argumentin olla yhdistavan systeemin sisaltavan
tiedoston nimi. (Ylipdédtddn argumentit ovat tiedostonimié, koska varsinaiset
systeeminimet lukevat vasta ko. tiedostoissa.)

$-alkuisen komennon loppuosa tulkitaan kayttojarjestelmakomennoksi. Jos
siis halutaan antaa Simnon-istunnon aikana kayttojarjestelmiakomento, piste-
tdan komennon eteen $.

Makron nimi komentona aiheuttaa kyseisen makron suorittamisen.

10

2.6 UNIX-Simnonin plus-version ulkoiset systeemit

UNIX-Simnonin plus-versio tarjoaa mahdollisuuden liittdd Simnoniin ns. ulkoisia
systeemejia. Ulkoinen systeemi on FORTRAN- tai C-kielinen aliohjelma, joka esit-
taa jatkuvaa tai diskreettia systeemia. Ulkoisen systeemin liittaminen Simnoniin
tarkoittaa sita, etta ulkoisen systeemin lahdetiedosto kadnnetdaan ja syntyva objek-
titiedosto linkitetadn Simnonin varsinaisten objektitiedostojen kanssa yhdeksi ohjel-
maksi, jota sitten kiiytetddn perus-Simnon-ohjelman asemasta. (Tarkemmin ottaen,
pelkét ulkoisten systeemien lahdetiedostot eivat ole ainoita, jotka kayttdja kirjoit-
taa, vaan lisaksi tarvitaan yksi erityinen aliohjelma, jossa on mm. lueteltu kaikkien
ulkoisten systeemien aliohjelmanimet.)

Ulkoisen systeemin kuvaavaa aliohjelmaa kutsutaan kaikkiaan kahdeksassa erityyp-
pisessa tilanteessa. Tilanteen numero on eraassa globaalissa muuttujassa. Riip-
pumatta siita, tarvitaanko jokaista kahdeksaa tilannetta varten jokin varsinainen
toiminto, jo pelkastadn selkeyden vuoksi on parasta kirjoittaa aliohjelma muotoon,
jossa kuhunkin kahdeksasta mahdollisesta tilanteesta on liitetty oma toiminto. Toi-
minto voi tarvittaessa olla ns. tyhja toiminto, joka ei siis tee mitaan eika kuluta
aikaa.

Seuraavassa on lueteltu em. kahdeksan tilannetta ldhteen [10] mukaisesti:

1) SYST-komennon antamisen yhteydessd tarvitaan ko. ulkoisen systeemin Sim-
non-kielinen nimi.

2) SYST-komennon antamisen yhteydessi tarvitaan ko. ulkoisen systeemin kaik-
kien muuttujien ja parametrien Simnon-nimet ja vastaavat staattiset muisti-
paikat.

3) SYST-komennon antamisen yhteydessi tarvitaan ko. ulkoisen systeemin tila-
muuttujien oletusalkuarvot seka parametrien oletusarvot, sikali kuin oletusar-
vot poikkeavat nollasta.

4) SIMU-komento on annettu ilman -CONT-valitsinta, jolloin on mahdollista las-
kea tilamuuttujille alkuarvoja samaan tapaan kuin alkulaskentalohkossa teh-
taisiin.

5) Simulointivilin ratkaisupisteessd systeemin ulostulomuuttujien ja apumuuttu-
jien asettaminen on ajankohtaista.

11

6) Simulointivéilin ratkaisupisteessi systeemin derivaattojen tai seuraavan tilan
laskeminen on ajankohtaista.

7) Uusi ratkaisupiste on 16ydetty, ja on otettu ajassa vastaava askel eteenpéin.
(Tésséd kohdassa kannattaa ldhteen [10] mukaan laskea esim. kaikki puhtaasti
tulostusta varten kdytettavit muuttujat.)

8) Simulointi on padttynyt. (Tilanne esiintyy kerran simuloinnin pééttyessi.)
Ulkoista systeemia kuvaava aliohjelma voi kutsua mita tahansa aliohjelmia. Simnon-

nimien ja muistipaikkojen vastaavuuden ilmoittaminen tapahtuu kutsumalla eraita
UNIX-Simnonin plus-version aliohjelmia.

12

3 Modest

Modest on ohjelma, joka on tarkoitettu mekanististen mallien parametrien estimoin-
tiin ja kokeiden suunnitteluun. Nimi Modest on lyhenne sanoista Model Estimation.

Modest on kehitetty Kemira Oy:n Espoon tutkimuskeskuksessa. Ohjelma on ol-
lut kaytossa ainakin vuodesta 1989 alkaen. Ymparistond on toistaiseksi paaasi-
allisesti ollut MicroVax-tietokoneen VMS-kayttojarjestelmé. Tyonéni olen toteut-
tanut Modest-version, jossa on mukana Simnon-liitinté ja joka toimii HP-tietoko-
neen UNIX-kayttojarjestelmassa.

Modestin VAX/VMS-versiosta kdytan nimityksid vanha Modest ja vanha perus-Mo-
dest. (Jalkimmé&inen nimitys korostaa Simnon-liitinnén puuttumista.) UNIX-ver-
siosta kaytan vastaavasti nimitystd uusi Modest.

Seuraavissa taméan luvun osioissa kerron Modestista olennaisimmat asiat. Sikali
kuin vanhan Modestin ja oman tekemani version valilla on eroja, mainitsen niista
tapauskohtaisesti. Modest-Simnon-liitannasta ja uudesta Modestista kerron tarkem-
min luvussa 6.

3.1 Modestin keskeisia piirteita
3.1.1 Mallit

Modestin mallit kuvaavat yleensa jatkuvan aikamuuttujan systeemeja. Modestin
mallit voivat olla algebrallisia, differentiaalisia tai implisiittisia.

Algebrallisessa mallissa systeemin tilat on lausuttu suoraan siadettdavienien muut-
tujien ja parametrien funktiona.

Differentiaalisessa mallissa systeemin tilojen muutokset on kuvattu lausumalla tilo-
jen derivaatat saddettdvien muuttujien, parametrien ja edellisten tilojen funktiona.
Kyseessa on siis Simnonin jatkuvan systeemin tapainen differentiaaliyhtalosysteemi.

Implisiittinen malli on algebrallisen mallin yleistys siten, etta tilamuuttujien arvot
maaraytyvat annetuista yhtaloistd mutta yleisesti ottaen implisiittisesti.

13

3.1.2 Tehtavat
Modestilla voi suorittaa estimointia, koesuunnittelua tai simulointia. Simuloinnis-

sa simuloidaan kerran annetun mallin mukaista systeemia tilojen arvojen selville
saamiseksi. Simnonin ja Modestin simulointikésite on siten kuta kuinkin sama.

3.1.3 Koesarjat

Havainnot voivat jakaantua useampaan kuin yhteen koesarjaan. Jos havainnot ja-
kaantuvat useaan koesarjaan, systeemin tilat ovat koesarjakohtaisia.

3.1.4 Parametrit

Modestissa kasite parametri maaritellaan hieman osion 1.3.1 esityksesta poikkeaval-
la tavalla. Mallin muuttuja voi Modestissa olla mallin parametri. Parametreja on
neljaa eri tyyppia:

1) Globaali parametri on kaikille koesarjoille yhteinen parametri.
2) Lokaali parametri on johonkin tiettyyn koesarjaan liittyva parametri.

3) X-muuttuja on jokin sdddettavistd muuttujista. X-muuttujia optimoidaan ko-
esuunnittelussa.

4) Alkuarvo on systeemin jonkin tilan alkuarvo.

3.2 Modestin kayttoliittyma
3.2.1 Kayttoliittyman yleisluonne

Kayttaja antaa Modestille kaiken informaation tiedostoissa ja saa Modestilta kaiken
informaation tiedostoissa.

14

3.2.2 Havaintojen kuvaus

Havainnot kayttaja kuvaa yhdessa tai useammassa koesarjatiedostossa. Painoarvoja
varten voi lisaksi olla omia tiedostoja.

3.2.3 Mallin kuvaus

Mallin kayttdja kuvaa FORTRAN-tiedostossa, jotka on siis kddnnettidva jokaisen
muutoksen jilkeen. Mallin lisiksi FORTRAN-tiedostoissa joudutaan kuvaamaan
mallin ja havaintojen valinen vastaavuus seka annettujen ja todellisten tila-alkuar-
vojen vastaavuus.

Simnon-liitdnnalla varustetussa Modestissa malli sekd em. vastaavuudet voidaan
kaikki kuvata Simnon-kielisilld systeemeilld, joita kayttaja ei joudu kddntamaan.

3.2.4 Ongelman ja toimintojen tarkka maarittely

Ongelman ja toimintojen maarittelyssi tarvitaan lukuisia eri valintoja ja asetuksia.
Ne kaikki kiyttaja antaa ns. nimilistatiedostossa. (Nimilista on vapaa suomennos
termille namelist.) Tiedostossa on useita nimilistoja. Nimilista on FORTRAN-ohjel-
mien syotossa ja tulostuksessa kaytettava lista, jossa on lueteltu muuttujien arvoja
nimi-arvo-pareina. Nimilistatiedostoa ei tarvitse kaantaa, koska se ei ole mikaan
lahdetiedosto.

Seuraavassa on lueteltu Modestin VAX/VMS-version nimilistat:

e files. Siind luetellaan muut syotetiedostot seké kaikki tulostetiedostot, paitsi
jos tyydytaan kayttdmaan oletusarvojen mukaisia nimia.

e problem. Siina valitaan estimointi, koesuunnittelu tai simulointi, algebral-
linen, differentiaalinen tai implisiittinen malli, kiytettdva numeerinen ratkaisi-
ja, estimoitavat ja optimoitavat parametrit sekd ko. parametrien suurimmat
ja pienimmat sallitut arvot.

e modelpar. Siind annetaan globaalien ja lokaalien parametrien lahtoarvot.

e dpar. Siind asetetaan joukko havaintoihin liittyvié valitsimia.

15

setpar. Siina luetellaan koesarjojen alkuhetket ja tilamuuttujien alkuarvot, jos
ko. arvot eivat sijaitse koesarjatiedostoissa.

print. Siind valitaan, mita asioita kuvaruudulle tai standarditulostusvirtaan
tulostetaan.

design. Siind maaritellaan koesuunnittelussa tarvittavia optimointikriteereita.
jacobian. Siind maaratddn numeerisen derivoinnin askelpituus.

bepol. Tama nimilista sisdltaa samannimisen ratkaisijan eri parametreja.
simflex. Vrt. bepol.

belsf. Vrt. bepol.

nconf. Vrt. bepol.

neqnf. Vrt. bcpol.

broyden. Vrt. bepol.

ivpag. Vrt bepol.

Simnon-liitdnnalla varustetussa Modest-versiossa nimilistassa luetellaan lisiksi Sim-
non-olioiden nimid. Modestin parametrien, tilojen ym. vastaavuus Simnonin muut-
tujien kanssa maaritellian niin ikaan. Tiedostojen ja numeeristen ratkaisijoiden
suhteen on joitakin eroja.

3.2.5 Tulostustiedostot

Seuraavassa on lueteltu Modestin VAX/VMS-version tulostustiedostojen tyypit:

e statfile. Téhan tiedostoon talletetaan estimointiin liittyvat tilastolliset tun-
nusluvut. Estimaatit virhearvoineen 16ytyvat tasta tiedostosta.

e sfile. Tahan tiedostoon talletetaan estimoitujen parametrien mukaiset tilasuu-
reiden arvot kustakin koesarjasta.

e resufile. Tama tiedosto on hyodyllinen, jos tuloksia halutaan tarkastella Matlab-
ohjelmistolla.

16

Simnon-liitannalla varustetussa versiossa tuotetaan lisaksi makro, jota kayttaja voi
myohemmin Simnonia ajaessaan kutsua.

17

4 Prosessien valinen kommunikointi yleisesti tar-
kasteltuna

Tassa luvussa kuvaan prosessien valista kommunikointia yleisesti, ts. sitoutumatta
mihinkaan kayttojarjestelmaan. Jotkut esitettavista asioista koskevat yhden proses-
sorin sisalla tapahtuvaa kommunikointia, jotkut puolestaan eri prosessorien valilla
tapahtuvaa kommunikointia ja jotkut molempia.

Prosessorien vililla tapahtuvan kommunikoinnin osalta pyrin esittamain luvun 5
kannalta valttamattomat esitiedot.

4.1 Synkronointi

Prosessien vilisen kommunikoinnin monet keskeiset ongelmat koskevat prosessien
valista synkronointia. Prosessien A ja B vililld on synkronointia, jos prosessissa A
on tapahtuma z ja prosessissa B tapahtuma y siten, ettd x ja y eivat voi tapahtua
toisistaan riippumatta. Talléin A:n ja B:n suorituksissa on niin sanottuja synk-
ronointitapahtumia eli sellaisia tapahtumia, joita A ei voi suorittaa yksinidan eikd B
yksinddn vaan jotka A ja B suorittavat yhdessi. Useamman kuin kahden prosessin
valisessa, synkronoinnissa synkronointitapahtumat koskevat useampaa kuin kahta
prosessia.

Synkronointiongelmien ratkaisuilta usein, vaikkakaan ei valttdméatta aina kaikkia
yvhdessa, vaadittavia ominaisuuksia ovat:

e Lukkiutumattomuus. Jarjestelma ei saa joutua sellaiseen tilaan, jossa mikaan
tapahtuma ei ole enaa mahdollinen.

o Edistyksellisyys. Sellainen aarettoman pitka tapahtumasekvenssi ei saa olla
mahdollinen, jossa kukin prosessi odottaa jotakin tapahtuvaksi eikéa yksikaan
naistd prosessien odottamista tapahtumista koskaan tapahdu. Kuvatunlaista
taydellisesti edistyksetonté tapahtumasekvenssid kutsutaan elolukoksi. (Elo-
lukko on vapaa suomennos termille livelock, jota on kiytetty ldhteessi [2].
Eo. méiritelmén elolukolle olen muodostanut ldhteestd [2] lukemieni asioiden
perusteella.)

e Reiluus. Jos prosessi odottaa esim. jotakin resurssia, niin odottaminen palki-
taan adrellisessd ajassa.

18

e Vankkuus. Jos yksi prosessi kaatuu, muiden prosessien tulisi voida jatkaa
toimintaansa mahdollisimman normaalisti.

Synkronointiongelmien ratkaisemista varten on kehitetty erityisia synkronointipri-
mitiiveja. Tallaisia primitiiveja ovat mm. lukitustiedostot, test-and-set-muuttujat,
semaforit ja monitorit.

4.2 Muistin jakaminen ja sanomien valitys

Yhden prosessorin sisalla tapahtuva prosessien valinen kommunikointi voidaan to-
teuttaa siten, etta kayttojarjestelma tarjoaa prosesseille mahdollisuuden kayttaa ja-
ettua muistia ja sovellusohjelmoija huolehtii itse tarvittavista synkronoinneista. Jos
sen sijaan kayttojarjestelma huolehtii kommunikoinnista myos tapahtumien osalta,
kommunikointia sanotaan sanomapohjaiseksi. Kommunikoinnin kahtiajako sanoma-
pohjaiseen ja ei-sanomapohjaiseen kommunikointiin on esitetty ldhteessi [7].

Sanomapohjaisessa kommunikoinnissa prosessit lihettavit ainakin loogisessa mieles-
sé toisilleen sanomia. Sanoman valitykseen kayttojarjestelma voi kayttaa tiedonsiir-
tokanavaa, tiedostoa tai vaikkapa jaettua muistia. Viimeksi mainitussa tapauksessa
sanoma ei valttamatta fyysisesti lilkku mihink&an.

Jatkossa tarkastelen padasiassa sanomapohjaista kommunikointia. Osion 4.8 lop-
puun saakka kaytan sanaa yhteys synonyymina sanalle link. Tallainen yhteys on
kommunikoivien prosessien valilla valttamatta ainakin jossakin vaiheessa olemassa,
kuten lahteessd [7] madritelladn. (Osiossa 4.10 méérittelen kdsitteen yhteys mer-
kitsemaan samaa kuin englanninkielinen késite connection. Kaikki kommunikointi
ei ole yhteydellistd sanan tassa merkityksessia. Osiosta 4.10 alkaen seka kaikissa
lukua 4 seuraavissa luvuissa kaytan nimitysta yhteys osion 4.10 maaritelman mu-
kaisessa merkityksessi.)

4.3 Kommunikaatioyhteyden looginen toteutus

Yhteyden loogiseen toteutukseen liittyy ldhteen [7] mukaan seuraavia kysymyksia:

e Kommunikoivatko prosessit toistensa kanssa suoraan vai postilaatikkoa kayt-
taen 7

19

e Onko kommunikointi symmetrista ?
e Miten yhteys perustetaan ?

e Kuinka monta prosessia voi samanaikaisesti olla kytkettyna samaan yhtey-
teen ?

e Kuinka monta yhteyttd voi samanaikaisesti olla kahden prosessin vililla ?

e Voivatko sanomat jonottaa yhteydessa, ja jos voivat, niin kuinka monta sano-
maa voi jonottaa kerrallaan ?

e Sisaltavatkd sanomat varsinaista tietoa val vain osoitteita varsinaiseen tie-
toon 7

e Voivatko sanomat olla vaihtelevan mittaisia ?

e Voiko yhteyteen kytketty prosessi seka lahettaa etta vastaanottaa sanomia, ja
voiko yhteyteen olla kytkettyna samanaikaisesti useita mahdollisia vastaanot-
tajia 7

4.4 Suora kommunikointi

Jos prosessit kommunikoivat toistensa kanssa suoraan ja symmetrisesti, jokaisen
prosessin, joka haluaa lahettaa tai vastaanottaa sanoman, taytyy tasmallisesti ni-
metd sanoman vastaanottaja tai lahettaja. Symmetrisella suoralla kommunikoinnilla
on lahteen [7] mukaan seuraavat ominaisuudet:

e Yhteys syntyy, kun kaksi prosessia, A ja B, tuntevat toistensa nimet, A la-
hettdd sanoman B:lle ja B vastaanottaa sanoman A:lta. Yhteys katoaa, kun
sanoma on valitetty.

e Yhteys on aina tidsmélleen kahden prosessin vilinen.

e Kahden prosessin valilla voi kerrallaan olla vain yksi yhteys.

Epédsymmetrinen suora kommunikointi eroaa ldhteen [7] mukaan symmetrisestd suo-
rasta kommunikoinnista siten, etta vastaanotettaessa ei tarvitse nimeta lahettajaa.
Prosessi vain pyytdaa sanoman, ja lahettdjan nimi selvidad sanoman saannin yhtey-
dessa.

20

4.5 Postilaatikkokommunikointi

Postilaatikkokommunikoinnissa lahettava prosessi jattaa sanoman postilaatikkoon
ja vastaanottava prosessi noutaa sanoman postilaatikosta. Kaksi prosessia voi kom-
munikoida keskenaan vain, jos niilla on yhteinen postilaatikko. Postilaatikkokom-
munikoinnilla on 1dhteen [7] mukaan seuraavat ominaisuudet:

e Yhteisen postilaatikon omistavien prosessien vililld on aina yhteys.
e Yhteyteen voi samanaikaisesti olla kytkettyina enemman kuin kaksi prosessia.

e Kahden prosessin valilla on samanaikaisesti yhta monta yhteytta kuin ko.
prosesseilla on yhteisia postilaatikoita.

Periaatteessa voisi olla mahdollista, ettd kolmella eri prosessilla, P, P, ja Ps, olisi
yhteinen postilaatikko, P, laittaisi sanoman ko. postilaatikkoon ja P, ja Ps yrit-
taisivat samanaikaisesti ottaa ko. sanoman.

Tallaisen mahdollisuuden valttamiseksi tai syntyvan kilpatilanteen purkamiseksi on
lahteen [7] mukaan olemassa seuraavanlaisia tapoja:

1) Postilaatikon ei koskaan anneta olla yhteinen useammalle kuin kahdelle proses-
sille.

2) Vain yksi prosessi kerrallaan voi yrittda ottaa sanoman postilaatikosta.

3) Kéyttojarjestelmé esim. valitsee mielivaltaisesti joko P:n tai Psmn, muttei
molempia, saamaan sanoman ja ilmoittaa vastaanottajan tunnuksen P;:lle.

Postilaatikon voi ldhteen [7] mukaan omistaa joko prosessi tai kayttojarjestelma.
Jos prosessi omistaa postilaatikon, omistaja voi vain ottaa ko. laatikosta postia, ja
muut prosessit voivat vain laittaa laatikkoon postia. Postilaatikko voi esim. syntya
automaattisesti omistajansa syntyessa ja havitd automaattisesti omistajansa kuol-
tua.

Kayttojarjestelman omistavan postilaatikon luo joku prosessi, laatikolle voi tulla
uusia kayttajaprosesseja, eika ko. laatikon luonut prosessi ole valttamatta missaan
erityisasemassa. Kayttojarjestelma havittaa ne omistamansa postilaatikot, joilla ei
ole enda yhtaan kayttajaa.

21

4.6 Yhteyden jonotusvara

Sanomien jonotus yhteydessa voidaan ldhteen [7] mukaan toteuttaa kolmella eri pe-
rustavalla:

1) Jonotusmahdollisuutta ei ole, vaan ldhettdjin on odotettava sitd, ettd vas-
taanottaja saa sanoman.

2) Yhteydessd voi jonottaa kerrallaan korkeintaan tietty ma#rd sanomia. Jos
jono on taynna, lahettajan on odotettava paikan vapautumista jonossa.

3) Yhteydessd voi jonottaa kerrallaan rajoittamattoman monta sanomaa, joten
lahettaja ei joudu koskaan odottamaan.

Mikali jonotus on kaytossa, sanoman perillemeno voidaan varmistaa siten, etta vas-
taanottaja lahettad takaisin kuittauksen. Ohjelmoija huolehtii kuittaustoimintojen
toteutuksesta.

4.7 Sanomien koko tai tyyppi

Sanomat voivat ldhteen [7] mukaan olla:

1) kiintedmittaisia, jolloin niiden fyysinen toteutus on helppoa.

2) vaihtelevan mittaisia, jolloin ohjelmoijan tyo on helpompaa kuin kiintedmit-
taisten sanomien tapauksessa.

3) tyypitettyjd, miki tukee vahvasti tyypitettyd ohjelmointia. TAméa vaihtoehto
on mahdollinen 1dhinna vain postilaatikkokommunikoinnissa.

4.8 Poikkeustilanteet

Jos prosessi P odottaa sanomaa prosessilta (), joka on kuollut, P jaa normaalikay-
tannon mukaan ikuisesti odottamaan. Taman pattitilanteen purkamiseksi kaytto-
jarjestelmén on ldhteen [7] mukaan joko tuhottava P tai ilmoitettava P:lle, ettd @
on kuollut.

22

Jos prosessi P lahettaa sanoman prosessille (), joka on kuollut, P jaa normaalikay-
tannon mukaisesti ikuisesti odottamaan, ellei sanomien jonotusmahdollisuutta yh-
teydessd ole. Tamain pattitilanteen purkamiseksi kdyttojirjestelman on lahteen [7]
mukaan niin ikdan joko tuhottava P tai ilmoitettava P:lle, ettd () on kuollut. Mika-
li yhteydessa sen sijaan on jonotusmahdollisuus, P ei joudu ainakaan lahettamisen
takia loputtomasti odottamaan.

Muut tassa osiossa kuvattavat poikkeustilanteet koskevat lahinné eri prosessorien
valilla tapahtuvaa kommunikointia.

Sanoman katoamiseen matkan varrella voidaan ldhteen [7] mukaan varautua kolmel-
la eri perustavalla:

1) Kéyttojarjestelma on vastuussa sanoman katoamisen havaitsemisesta ja sano-
man uudelleenlahettamisesta.

2) Lahettéjd on vastuussa sanoman katoamisen havaitsemisesta ja menettelee ka-
toamisen havaittuaan parhaaksi katsomallaan tavalla.

3) Kayttojarjestelmé on vastuussa sanoman katoamisen havaitsemisesta ja ilmoit-
taa katoamisesta lahettajalle, joka sitten menettelee parhaaksi katsomallaan
tavalla.

Sanoman katoamisen havaitseminen on mahdollista vain, jos sanoman perillemeno
aina varmistetaan esim. kuittauksin. Sanoma julistetaan kadonneeksi, mikali tietoa
sen perillemenosta ei ole saatu tietyn ajan kuluessa. Uudelleenldhetykseen liittyy
aina se vaara, ettd sanoma meneekin perille kahteen kertaan. Monistumisen havait-
seminen edellyttaa lisitoimia, joihin en tassa puutu.

Sanoma saattaa vaaristya matkalla. Vaaristymien havaitsemiseksi voidaan kayttaa
mm. tarkistussummia. Sanoman vaaristymisen havaitsemisen ja sanoman uudel-
leenlahettamisen vastuu voidaan maarata samaan tapaan kuin sanoman katoamisen
tapauksessa.

4.9 OSI-malli ja Internet-malli

ISOn (International Organization for Standardization) OSI-malli (Open Systems
Interconnection) kuvaa avointen jirjestelmien vélilld tapahtuvaa kommunikointia

23

seitseman eri kerroksen avulla. Kerrokset matalimmasta korkeimpaan lukien ja ker-
rosten tehtdvét ovat lahteen [14] mukaan:

1) Fyysinen kerros siirtda bitteja siirtotietd pitkin verkon solmulta toiselle.

2) Siirtoyhteyskerros siirtdéd tietoa verkon kahden vierekkdisen solmun valilla
muodostaen biteistd kehyksid, havaiten virheitd ja toipuen niistd sekd suo-
rittaen vuon valvontaa.

3) Verkkokerros huolehtii sanomien reitityksesta verkon lapi.

4) Kuljetuskerros tarjoaa luotettavaa kaksisuuntaista kuljetuspalvelua yhteyden
paasta paahan.

5) Yhteysjaksokerros tarjoaa organisoitua ja synkronoitua tiedonsiirtoa.

6) Esitystapakerros neuvottelee kiytettavin siirtoesitysmuodon ja suorittaa esi-
tystapamuunnoksia siirrettaville tiedoille.

7) Sovelluskerros toimii liitdntana sovellusprosessin ja tietoliikennemaailman va-
lilla.

Internet-malli kuvaa ldhteen [14] mukaan jarjestelmien vililld tapahtuvaa kommuni-
kointia neljan eri kerroksen avulla siten, etta alin kerros vastaa pintapuolisesti tar-
kasteltuna OSI-mallin kahta alinta kerrosta ja ylin kerros puolestaan OSI-mallin
kolmea ylinta kerrosta. Verkkokerros ja kuljetuskerros ovat samantapaiset kuin OSI-
mallissa. Internet-mallin verkkokerroksessa kéytetaan protokollaa IP (Internet Pro-
tocol) ja kuljetuskerroksessa protokollia TCP (Transmission Control Protocol) seké
UDP (User Datagram Protocol). Usein protokollista kdytetddn yhdistelmanimia
kuten TCP/IP.

4.10 Internet-mallin kuljetuskerroksen sovellusohjelmalle tar-
joamien palvelujen tyyppi

Internet-mallin kuljetuskerroksen sovellusohjelmalle tarjoamien palvelujen tyyppia
kuvaavat ldhteen [13] mukaan seuraavat parametrit:

e Onko palvelu yhteydellistd vai yhteydetonta ?

24

Voidaanko samanaikaisesti lahettaa tietoa molempiin suuntiin kahden osapuo-
len valilla ?

Missa jarjestyksessa tieto saapuu maaranpaahansa 7

Millainen on virhevalvonta ?

Millainen on vuovalvonta 7

e Lihetetdanko tieto tavuvirtana, vai kiytetdanko tietuerajoja 7

Yhteydellisyys merkitsee 1ahteen [13] mukaan sitd, ettd seuraavat kolme vaihetta on
oltava:

1) Yhteyden muodostaminen.
2) Tiedon siirto.

3) Yhteyden purkaminen.

Yksisuuntaisessa yhteydessia on vain yksi kanava, ja tieto voi kulkea kanavaa pit-
kin vain yhteen suuntaan. Kaksisuuntaisessa yhteydessia on kaksi kanavaa, jolloin
voidaan samanaikaisesti lahettaa toiseen kanavaan tietoa ja vastaanottaa toisesta
kanavasta tietoa. Vuorosuuntaisessa yhteydessd on vain yksi kanava, mutta tietoa
voidaan siirtda kanavaa pitkin eri suuntiin. Yhteydettomaéassa palvelussa tietosah-
keiksi kutsuttuja sanomia lahetetaan paikasta toiseen. Tietosahkeet ovat toisistaan
riippumattomia, ja jokaisen tietosahkeen on sisallettava kaikki kuljetuksessa tarvit-
tava informaatio.

Virhevalvonnalla tarkoitetaan tiedon katoamisen, monistumisen tai vaaristymisen
havaitsemista seka tarpeen mukaan suoritettavaa tiedon uudelleenlahettamista. Vuo-
valvonnalla pyritddn siihen, ettd lahettdja ei lihetd tietoa nopeammin kuin vas-
taanottaja ehtii sitd prosessoida. Tavuvirtapalvelussa tieto siirtyy sovellusohjelman
kannalta tavuvirtana eika mahdollinen paketointi kuulu sovellusohjelman tehtaviin.

Protokolla TCP tarjoaa ldhteen [13] mukaan kaksisuuntaisyhteydellista tiedon jir-
jestyksen sailyttavaa tavuvirtapalvelua taydella virhe- ja vuovalvonnalla varustet-
tuna. (Vrt. OSI-mallin kuljetuskerroksen kuvaus.) Protokolla UDP tarjoaa lih-
teen [13] mukaan yhteydetontd palvelua ilman virhe- tai vuovalvontaa. Tietosdh-
keiden perillemenojarjestys on myoskin sattumanvaraista.

25

4.11 Asiakas-palvelija-malli

Verkkosovellutusten standardimalliksi on muodostunut ns. asiakas-palvelija-malli.
Ko. malli on nykyaan melko suosittu myos yhden prosessorin sovellutuksissa. Mal-
lin perusidea on se, etta eri palveluja varten on olemassa palvelijaprosesseja, joilta
asiakasprosessit pyytavat palveluja. Palvelijaprosessia ei luoda vain yhta palvelusta
varten, vaan palvelijaprosessi elad omaa elamaansa odottaen ja tayttaen palvelu-

pyyntoja.

Palvelijaprosesseja on ldhteen [13] mukaan kahta eri perustyyppié:

1) Iteratiivinen palvelija suorittaa koko palveluksen itse.

2) Rinnakkainen palvelija ottaa palvelupyynnon vastaan mutta ei suorita itse var-
sinaista palvelusta vaan luo prosessin, joka suorittaa varsinaisen palveluksen.
Kun néin menetellaan, palvelupyyntojen késittely on nopeaa eika riipu palve-
lusten suorittamiseen kuluvasta ajasta. Nimitys rinnakkainen palvelija tulee
ilmeisestikin siita, etta palvelija tavallaan palvelee useita asiakkaita rinnak-
kain.

Yhteydellisissi protokollissa kiytetédn lahteen [13] mukaan tavallisesti rinnakkaisia
palvelijoita ja yhteydettomissa protokollissa puolestaan tavallisesti iteratiivisia pal-
velijoita.

26

5 Prosessien valinen kommunikointi UNIXissa

Tassa luvussa esittelen UNIXissa toteutettuja prosessien vilisen kommunikoinnin
mekanismeja. Mukana ovat tarkeimmat yhden prosessorin siséilla tapahtuvaan kom-
munikointiin tarjolla olevat systeemikutsutason mekanismit. Eri prosessorien valilla
tapahtuvan kommunikoinnin mahdollisuuksistakin kerron jonkin verran, mutta talta
osin esitys ei ole millaan tavoin kattava.

Systeemikutsutason yldpuolisia kommunikaatiomekanismeja en késittele kuin lahin-
na eri prosessorien valilla tapahtuvan kommunikoinnin kohdalla ja silloinkin en-
sisijaisesti vain siksi, etta joissakin UNIX-jarjestelmissa verkko-ohjelmointi suoraan
systeemikutsuja kayttaen on erittain hankalaa eikd nykypaivana enaa kovin mie-
lekasta. Esim. ikkunointijarjestelmien tarjoamiin mahdollisuuksiin en sen sijaan
puutu lainkaan.

5.1 Signaalit

Signaalit informoivat prosesseja liahteen [1] mukaan mm. seuraavantyyppisisti ta-
pahtumista:

e Prosessi on tavalla tai toisella yrittanyt ylittaa valtuutensa.

Kayttojarjestelma ei syysta tai toisesta pysty suorittamaan jotakin toimintoa.

Jokin prosessi on tarkoituksella lahettanyt signaalin.

Jokin fyysinen poikkeustapahtuma, kuten keskeytysndppédimen painallus, on
tapahtunut.

Prosessin odottama jokin tapahtuma, esim. lapsiprosessin kuolema, on tapah-
tunut. (Signaali herdttdd nukkuvan prosessin.)

Kun jotain pitaa saada tapahtumaan todella nopeasti ja ilman epavarmuutta ai-
heuttavia valikasia, signalointi on paras ellei ainoa vaihtoehto. Prosessit voivat
esim. tuhota toisiaan signaalien avulla.

Kun prosessi saa signaalin, se normaalisti suorittaa jonkin kayttojarjestelman maa-
raaman toiminnon. Virhetilanteiden signaalit esim. tyypillisesti johtavat exit-toi-
mintoon, jolla signaalin saanut prosessi lopettaa toimintansa. Prosessi voi kuitenkin

27

halutessaan myos ottaa signaaleja kiinni ja méaaritella kiinniottamiensa signaalien
saapumista seuraavat toiminnot. Talla tavoin prosessi voi vaikkapa olla tyystin va-
littamatta jostakin signaalista. Kaikki signaalit eivat ole kiinniotettavissa. Esim.
ns. KILL-signaali, jolla prosessit voivat tuhota toisiaan, ei ole kiinniotettavissa.
Eras hyodyllinen signaloinnin mahdollistama asia on se, etta prosessi voi odottaa
lapsiprosessiensa kuolemaa ja siivota lastensa jalkia.

Prosessijaljityksessd, lahteen [1] mukaan, prosessi seuraa ja mahdollisesti myds oh-
jaa askel askeleelta toisen prosessin toimintaa. Prosessijaljitysta tekevat tyypillisesti
esim. debuggerit. Prosessijaljitys on toteutettu signaalinkasittelytoimintojen avulla.

5.2 Tavanomaiset tiedostot

Tavanomaisilla tiedostoilla tarkoitan tiedostoja, jotka luodaan tavallisilla tiedoston-
luomiskutsuilla ja joista luetaan ja joihin kirjoitetaan tavallisin tiedostonkésittely-
kutsuin.

Yhteisten tiedostojen kaytto on vanhin prosessien valisen kommunikoinnin muoto.
(Ei-moniajoympéristoissikin prosessit tavallaan kommunikoivat yhteisid tiedostoja
kiyttéen, joskin kommunikointi on t&lléin perin yksisuuntaista.)

Tavanomaisten tiedostojen kaytossa on se ongelma, etta kirjoittaminen ja lukeminen
eivat voi tapahtua samanaikaisesti. Nykyisin on sentaan jo mahdollista lukita eril-
lisia tiedoston osia, jolloin yksi prosessi voi kirjoittaa lukittuun osaan ja muut proses-
sit voivat lukea lukitsemattomia osia.

5.3 Jaettu muisti

Jaettu muisti, semaforit ja viestijonot ovat lahteen [1] mukaan UNIX System V:n ns.
IPC-pakkauksen osat. System V:std ne on kuitenkin omaksuttu melko moneen muu-
hunkin UNIX-jarjestelmédian. Semaforit ja viestijonot on toteutettu jaetun muistin
avulla, joten IPC:n kommunikointimekanismeilla on ainakin periaatteessa nopeu-
den suhteen etulyontiasema tiedostopohjaisiin mekanismeihin ndhden. (System V:n
IPC:ta lukuunottamatta kaikki tassa luvussa esitettavat kommunikointimekanismit
ovat tiedosto- tai tiedonsiirtopohjaisia. Tiedostopohjaisten mekanismien aseena no-
peustaistelussa on puskurointi. Tietoa pidetaan puskurissa, eika esim. levylla, niin
paljon kuin mahdollista.)

28

Jaettuun muistiin kirjoittamista ja jaetusta muistista lukemista varten ei tarvita mi-
taan systeemikutsuja, vaan jaetussa muistissa olevia muuttujia asetetaan ja luetaan
kuten mita tahansa muuttujia.

Jaettu muisti taytyy kuitenkin varata ja vapauttaa systeemikutsuin. Jaettuun muis-
tiin liittyvit systeemikutsut 1&hteen [1] mukaan:

e shmget-kutsulla joko luodaan uusi jaetun muistin alue tai haetaan tunnus-
numero olemassaolevaan jaettuun muistialueeseen. Jaetulla muistialueella on
oma avain vahan samaan tapaan kuin tiedostolla on nimi.

e shmat-kutsulla kiinnitetddn jaettu muistialue prosessin virtuaaliseen osoitea-
varuuteen.

e shmdt-kutsulla irrotetaan jaettu muistialue prosessin virtuaalisesta osoiteava-
ruudesta.

e shmctl-kutsulla voidaan tutkia ja asettaa jaettuun muistialueeseen liittyvia
parametreja. Jaetun muistialueen poistaminen tapahtuu talla kutsulla.

Sovellusohjelmoija joutuu itse huolehtimaan jaetun muistin kaytossd mahdollises-
ti tarvittavista synkronoinneista. Synkronointi on yleisessd tapauksessa helpointa
toteuttaa semaforien avulla.

5.4 Semaforit

UNIX System V:n semafori koostuu lihteen [1] mukaan seuraavista komponenteista:

e Semaforin arvo. (Klassisen mééritelman mukaanhan semafori ei muuta olekaan
kuin kokonaisluku.) Arvo voi olla miki tahansa positiivinen kokonaisluku.

e Semaforia viimeksi kisitelleen prosessin numero.

e Semaforin arvon nousua odottavien prosessien lukuméara. Prosessi voi odot-
taa semaforin arvon nousua jonkun muunkin luvun kuin nollan ylapuolelle.

e Semaforin arvon nollautumista odottavien prosessien lukuméaéri. (Arvoa nolla
ei tietenkdan voi endd pienentdd, vaan odottamisella on jokin muu tarkoitus.)

29

System V:ssa usean semaforin joukkoon voidaan kohdistaa yhtaaikaisesti eri ope-
raatioita. Nain on mahdollista vélttda esim. sellainen tilanne, jossa prosessi A on
lukinnut semaforin z ja yrittaa lukita semaforia y ja prosessi B on lukinnut semaforin
y ja yrittaa lukita semaforin zx.

Semaforeihin liittyvét systeemikutsut lahteen [1] mukaan:

e semget-kutsulla luodaan uusi semaforijoukko tai haetaan tunnusunumero ole-
massaolevaan semaforijoukkoon. Semaforijoukolla on oma avain.

e semop-kutsulla semaforijoukkoon kohdistetaan joukko yht’aikaisia operaatioi-
ta.

e semctl-kutsulla voidaan tehda semaforien alkuasetuksia, lukea semaforien ar-
voja, poistaa semaforijoukko ja suorittaa erinaisia semaforijoukkoon kohdistu-
via ohjaustoimia.

5.5 Viestijonot

Viestijono on jaetun muistin avulla toteutettu synkroninen viestintdmekanismi. Mon-
ta prosessia voi hallitusti kommunikoida keskenaan yhta viestijonoa kayttaen.

Viestijonoihin liittyvét systeemikutsut ldhteen [1] mukaan:

e msgget-kutsulla luodaan uusi viestijono tai haetaan tunnusnumero olemassa-
olevaan viestijonoon. Viestijonolla on oma avain.

e msgsnd-kutsulla laitetaan viesti viestijonoon. Viestille annetaan tyyppi.

e msgrcv-kutsulla otetaan viestijonosta se halutuntyyppisista viesteista, joka on
ensiksi ldhetetty. (Muitakin valintamahdollisuuksia on, mutta edelld mainittu
on ehkd tirkein.)

e msgctl-kutsulla voidaan tutkia ja asettaa viestijonon parametreja. Viestijonon
poistaminen tapahtuu talla kutsulla.

Sopiva viestin tyyppi on esimerkiksi sen prosessin numero, jolle viesti on tarkoitus
lahettas.

30

5.6 Nimeamattomat putket

Nimeamaton putki on tiedostopohjainen yksikanavainen vuorosuuntaisyhteydellinen
kommunikointimekanismi. Nimeamattomat putket ovat UNIXin peruskalustoa ja ne
on toteutettu kaikissa UNIX-jarjestelmissia. Putki on luonteeltaan FIFO.

Putkeen voi samanaikaisesti olla kiinnittyneena useita lukijoita ja kirjoittajia. Proses-
si voi lukea putkesta, jos ko. prosessilla on ko. putken avoin lukupaa. Vastaavasti
avoin kirjoituspaa antaa oikeuden kirjoittaa putkeen. Yksinkertaisin ja toisaalta
eniten kaytetty tapa kayttaa putkea on se, etta putkea hyodyntavat kaksi ja vain
kaksi prosessia, joista toinen vain kirjoittaa putkeen ja toinen vain lukee putkesta.
Putken kaytto useamman kuin kahden prosessin valiseen kommunikointiin vaatii
erillista ja tasmallista synkronointia prosessien valilla.

Nimeamattoman putken valityksella voivat kommunikoida vain keskendén esi-isi-
jalkelais-suhteessa olevat prosessit. Jos putken luonut prosessi myohemmin luo itsel-
leen lapsiprosesseja, lapsiprosessit perivat avoinna olevat putken paat. Lapsiprosessi
voi luonnollisestikin luoda omia lapsiprosessejaan, ja niin edelleen. Periaatteessa jo-
pa kaikilla putken luoneen prosessin jalkelaisilla on mahdollisuus kommunikointiin
kyseisen putken valityksella.

Nimedméttomiin putkiin liittyvid systeemikutsuja kuvattuna ldhteen [13] mukaises-
ti:

e pipe-kutsulla luodaan putki. Tuloksena saadaan kaksi tiedostoviitenumeroa
(file descriptor), toinen lukemista ja toinen kirjoittamista varten.

e dup-kutsulla jokin tietovirta voidaan suunnata uudelleen joko meneméaan put-
keen tai tulemaan putkesta.

e fentl-kutsulla voidaan tehda ja lukea hyvin monenlaisia avoimeen putkeen liit-
tyvia asetuksia. Esim. putken paa voidaan laittaa odottamisen kieltavaan
tilaan, kun putken piaa oletusarvoisesti muuten on odottamisen sallivassa ti-
lassa.

e read-kutsulla luetaan putkesta kuten mista tahansa tiedostosta. Jos yhdella-
kaan prosessilla ei ole putken kirjoituspaata auki, kutsusta palataan valitto-
masti. Jos putki on tyhja, putken lukupad on odottamisen sallivassa tilassa
eika kayteta viivytykset kieltavaa valitsinta, niin jaadaan odottamaan sita,
ettd joku kirjoittaa putkeen. Odottaminen katkeaa, jos viimeinen avoinna

31

ollut kirjoituspaa suljetaan. Jos putki on tyhja ja joko putken lukupaid on
odottamisen kieltavassa tilassa tai kaytetaan viivytykset kieltavaa valitsinta,
readista palataan valittomasti ja nolla tavua todetaan luetuksi. Jos putki ei
ole tyhja ja lukija pyytaa enemman tavuja kuin putkessa on, niin ei jaada
odottamaan lisaa tavuja, vaan luetaan ne tavut, mika putkessa silla hetkella
on.

e write-kutsulla kirjoitetaan putkeen kuten mihin tahansa tiedostoon. Jos yh-
dellakaan prosessilla ei ole putken lukupaata auki, kutsusta palataan valitto-
masti. Jos kaikki kirjoitettavaksi tarkoitetut tavut eivat kutsuhetkelld mahdu
putkeen, putken kirjoituspaa on odottamisen sallivassa tilassa eika kayteta
viivytykset kieltavaa valitsinta, odotetaan niin kauan, etta tilaa tulee riitta-
vasti. Odottaminen katkeaa kuitenkin, jos viimeinen avoinna ollut lukupaa
suljetaan. Jos kaikki kirjoitettavaksi tarkoitettut tavut eivat kutsuhetkelld
mahdu putkeen ja joko putken kirjoituspdd on odottamisen kieltavissa tilassa
tai kaytetaan viivytykset kieltdvaa valitsinta, writesta palataan valittomasti
ja nolla tavua todetaan kirjoitetuksi.

Odottamisen sallivan tilan vallitessa ei koskaan tyydyta kirjoittamaan esim.
vain osaa tavuista. Sen sijaan kirjoitustapahtuman atomisuus on taattu vain
tiettya arvoa pienemmalle tavumaaralle. Jos samanaikaisesti on useita kirjoit-
tajia, voivat rinnakkaisten write-kutsujen suoritukset pahimmassa tapauksessa
limittya.

e close-kutsulla suljetaan putken lukupaa tai kirjoituspaa.

Téssa yhteydessi en voi olla mainitsematta kolmea lahteessé [13] esiteltyd standardi-
I/O-pakkauksen funktiota:

e fdopen-funktio liittda tiedostoviitenumeroon tiedosto-osoittimen. Tiedosto-
osoittimen hankkimisen jilkeen voidaan siirtyd kayttdméian standardi-I/O-
pakkauksen funktioita aivan kuin kyseessd olisi tavanomainen tiedosto.

e popen-funktio muistuttaa fopen-funktiota (tavanomaisen tiedoston avaus, ei
siis fdopen), mutta tiedostonimiargumentin sijasta annetaankin shell-komen-
non nimi. Kutsuvalle prosessille luodaan lapsiprosessi, jota vastaava ohjelma
on shell-komennon mukainen. Kutsuva prosessi saa pyyntonsa mukaisen paan

32

putkesta ja lapsiprosessi toisen paan. Lapsiprosessin standardisyotevirta suun-
nataan uudelleen tulemaan putkesta, tai lapsiprosessin standarditulostusvirta
suunnataan uudelleen menemaan putkeen.

e pclose-funktiolla suljetaan putki. Funktio palauttaa lapsiprosessin exit-statuk-
sen, joten lapsiprosessi siis haviaa viimeistaan silloin kuin putkikin.

Kayttajan ei tarvitse huolehtia nimeamattoman putken havittdmisestd, vaan kayt-
tojarjestelma havittdd nimeamattoman putken, kun ko. putkeen ei ole joko enda
yhtaan avointa lukupaata tai yhtaan kirjoituspaata. Ennen putken havittamista
mahdollisten avointen turhiksi kayneiden putken paiden omistajat saavat kaytto-
jarjestelmalta asianmukaiset signaalit.

5.7 Nimetyt putket

Nimetty putki on UNIX System V:n tiedostopohjainen kommunikointimekanismi,
joka on tosin omaksuttu System V:std moniin muihinkin UNIX-jarjestelmiin. (Nimi-
tystd nimetty putki on kéytetty ldhteessd [1]. Léhteessd [13] kdytetddn vastaavasta
oliosta nimitystd FIFO.)

Nimetty putki ei juurikaan eroa nimeaméattomasta putkesta. Ainoa merkittava ero
on nimen olemassaolo. Kun putkella on nimi, mielivaltaiset prosessit voivat kom-
munikoida putken valityksella.

Nimettyihin putkiin liittyvia systeemikutsuja kuvattuna ldhteen [13] mukaisesti:

e mknod-kutsulla luodaan nimetty putki, minka jalkeen putki esim. nakyy ha-
kemistolistauksessa.

e open-kutsulla putki avataan kuten mika tahansa tiedosto joko lukemista tai
kirjoittamista varten. Avattava pad saa tilakseen odottamisen sallivan ti-
lan, ellei kiyteta viivytykset kieltdvaa valitsinta, jolloin tilaksi tulee odotta-
misen kieltdvad tila. Kirjoituspiin (vastaavasti lukupédéin) avaamista yrittava
prosessi odottaa, jos putken yksikddn lukupdd (vastaavasti kirjoituspid) ei
ole auki eikd putken yhtdén lukupéétd (vastaavasti kirjoituspéétd) ole vield
yritetty avata. Jos kuitenkin kaytetaan viivytykset kieltavaa valitsinta, niin
openista palataan valittomasti, mikéli pyyntoa ei voida heti tayttaa.

e dup-kutsu toimii kuten nimedmattoman putken tapuksessa.

33

e fcntl-kutsu toimii kuten nimeamattoman putken tapauksessa.
e write-kutsu toimii kuten nimeaméattoman putken tapuksessa.
e read-kutsu toimii kuten nimeamattoman putken tapuksessa.

e close-kutsu toimii kuten nimeamattoméan putken tapuksessa.

e unlink-kutsulla nimetty putki pyyhitdan pois kayttdjan hakemistosta samal-
la tavoin kuin miké tahansa tiedosto. Kayttojarjestelma havittdd nimetyn
putken, kun unlink-kutsu on suoritettu ja ko. putkeen ei ole joko endé yh-
taan avointa lukupaata tai yhtaan kirjoituspaita. Ennen putken havittamis-
ta mahdollisten avointen turhiksi kayneiden putken paiden omistajat saavat
kayttojarjestelmalta asianmukaiset signaalit.

Systeemikutsujen sijasta standardi-I/O-pakkauksen funktioilla voidaan tehda kaikki
asiat putken luomista lukuunottamatta.

5.8 Vastakkeet

Vastake on sekd yhden prosessorin sisdiseen kommunikointiin etta eri prosessorien
valilld tapahtuvaan kommunikointiin soveltuva BSD UNIXin monikanavainen kom-
munikointimekanismi, joka on BSD UNIXista omaksuttu moniin muihin UNIX-jar-
jestelmiin. (Vastake on vapaa suomennos termille socket.)

Vastakkeet ryhmitelladn kommunikaatio-ominaisuuksiensa perusteella eri kohdealu-
eiden vastakkeisiin. Kohdealueita ovat ldhteen [13] mukaan muun muassa:

e UNIX-kohdealue. Sen vastakkeiden avulla yhden prosessorin sisilla prosessit
voivat kommunikoida keskendan. UNIX-kohdealueen vastakkeet ovat tiedos-
topohjaisia.

e Internet-kohdealue. Sen vastakkeiden avulla eri koneissa sijaitsevat prosessit
voivat kommunikoida keskenaan.

e Xerox NS -kohdealue. (Vrt. Internet-kohdealue.)

34

UNIX-kohdealueen ja Internet-kohdealueen vastakkeet on toteutettu jokaisessa sel-
laisessa UNIX-jarjestelmassa, jossa vastakkeet on toteutettu. Muut kohdealueet
ovat sen sijaan ainakin viela toistaiseksi harvinaisuuksia.

Vastakkeita on mm. seuraavanlaisia tyyppejé, jotka on kuvattu ldhteessa [13]:

e Virtavastakkeet tarjoavat kaksisuuntaisyhteydellista tiedon jarjestyksen sai-
lyttavaa tavuvirtapalvelua tdydelld virhe- ja vuovalvonnalla varustettuna. (Vir-
tavastake on vapaa suomennos termille stream socket.) Internet-kohdealueen
virtavastakkeet kayttavat protokollaa TCP. UNIX-kohdealueen virtavastak-
keille eo. kuvaus patee kuta kuinkin, joskin esim. virhevalvontaa ei tarvita.

e Tietosidhkevastakkeet tarjoavat yhteydetonta palvelua ilman virhe- tai vuoval-
vontaa. (Tietosdhkevastake on vapaa suomennos termille datagram socket.)
Tietosahkeiden perillemenojarjestys on sattumanvaraista. Internet-kohdealu-
een tietosahkevastakkeet kayttavat protokollaa UDP. UNIX-kohdealueen vas-
takkeiden suhteen eo. kuvaus pétee kuta kuinkin. (UNIX-kohdealueen tie-
tosahkevastakkeilla esim. vuovalvonnan puute merkitsee sita, etta sovellusoh-
jelmoijan on varauduttava lahettamaan tieto uudelleen, silla vastaanottaja ei
vélttdmatta ehdi tyhjentdé puskuria siind tahdissa kuin 1ahettdja sita tayttéa.)

e Perakkaispakettivastakkeet ovat muuten kuin virtavastakkeet, paitsi etta tie-
tuerajoja kiytetddn. (Perdkkéispakettivastake on vapaa suomennos termille
sequenced packet socket.) UNIX- ja Internet-kohdealueisiin téité vastaketyyp-
pia ei ole toteutettu.

e Luotettavan sanomanvalityksen vastakkeet ovat tietosahkevastakkeiden pa-
ranneltu versio siind mielessi, ettd sanomien perillemeno on luotettavaa. (Luo-
tettavan sanomanvalityksen vastake on vapaa suomennos termille reliably de-
livered message socket.) UNIX- ja Internet-kohdealueisiin tata vastaketyyppia
ei ole toteutettu.

e Raa’at vastakkeet tarjoavat mahdollisuuden esim. kehittaa omia protokollia,
silla raakojen vastakkeiden protokollat ovat alempitasoisia kuin muiden vas-
takkeiden. (Raaka vastake on vapaa suomennos termille raw socket.) Internet-
kohdealueen raa’at vastakkeet kayttavat protokollaa IP. UNIX-kohdealueeseen
tata vastaketyyppia ei ole toteutettu.

35

UNIX-kohdealueen virtavastakkeet muistuttavat hyvin paljon putkia. Yksi putki
tarjoaa kuitenkin vain yhden yhteyden, ja ko. yhteys on vuorosuuntainen. Yh-
den virtavastakkeen kautta voidaan yllapitaa samanaikaisesti useita kaksisuuntaisia
yvhteyksia. Jokaista yhteytta varten on kaksi puskuria. Yhteydessa on kaksi vas-
tapuolta, mutta prosesseja voi olla useita kuten putken tapauksessa. Tiedon kulun
nopeuden suhteen UNIX-kohdealueen virtavastakkeet ovat samanlaisia kuin putket.
BSD UNIXissa nimeamattomat putket ovat itse asiassa vain naamioituja UNIX-
kohdealueen virtavastakkeita.

Vastakkeisiin liittyvid systeemikutsuja kuvattuna ldhteen [13] mukaisesti:

e socket-kutsulla haetaan vastakeviitenumero (socket descriptor) valitsemalla
kohdealue, tyyppi ja protokolla. (Esim. Internet-kohdealueen vastakkeen
tyyppi implikoi protokollan. Usein valitaankin protokollaksi 0, eli annetaan
kiayttojirjestelman padttad protokollasta.)

e dup-kutsulla jokin tietovirta voidaan suunnata uudelleen joko menemaan vas-
takkeeseen tai tulemaan vastakkeesta.

e setsockopt-kutsulla voidaan tehda hyvin monenlaisia vastakkeeseen liittyvia
asetuksia. Vastake voidaan esim. laittaa odottamisen kieltdvaan tilaan, kun
vastake oletusarvoisesti muuten on odottamisen sallivassa tilassa.

e getsockopt-kutsulla voidaan lukea vastakkeeseen liittyvia asetuksia.
e fentl-kutsulla voidaan tehda ja lukea vastakkeeseen liittyvia asetuksia.

e ioctl-kutsulla voidaan niin ikdan tehda ja lukea vastakkeeseen liittyvid asetuk-
sia.

e socketpair-kutsulla hankitaan vastakeviitenumeropari hieman samaan tapaan
kuin pipe-kutsulla tiedostoviitenumeropari. Vastakeviitenumeroa voidaan kui-
tenkin kayttda sekd lukemisessa ettd kirjoittamisessa. Socketpair-kutsu huo-
lehtii siita, ettd voidaan ryhtya suoraan lukemaan tai kirjoittamaan. Esim.
virtavastakkeen kyseessa ollessa yhteys on siis valmis. Vastakkeen kohdealue,
tyyppi ja protokolla valitaan socketpair-kutsussa muodollisesti samaan tapaan
kuin socket-kutsussa. Toistaiseksi socketpair on toteutettu vain UNIX-kohde-
alueeseen. Huomattakoon, ettd mitaan nimea ei socketpair-kutsu vastakkeelle
anna niin kuin ei socket-kutsukaan anna.

36

e bind-kutsulla nimeamaton vastake nimetaan. UNIX-kohdealueen vastakkeen
nimi on tiedoston nimi ja Internet-kohdealueen vastakkeen nimi puolestaan
porttinumeron ja Internet-osoitteen yhdistelmé. (Esim. rinnakkainen TCP-
palvelija kayttaa porttinumeroita voidakseen palvella samanaikaisesti useita
asiakkaita.) UNIX-kohdealueen vastake mm. nikyy hakemistolistauksessa.

e connect-kutsulla asiakasprosessi muodostaa yhteyden palvelijaan. (Asiakkaan
ja palvelijan kiinnittdminen talla tavalla yksinkertaistaa asioita. Todellisuu-
dessa mikaan ei esimerkiksi estd connectia kutsunutta prosessia toimimasta
yvhteyden myontaneen prosessin yksityisena palvelijana yhteyden muodosta-
misen jilkeen.) connect-kutsulla vastakeviitenumero pyritddn liittdmaan ni-
melta mainittuun vastakkeeseen. bind-kutsua asiakkaan ei tarvitse kayttaa,
vaan riittaa, etta palvelija on tehnyt bind-kutsun.

connect-kutsua voi kiyttaa myos yhteydettoman palvelun asiakas. Vaikutus
on talloin se, etta kaikki asiakkaan kyseiseen vastakkeseen myohemmin lahet-
tdma tieto menee connect-kutsun mukaiseen osoitteeseen ja kaikki asiakkaan
kyseisesta vastakkeesta lukema tieto tulee connect-kutsun mukaisesta osoit-
teesta.

e listen-kutsulla yhteydellinen palvelija ilmoittaa valmiudestaan ottaa vastaan
yvhteyspyyntoja annettuun vastakkeeseen. Kutsussa maaritelladn, kuinka mon-
ta yhteyspyyntoa voidaan laittaa jonoon silla aikaa, kun palvelija on suoritta-
massa palvelusta.

e accept-kutsulla palvelija odottaa yhteyspyyntoja. accept-kutsu palauttaa uu-
den vastakeviitenumeron, joka viittaa samaan vastakkeeseen kuin alkuperainen-
kin. Palvelija voi antaa accept-kutsun palauttaman viitenumeron lapsiproses-
sin kayttoon ja vastaanottaa seuraavan yhteyspyynnon vanhaa viitenumeroa
kayttaen.

e read-kutsulla vastakkeesta voi lukea kuin putkesta, ainakin virtavastakkeen
tapauksessa.

e write-kutsulla vastakkeeseen voi kirjoittaa kuin putkeen, ainakin virtavastak-
keen tapauksessa. Mikéili kohdealue on jokin muu kuin UNIX-kohdealue, on
kuitenkin mahdollista, etta tavuista kirjoitetaan vain sen verran kuin kerral-
la puskuriin mahtuu. Write-kutsua on siis varauduttava toistamaan riitta-
van monta kertaa. Tassa mielessa write-kutsu on itse asiassa varsin symmet-

37

rinen read-kutsun kanssa. (UNIX-kohdealueen tapauksessakin on hyvé totu-
tella kayttamaan write-toistoa, jotta vastakkeita kayttavat ohjelmat eivat olisi
liian riippuvaisia vastakkeiden kohdealueista.)

recv-kutsu on read-kutsua monipuolisempi vastaanottokutsu. (Yksityiskohtiin
en puutu.)

send-kutsu on write-kutsua monipuolisempi ldhetyskutsu.

sendto-kutsulla voidaan kirjoittaa nimettyyn vastakkeeseen ilman, ettd yh-
teytta olisi muodostettu.

recvfrom-kutsullla voidaan lukea nimetysta vastakkeesta ilman, ettd yhteytta
olisi muodostettu.

close-kutsulla yhteys puretaan niin, etta kanavaan ei jaa tavuja.

shutdown-kutsulla voidaan yhteys purkaa osittain siten, ettd joko lukeminen
tai kirjoittaminen kielletaan. Kutsulla voi myos purkaa yhteyden kokonaan.

select-kutsulla palvelija voi odottaa samanaikaisesti useihin eri vastakkeisiin
kohdistuvia yhteyspyyntoja. Kayttojarjestelma herattaa palvelijan, kun jo-
honkin vastakkeeseen kohdistuu yhteyspyynto.

unlink-kutsulla UNIX-kohdealueen vastake pyyhitaan pois kayttajan hakemis-
tosta samalla tavoin kuin mika tahansa tiedosto. unlink-kutsu ei automaat-
tisesti aiheuta vastakkeen havittamista, vaan havittaminen tapahtuu vasta,
kun yhtddn ko. vastakkeeseen liittyvdd yhteyttd ei endd ole. (Vrt. unlink
nimetyn putken tapuksessa.)

5.9 Kaksoisvirrat

Kaksoisvirta on mekanismi, joka on kehitetty parantamaan laiteohjainten ja pro-
tokollien ohjelmoinnin modulaarisuutta. (Kaksoisvirta on vapaa suomennos termin
streams yksikkémuodolle.) Kaksoisvirrat on toteutettu ainakin UNIX System V:ssi.

Kaksoisvirta on ldhteen [13] mukaan kaksisuuntainen yhteys kidyttdjan prosessin ja
joko laiteohjaimen tai naennaislaiteohjaimen valilla.

38

Kaksoisvirta koostuu ldhteen [13] mukaan kahdesta lineaarisesti linkitetysté listasta.
Toinen lista on syottolista ja toinen tulostuslista. Kummassakin listassa on saman
verran jasenid. Syottolistan alusta lukien k:s jasen ja tulostuslistan lopusta lukien
k:s jasen ovat samalla hierarkiatasolla ja muodostavat moduulin. Kayttajan prosessi
on valittomassa yhteydessa kaksoisvirran ylimpaan moduuliin. Alin moduuli vastaa
aitoa tal naennaista laiteohjainta.

Oletusarvoisesti kaksoisvirta sisaltda em. kaksi moduulia. Kayttaja voi kuitenkin
lisata valiin moduuleja, ottaa lisiamiaan moduuleja pois kaksoisvirrasta, lisata uusia
moduuleja jne.

Néennaislaiteohjain voi olla esimerkiksi Ethernet-ajuri. Pohjalta lukien seuraava
moduuli voi vastaavasti olla vaikkapa IP-moduuli, sitd seuraava TCP-moduuli jne.
Kaksoisvirrat tarjoavat joustavan tavan ohjelmoida protokollia kerroksittain.

Kaksoisvirtoihin liittyvid systeemikutsuja kuvattuna ldhteen [13] mukaisesti:

e open-kutsulla avataan kaksoisvirta. Kaksoisvirta sijaitsee UNIXin tiedostojar-
jestelmén hakemistossa ” /dev”.

e dup-kutsulla jokin tietovirta voidaan suunnata uudelleen joko menemaan kak-
soisvirtaan tai tulemaan kaksoisvirrasta.

e ioctl-kutsulla luetaan ja tehdaan kaksoisvirtaan liittyvia asetuksia. Eritoten
moduulien lisadminen ja poistaminen tapahtuu talla kutsulla.

e read-kutsulla luetaan niin kuin fyysisiltd laitteilta on tapana lukea. (ioctl:114
huolehditaan tarvittavista asetuksista.)

e write-kutsulla kirjoitetaan niin kuin fyysisille laitteille on tapana kirjoittaa.
e close-kutsulla kaksoisvirta suljetaan.

e getmsg-kutsulla luetaan sanomia. (Vrt. viestijonot.)

e putmsg-kutsulla kirjoitetaan sanomia.

e poll-kutsulla odotetaan annettuihin kaksoisvirtoihin kohdistuvia I/O-signaa-
leja. (Vrt. select vastakkeilla.)

39

5.10 TLI

TLI eli Transport Layer Interface on UNIX System V:hen kuuluva eri prosessorien
valiseen kommunikointiin tarkoitettu mekanismi. TLI tarjoaa liitinndn OSI-mallin
tai Internet-mallin mukaiseen kuljetuskerrokseen. TLI:n funktiot eivat ole systee-
mifunktioita. TLI on ldhteen [13] mukaan toteutettu kaksoisvirtojen avulla. TLI
piilottaa kaksoisvirrat ja kaksoisvirtoihin kohdistuvat operaatiot kayttajalta. TLI:n
funktiot muistuttavat ldhteessd [13] annetun kuvauksen perusteella sekd nimiltdén
ettd ominaisuuksiltaan vastakkeisiin liittyviad systeemifunktioita. Funktioiden ku-
vaus sivuutettakoon.

5.11 HP:n NetIPC

Hewlett Packardin NetIPC on HP:n UNIX-koneiden valiseen kommunikointiin ke-
hitetty mekanismi. HP:n NetIPC:n funktiot eivat ole systeemifunktioita. HP:n
NetIPC on ldhteen [6] mukaan toteutettu vastakkeiden avulla. Vastakkeisiin viittaa-
minen tapahtuu NetIPC:ssd tavanomaisten vastakeviitenumeroiden avulla. Kaytta-
ja voi ldhteen [6] mukaan tietyssd mitassa kayttdd NetIPC:n funktioita ja vastak-
keisiin liittyvid systeemifunktioita sekaisin. NetIPC:ta kaytettdessid verkko-ohjel-
mointi on jossain maarin yksinkertaisempaa kuin pelkastaan systeemikutsuja kay-
tettdessd. NetIPC:n funktioiden kuvaus sivuutettakoon.

40

6 Modest-Simnon-liitannan keskeiset piirteet

Tassa luvussa esitan Modest-Simnon-liitannan ja tekemani uuden Modest-version
keskeiset piirteet seka tehtyjen ratkaisujen perustelut. Yritan keskittya asioihin ni-
mien sijasta. Esimerkiksi aliohjelmien tai muuttujien nimia valtan kayttamasta.

6.1 Prosessit

Uusi Modest koostuu kaytannollisesti katsottuna kolmesta ohjelmasta: varsinainen
Modest-ohjelma, Simnon-ohjelma seki valvova ohjelma. Jokainen niistd ohjelmista
on Modest-ajon aikana olemassa omana prosessinaan. Kaytan naista prosesseista
nimitysta Modest-prosessi, Simnon-prosessi ja valvova prosessi.

Valvova prosessi luo itselleen kaksi lapsiprosessia. Toinen lapsiprosesseista muuttaa
itsensd Modest-prosessiksi ja toinen Simnon-prosessiksi. (Téllainen itsensd muutta-
minen on tavanomaista UNIXissa.)

Valvovan prosessin tehtavana on huolehtia siita, ettei Modest-ajosta jaa jaljelle ros-
kaa. Roskalla tarkoitan muun muassa sellaisia tiedostoja, jotka on luotu ajon aikana
vain kyseista ajoa varten. Myos ajoon osallistunut prosessi on ajon paatyttya ros-
kaa. Modest-ajon paattymisen syyna voi olla Modest-prosessin paasy lopputilaan
mutta yhtd hyvin my6s ajonaikainen virhe tai vaikkapa kayttdjan tekeméa keskey-
tys. Valvova prosessi on varautunut mahdollisimman hyvin niihin erilaisiin tapoihin,
joilla Modest-ajo voi paattya.

Modest-prosessin ja Simnon-prosessin valisten yhteyksien muodostaminen tapahtuu
ilman erillista palvelijaprosessia. Valvova prosessi ei osallistu yhteyksien muodos-
tamiseen eikd myoskaan kommunikointiin. Yhteyksia muodostettaessa tavallaan
Modest-prosessi ja Simnon-prosessi palvelevat toinen toistaan. Yhteyksien muodos-
tamisen jalkeen asiakas-palvelija-suhde on selvda: Simnon-prosessi on Modest-pro-
sessin palvelija.

6.2 Modest-ajon kulku Modest-prosessin osalta
Modest-ajon kulku valvovan prosessin osalta tuli kuta kuinkin selvitettya jo osi-

ossa 6.1. Simnon-prosessi on puolestaan Modest-prosessin palvelija heti yhteyk-
sien muodostamisen jalkeen. Nain ollen keskityn kuvaamaan Modest-ajon kulkua

41

Modest-prosessin osalta. Laskentaa en varsinaisesti kuvaa lainkaan.

Modest-prosessin ensimmainen tehtdva on lukea koesarjat, ongelman méarittelyt
ja kayttajan tekeméit asetukset syotetiedostoista. Kayttdja kertoo maarittelytie-
dostossa (nimilistat, ks. osio 3.2) muun muassa Modest-ohjelman tilamuuttujien
ja estimoitavien parametrien Simnon-kieliset nimet. Taméa kaytanto on kaikessa re-
dundanttisuudessaankin parempi kuin se, ettd vastaavuus maarattaisiin jonkin Sim-
nonin noudattaman luettelointijarjestyksen perusteella. Kayttaja luettelee maarit-
telytiedostossa myos niiden tiedostojen nimet, joissa ongelmaa kuvaavat Simnon-kie-
liset systeemit sijaitsevat. (Yksinkertaisessa tapauksessa systeemeja on yksi, mutta
systeemeja voi siis aivan hyvin olla useampiakin.)

Seuraavaksi Modest-prosessi rakentaa pelkastaan kyseistd Modest-ajoa varten kay-
tettdvan Simnon-kielisen yhdistavén systeemin. (Yleisessd tapauksessa kyseessé on
kdyttdjan antaman yhdistdvan systeemin laajennettu versio.) Periaatteessa ko. sys-
teemin kirjoittaminen voitaisiin tehda vaikka ennen Modest-ajoa. Tehtavaan kuluva
aika on kuitenkin adarimmaisen lyhyt. Jos tehtavaa varten olisi erillinen ohjelma,
saattaisi kayttajalta jopa kulua tarpeettomasti aikaa sen miettimiseen, milloin ko.
ohjelma pitaisi ajaa.

Sitten Modest-prosessi avaa komentojen vélittdmistd varten yhteyden Simnon-pro-
sessiin sekd toisen yhteyden piinvastaiseen suuntaan. Se valvovan prosessin lap-
siprosesseista, joka muuttaa itsensd Simnon-prosessiksi (ks. osio 6.1), on néiden
yhteyksien muodostamisessa tarvittava toinen osapuoli. Ennen Simnon-prosessiksi
muuntautumistaan ko. prosessi myos suuntaa standardisyotevirtansa ja standar-
ditulostusvirtansa uudelleen niin, ettd Modest-prosessi voi yhta kanavaa pitkin 1a-
hettaa komentoja Simnon-prosessille ja toisesta kanavasta lukea Simmnon-prosessin
standarditulostusta.

Kun edelld mainitut yhteydet on saatu avatuiksi, Modest-prosessi antaa Simnon-
prosesille SYST-komennon, ja valitsee niin vallitseviksi systeemeiksi kayttdjan va-
litsemat systeemit. Systeemien joukossa on lisiksi erityinen geneerinen ulkoinen
systeemi. (Em. yhdistdvan systeemin rakentaminen on tarpeen, jotta ko. geneeris-
ta ulkoista systeemid voitaisiin kayttéia.)

Vilittomasti SYST-komennon annettuaan Modest-prosessi avaa kaksi uutta yh-
teyttd Simnon-prosessiin, yhden molempiin suuntiin. Yhteyksien muodostamisen
toisena osapuolena on tilla kertaa todellakin Simnon-prosessi. Em. ulkoiseen sys-
teemiin on ohjelmoitu yhteyksien muodostamiseen Simnon-puolella tarvittavat toi-
minnot.

42

Seuraavaksi Modest-prosessi lahettaa ulkoiseen systeemiin pain vievaa kanavaa pit-
kin eraiden muuttujien arvoja ulkoiselle systeemille. Kyseisia arvoja ulkoinen sys-
teemi kayttad omissa alustustoimenpiteissaan. Ulkoisen systeemin on ehdottomasti
oltava taydessd valmiustilassa ennen kuin Modest-prosessin kannattaa lahettaa Sim-
non-prosessille simulointikomentoja. Tehtyjen alustusten jalkeen ulkoinen systeemi
on taydessa valmiustilassa.

Jotta Modest-prosessi varmistuisi kayttdjan antamien Simnon-maarittelyjen vir-
heettomyydesta, se antaa tarkistusmielessa kattavan joukon komentoja Simnon-pro-
sessille ja paidttelee Simnon-prosessin standarditulostuksen perusteella, onko kaikki
niin kuin pitdd. Komennot on myos valittu siten, ettd Simnon-prosessin standardi-
tulostuksesta saadaan vahalla vaivalla luettua esimerkiksi tilamuuttujien ja estimoi-
tavien parametrien alkuarvot. Simnon-systeemi-tiedostoja ei néin ollen ainakaan
alkuarvojen selvittamista varten tarvitse lukea.

Tasta eteenpain Modest-prosessi ldhettaa Simnon-prosessille SIMU-, PAR- ja INIT-
komentoja. SIMU-komennon seurauksena ulkoinen systeemi lahettda simulointitu-
lokset Modest-prosessille sitd kanavaa pitkin, joka tata tarkoitusta varten avattiin
SYST-komennon jalkeen. Tarkalleen ottaen ulkoinen systeemi lahettad Modest-pro-
sessille joukon pisteita eli aikamuuttujan arvoja ja tulosmuuttujien arvot kyseisissa
pisteissa. Tulosmuuttujat ovat kiyttdjan méaarittelytiedostossa valitsemia STATE-
muuttujia ja/tai OUTPUT-muuttujia. PAR- ja INIT-komentojen avulla Modest-
prosessi muuttaa systeemien parametreja ja tila-alkuarvoja, mika on tarpeen esi-
merkiksi estimoitaessa tai siirrytaessa koesarjasta toiseen.

Ajon lopussa Modest-prosessi tuottaa Modestin tavanomaisten tulostustiedostojen
(ks. osio 3.2) lisdksi Simnon-makron, jonka avulla kiytt&jd voi mychemmin Sim-
nonia ajaessaan verrata estimoinnin tms. tulosten mukaisia kayria koetulosten graa-
fisiin esityksiin.

Kun Modest-prosessi lopettaa toimintansa, valvova prosessi huolehtii kaikesta sii-
voamisesta. Yhteyksia ei koskaan varsinaisesti pureta, vaan ne purkautuvat talla
tavoin ikadn kuin luonnollista tieta.

6.3 Perustelut ulkoisen systeemin kaytolle

Simulointitulosten valittdmisen Simnon-prosessilta Modest-prosessille on tapahdut-
tava nopeasti. Ulkoista systeemia kaytetadn tasta syysta.

43

Ulkoiseen systeemiin voidaan ohjelmoida systeemikutsuja tavalliseen tapaan, mika
antaa mahdollisuuden simulointitulosten valittamiseen binaarimuodossa mita ta-
hansa UNIXin prosessien valisen kommunikoinnin mekanismia kayttaen. Ulkoinen
systeemi lukee simulointitulokset muistista, suoraan sieltd minne ne on laskettu.
Ulkoinen systeemi voidaan ohjelmoida valikoimaan Modest-prosessille lahetettavat
simulointitulokset, ja ndin saadaan prosessilta prosessille kulkevan tiedon maaraa
optimoitua. Ulkoinen systeemi on helposti ohjelmoitavissa niin geneeriseksi, ettei
sita tarvitse muutella ainakaan periaatteessa koskaan. Esimerkiksi taulukkojen te-
holliset koot voidaan ilmoittaa ulkoiselle systemille ajon aikana. Jos Modest-ajon
kesto vanhaa perus-Modestia kaytettaessa oli minuutti, oli vastaavan ajon kesto
vanhinta ulkoiseen systeemiin nojaavaa Modest-versiota kaytettdessd noin kolme
minuuttia. Nykyistd ulkoiseen systeemiin nojaavaa Modest-versiota kaytettdessa
vastaavan ajon kesto on korkeintaan kaksi minuuttia.

Tarkasteltakoon lyhyesti eri tapoja valittda simulointituloksia Simnon-prosessilta
Modest-prosessille kayttamatta ulkoista systeemia. Tekemalla pienia muutoksia
Simnonin lahdetiedostoihin voitaisiin varmastikin saada asiat sujumaan tehokkaas-
ti, mutta osioon 1.4 viitaten sivuutan taman vaihtoehdon. Simnon-prosessi voi-
taisiin laittaa kirjoittamaan simulointitulostukset standarditulostusvirtaansa, mutta
moinen jarjestely vaatisi runsaasti komentoja ja bindarimuodosta ASCII-muotoon ja
takaisin suoritettuja muunnoksia. Simnon-prosessi voitaisiin laittaa kirjoittamaan
simulointitulostukset store-tiedostoihin. Valitettavasti store-tiedostojen formaatti
on salainen, joten store-tiedostot olisi muunnettava ASCII-muotoon. Muunnokset
olisivat siis rasitteena. Tiedostojen avaamiseen, asiaan kuuluvat odottelutuokiot mu-
kaan luettuina, kuluva kokonaisaikakin on melkoinen. Kokemukseni store-tiedosto-
jen kaytosta simulointitulosten valittamisessa eivat olleet erityisen rohkaisevia. Jos
Modest-ajon kesto vanhaa perus-Modestia kaytettaessa oli minuutti, oli vastaavan
ajon kesto store-tiedostoihin nojaavaa Modest-versiota kaytettaessa aina vahintaan
kymmenen minuuttia.

Ulkoisen systeemin kayton ainoa merkittava haitta lienee sitoutuminen UNIX-Sim-
noniin ja sen plus-versioon. Aikanaan nimittdin harkittiin MS-DOS-Simnoniin tyy-
tyvin Modest-version toteuttamista SCO-UNIX-ymparist66n. Léhteen [9] mukaan
nimittain SCO-UNIX-ymparistossa voidaan ajaa MS-DOS-ohjelmia varsinaisten UNIX-
ohjelmien rinnalla.

44

6.4 Kommunikaatiomekanismi

Osiossa 6.2 katkin kommunikaatiomekanismit nimityksen kanava taakse. Yhteyksia
Modest-prosessin ja Simnon-prosessin vililla mainitsin olevan nelji siten, etta kaikki
ovat yksisuuntaisia. Nain asia itse asiassa onkin nykyisessa Modest-versiossa, mutta
jos tarkastellaan erilaisia kommunikaatiomekanismivaihtoehtoja, niin Modest-pro-
sessin ja ulkoisen systeemien valilla voisi olla myos pelkastaan yksi kaksisuuntainen
yhteys.

Nykyisessa Modest-versiossa kommunikointiin kaytetadn yksinomaan vastakkeita
(socket), tarkemmin sanottuna UNIX-kohdealueen virtavastakkeita. Modest-proses-
sin ja Simnon-prosessin valilla on Modest-ajon aikana nelja eri vastakeyhteytta, joita
jokaista kaytetaan yksisuuntaisesti ja joista jokaista varten on oma erillinen vastake.
Vastakkeiden tallainen kaytto ei ole valttamatta tyylikasta, mutta tarkoituksena on
sailyttaa mahdollisuus korvata vastakkeet tarvittaessa helposti nimetyilla putkilla.
Kunkin vastakkeen nimessa on vakioalkuosa ja lopussa Modest-prosessin ja Simnon-
prosessin isdprosessin eli valvovan prosessin numero. Tunnisteen tarkoituksena on
suojata kommunikaatiokanava ulkopuolisilta. Modest-ajon kommunikoivat osapuo-
let osaavat alusta alkaen kayttaa kustakin neljasta vastakkeesta oikeaa nimea, koska
isaprosessin numeron saa selville systeemikutsulla.

Kaytan siis UNIX-kohdealueen virtavastakkeita kuin nimettyja putkia, ja voisin
helposti korvata vastakkeet nimetyilla putkilla. Olen itse asiassa tehnytkin sellaisen
Modest-version, jossa vastakkeet on korvattu nimetyilld putkilla. Kun olen ajanut
Modestin putkiversiota samoilla sydteaineistoilla kuin Modestin vastakeversiota, en
ole havainnut ekvivalenttien Modest-ajojen kestoissa eroja. Tulos on sopusoinnussa
sen osiossa 5.8 esittamani yleisluontoisen vaitteen kanssa, etta putket ja UNIX-koh-
dealueen virtavastakkeet ovat kommunikaationopeuden kannalta yhdenveroisia.

En ole keksinyt tapaa, jolla nykyisen Modest-versioni kaikki vastakkeet korvattaisiin
nimeaméattommilla putkilla. Ne vastakkeet, jotka liittyvat Simnon-prosessin stan-
dardisyotevirtaan ja standarditulostusvirtaan, olisivat luonnollisestikin helposti kor-
vattavissa nimeamattomilla putkilla. Sen sijaan ulkoiseen systeemiin liittyvien vas-
takkeiden korvaaminen nimedméttomilla putkilla ei liene aivan yksinkertaista.

Simnon-prosessin standardisyotevirran ja standarditulostusvirran suuntauksessa put-
ket tai vastakkeet ovat kaytannossa ainoa vaihtoehto. Jos esimerkiksi standardisyo-
tevirta suunnattaisiin tulemaan tavanomaisesta tiedostosta, Simnon-prosessi ei pys-
tyisi tiedoston lopun kohdattuaan jatkamaan toimintaansa.

45

Modest-prosessin ja ulkoisen systeemin véalisessa kommunikoinnissa olen kokeillut
myos viestijonoja. Viestijonojen arvelin olevan kommunikaationopeuden kannalta
vastakkeita ja putkia parempia. Kahden kuukauden aikana pidin ylla kahta eri ver-
siota Modestista. Toisessa kaytin pelkastaan vastakkeita ja toisessa viestijonoja ja
vastakkeita. (Puhdas viestijonoversio ei ollut mahdollinen sen perusteella, mité edel-
lisessi kappaleessa totesin.) Ekvivalenttien Modest-ajojen kestoissa en kuitenkaan
koskaan havainnut paria sekuntia suurempia eroja. Tulos ei tarkoita sita, ettei-
vatko viestijonot missdan sovellutuksessa olisi vastakkeita tehokkaampia. Omassa
sovellutuksessani kommunikointimekanismi ei ilmeisesti kuitenkaan ole pullonkaulan
asemassa. Muitakin selityksia on haettavissa. Simulointituloksia valitettiin kenties
kerralla sen verran vahan, ettd kiyttojarjestelmé saattoi pitdd vastakkeen kautta
valitetyn tiedon yksinomaan puskureissa. Kummassakin versiossa kaytettiin vas-
takkeita, ja ehkapa teoreettinen puhdas viestijonoversio olisi ollut vastakeversiota
tehokkaampi.

Jaetun muistin kayttoa simulointitulosten valittamisessa en ole kokeillut. Jaetun
muistin kaytto ei ole sinansa mitenkaan vaikeaa, koska semaforeilla voidaan tarvit-
tava synkronointi aikaansaada melko vaivattomasti. Koska kuitenkin viestijonojen
ja vastakkeiden keskindisen vertailun tulokset olivat sellaisia kuin olivat, en ole mi-
tenkdan vakuuttunut siitd, etta jaettua muistia kayttamallakain saataisiin Modest-
ajon kestoa olennaisesti lyheneméaén.

Mikéli joutuisin hajauttamaan Modest-Simnon-liitdnnan, valitsisin kommunikoin-
timekanismiksi vastakkeet. Vastakkeet on toteutettu varsin monessa UNIX-jarjes-
telmassa, eikd toista yhta monessa UNIX-jarjestelméssa toteutettua eri prosesso-
rien valilla tapahtuvaan kommunikointiin soveltuvaa systeemikutsutason mekanis-
mia taida olla ainakaan vield olemassa. Nykyiseen Modest-versioon olisin aiemmin
esittdmieni tarkastelujen nojalla voinut valita vastakkeiden sijasta nimetyt putket.
Hajauttamiskaavailut kallistivat vaa’an vastakkeiden hyvaksi. Kokemukset UNIX-
kohdealueen virtavastakkeista ovat varmasti hyodyksi, ryhdyttiinpa kayttamaan mi-
ta tahansa muita vastakkeita.

6.5 Interpolointi
Selvitettakoon ensin se ongelma, joka ratkaistiin ottamalla kayttoon interpoloin-

ti. Ongelmaksi muodostui se, miten Modest saisi juuri ne tulokset, joita se tar-
vitsee. Ideaalitapauksessa Simnon laskisi tulokset aina vahintdan niissd pisteissa,

46

joista Modest on kiinnostunut, eika kayttaisi silti laskentaan paljoa aikaa. Kaytan-
nossa kuitenkin Simnon valitsee SIMU-komennossa annettuja valin paatepisteita
lukuunottamatta kaikki valipisteet itse.

Ensi alkuun ratkaisin ongelman kayttamalla SIMU -CONT -komentoa erikseen jo-
kaisen koepistevalin yli. Ulkoinen systeemi lahetti kustakin simuloinnista vain valin
paatepisteen tulokset Modest-prosessille. Asettamalla simuloinnin maksimiaskelpi-
tuus kulloinkin sopivasti saatiin Modest-ajon kesto pysymaan kohtuullisena. Jos
Modest-ajon kesto vanhaa perus-Modestia kaytettaessa oli minuutti, oli vastaavan
ajon kesto tatd ratkaisua kaytettdessda noin kolme minuuttia.

Koska tiedossa oli kuitenkin se, kuinka nopeasti laskenta tapahtui vanhassa perus-
Modestissa, padtettiin Simnonin kayttoa vield tehostaa. Otettiin kayttoon inter-
polointi. Interpolointia kayttaen paastaan yleisesti ottaen hyviin tuloksiin esim.
estimoinnissa. Interpoloinnin aiheuttaman virheen vaikutus on aika olematon, kun
tavoitekayrat ovat sileita ja interpolointialgoritmi interpoloi lokaalisti. Interpoloin-
tiin oli tarjolla sopivia julkisia aliohjelmia. Kéayttoon otettiin ldhteessd [4] esitetyt
splini-interpolointi-aliohjelmat.

Interpolointia kiytettdessd simuloidaan koesarjan pisteiston yli yhdella SIMU-ko-
mennolla. Modest-prosessi suorittaa interpoloinnin ulkoiselta systeemiltd saamien-
sa simulointitulosten perusteella. Ulkoinen systeemi valitsee solmupisteet mahdol-
lisimman tasavélisesti. Suhteellisen pieni solmupisteméars, esim. 20, on sopiva.
Kayttaja ilmoittaa maarittelytiedostossa, kuinka monta solmupistetta kutakin ko-
esarjaa kohti kdytetdan. Solmupisteiden méarad ei kannata valita liian suureksi,
silld interpoloinnissa tarvittavien laskutoimitusten maara on vahintdan neliéllinen
solmupisteiden maaraan ndhden. Solmupisteiden méaaraa lisattaessa tietyn rajan,
tyypillisesti noin 20 pistetta, jalkeen interpoloinnin tarkkuus ei enaa mainittavasti
parane. Syyné ilmi6on on interpoloitavien funktioiden sileys.

Jos interpoloitava funktio on niin hankalasti kiayttaytyva, ettd interpolointi antaa
huonoja tuloksia, on paras ratkaisu korvata hankalasti kayttaytyva funktio parem-
min kayttaytyvalla apufunktiolla, silla sellainen funktio, jota on vaikea interpoloi-
da, aiheuttaa melko varmasti myds suurta epastabiiliutta estimoinnissa ja kokeiden
suunnittelussa.

Jos Modest-ajon kesto vanhaa perus-Modestia kaytettdessda on minuutti, on vastaa-
van ajon kesto interpolointia kaytettaessa kaksi minuuttia.

47

6.6 Mallien kirjo

Uudessa Modestissa voidaan maéaritelld mitd tahansa Simnon-kielisilla systeemeilla
kuvattavissa olevia malleja. Differentiaaliyhtalosysteemimalli, algebrallinen malli
tai differentiaalialgebrallinen malli (yhdistelma differentiaaliyhtélosysteemimallista
ja algebrallista mallista) on helposti kuvattavissa Simnon-kielisilld jatkuvilla sys-
teemeilld. Usean systeemin, joukossa mahdollisesti seka jatkuvia etta diskreetteja
systeemejd, muodostama malli on jotakin sellaista, mitd vanhassa perus-Modestissa
el pystytd lainkaan kuvaamaan. Vastapainoksi todettakoon, ettd vanhassa perus-
Modestissa kuvattavissa olevaa implisiittista mallia ei voida ainakaan kovin yksin-
kertaisesti kuvata Simnon-kielisilli systeemeilla.

6.7 Siirrettavyys

Uusi Modest, jossa on siis Modest-Simnon-liitanta, on tarkoitus asentaa Kemira
Oy:n Espoon tutkimuskeskuksen HP-UNIX-koneeseen, jota ollaan parhaillaan hank-
kimassa. Uuden Modestin pitéisi olla varsin helposti siirrettavissd melkein mihin
tahansa UNIX-ymparistoon. UNIX-Simnonin sijainnin vuoksi en ole vain paassyt
kokeilemaan Modest-Simnon-liitintad muissa kuin HP-UNIX-koneissa.

Vanha perus-Modest kiayttda IMSL-aliohjelmakirjastoa. Uudessa Modestissa IMSL
on siirrettavyyssyista korvattu julkisilla aliohjelmakirjastoilla kuten Linpack, Min-
pack ja Eispack.

Tarkasteltakoon esimerkkind sitd, miten uusi Modest siirettdisiin l&hteen [9] mu-
kaiseen SCO UNIX System V -ymparistoon. Heti alkuun on todettava, ettd MS-
DOS-Simnon, joka SCO-UNIX- ymparistossd muuten olisi kaytettavissa, on poissa
laskuista, koska uusi Modest tarvitsee UNIX-Simnonin plus-version. UNIX-Sim-
nonin plus-versio pitaisi siis siirtaéd lahdetiedostomuodossa SCO-UNIXiin ja lahde-
tiedostot kaantaa SCO-UNIXissa. Simnonin asentamisen jalkeen siirrettaisiin Mo-
destin lahdetiedostot SCO-UNIXiin ja suoritettaisiin kaannos. SCO UNIX System
V:ssé ei ainakaan ldhteen [9] mukaan ole toteutettu vastakkeita. Sen sijaan puhtaan
System V:n mukaiset prosessien vilisen kommunikoinnin mekanismit, kuten nimetyt
ja nimedméattomat putket, viestijonot, jaettu muisti ja semaforit, on toteutettu. (Eri
prosessorien valilld tapahtuvaan kommunikointiin SCO-UNIXissa on ikioma ohjel-
mistonsa, johon en ole tutustunut.) Modest-Simnon-liitdnnén vastakkeiden korvaa-
minen nimetyilla putkilla ei vaatisi kuin kosmeettisia muutoksia lahdetiedostoissa.

48

7 Modest-Simnon-liitannan kommunikointitapah-
tumien analysointia P /T-verkkojen avulla

Liitannan toimivuuden osoittamiseksi analysoin kahta keskeistd kommunikointivai-
hetta, vastakeyhteyden muodostaminen ja simulointitulosten vélittdminen, P/T-
verkkojen avulla. Kumpaakin em. vaihetta mallitan omalla P/T-verkollaan. Jos
liitdnta ajatellaan jarjestelmaksi, eri kommunikointivaiheet edustavat ko. jarjestel-
man osia.

7.1 P/T-verkot

Petri-verkko on rakenne, jolla voidaan mallittaa rinnakkaisia ja hajautettuja jar-
jestelmia. P/T-verkko eli paikka-transitio-verkko on erds Petri-verkko-laji. Muis-
ta Petri-verkko-lajeista mainittakoon C/E-verkko eli ehto-tapahtuma-verkko seké
Pr/T-verkko eli predikaatti-transitio-verkko.

7.1.1 P /T-verkon méiiritelmai

Lihteessd [8] annetun madritelmén mukaan kuusikko
on P/T-verkko, jos ja vain jos
(i) (Sn,Tn; Fn) on dérellinen suunnattu graafi, jonka solmujen joukko on Sy U Ty
ja kaarien joukko Fy siten, ettd Sy:n alkiosta ei ole koskaan kaarta Sy:n al-

kioon eikd T:n alkiosta koskaan kaarta 7n:n alkioon. Joukon Sy alkioita
kutsutaan paikoiksi ja joukon T alkioita transitioiksi.

(ii) Ky on funktio, joka kuvaa Sy:n alkiot ddrettomalld tdydennetylle ei-nega-
tiivisten kokonaislukujen joukolle. Jos s on paikka, niin Ky(s):44 sanotaan
paikan s kapasiteetiksi.

(iii) My on funktio, joka kuvaa Sy:n alkiot ddrettomélld tdydennetylle ei-negatii-
visten kokonaislukujen joukolle siten, etta

Vse Sy MN(S)SKN(S). (2)

49

Mp:aa kutsutaan verkon alkumerkinnaksi.

(iv) Wy on funktio, joka kuvaa Fy:n alkiot positiivisille kokonaisluvuille. Jos f on
kaari, niin Wy (f):44 kutsutaan kaaren f painoksi.

7.1.2 P/T-verkon merkinnit. Saavutettavuus

Léhteessd [8] annetun mééritelmén mukaan funktio M joukolta Sy Adrettomalla
taydennetylle ei-negatiivisten kokonaislukujen joukolle on P/T-verkon N merkinta,
jos ja vain jos

VseSy M(S)SKN(S) (3)

P /T-verkon merkint6jen yhteydessi on tapana puhua merkeistd. Jos M on mer-
kinta ja s paikka, niin sanotaan ettd verkon merkinnan M vallitessa on paikassa s
M (s) merkkia.

Jos t on transitio, niin l&hteessé [8] annetun mééritelméan mukaan joukko -¢ on niiden
paikkojen joukko, joista on kaaria t:hen. Vastaavasti ¢- on niiden paikkojen joukko,
joihin %:sta on kaaria.

Olkoon M P/T-verkon N merkintd. Verkon N transitio ¢ on lihteessd [8] annetun
maaritelman mukaan M-vireessa, jos ja vain jos

Vse-tM(s)>Wy(s,t)jaVs et M(s') < Kn(s') — Wnl(t,s). (4)

P/T-verkon N merkinnéssi M on lahteessé [8] annetun maaritelmén mukaan verkon
transitioon t liittyva kontakti, jos ja vain jos

VsetM(s)>Wy(s,t)jads et M(s") > Kn(s') — Wy(t,s'). (5)

Jos M on P/T-verkon N merkintd ja verkon N transitio ¢ on M-vireessi, niin
M:n seuraajamerkintd transitioon ¢ liittyen on M’ joka madritelladn lahteen [8]
mukaisesti:

M(s) + Wy(t,s) — Wy(s,t) , josja vain jos s € -t Nt-

M'(s) = M(s) + Wy(t,s) , josjavainjosse€t-—-t (6)
M(s) — Wy(s,t) , jos ja vain jos s € -t — t-
M(s) , muulloin.

a0

Talloin on tapana sanoa, ettd merkinnésta M péadstddn merkintddn M’ laukaisemal-
la transitio t. Lyhennysmerkinta asialle on

Mt > M. (7)

Merkinté M’ on saavutettavissa merkinnastad M, jos ja vain jos

M' = M tai
Htl,...,tn ETNHMl,...,Mn_H (8)
(M1 IM_]a Mn—l—l =M ja

VEke {1, .. .,n} Mk[tk > Mk—|—1)-

P/T-verkon N saavutettavuusgraafi on suunnattu graafi, jonka solmuina ovat kaik-
ki N:n alkumerkinnésta My saavutettavissa olevat merkinnédt. Solmusta M on
solmuun M’ kaari, jos ja vain jos on olemassa t siten, ettd M[t > M'. Jos M[t > M’
useammalle kuin yhdelle ¢, niin jokaista tallaista ¢ kohti on oma kaari.

P /T-verkko on rajoitettu, jos ja vain jos minké&én paikan merkkimaéra ei voi kasvaa
rajatta. Selvastikin saavutettavuusgraafi on adrellinen, jos ja vain jos verkko on
rajoitettu.

Suunnatun graafin G aligraafi g on vahvasti kytketty, jos ja vain jos g:n jokaisesta
solmusta on ¢:ssd polku ¢g:n jokaiseen muuhun solmuun eika ole olemassa ¢:sta ero-
avaa G:n aligraafia ¢’ siten, etti g olisi g":n aligraafi ja ¢’:n jokaisesta solmusta olisi
¢':ssa polku ¢':n jokaiseen muuhun solmuun. Graafin G vahvasti kytkettya aligraa-
fia kutsutaan G:n vahvasti kytketyksi komponentiksi. Selvéstikin graafin G solmu
kuuluu aina yhteen ja vain yhteen G:n vahvasti kytkettyyn komponenttiin.

P /T-verkko on syklinen, jos ja vain jos sen saavutettavuusgraafi on vahvasti kytket-
ty ja graafin jokaisella solmulla on seuraaja. (Jalkimmainen ehto on ei-redundantti,
jos ja vain jos saavutettavuusgraafissa on yksi ja vain yksi solmu.)

P/T-verkko on léhteessd [8] annetun méadritelmdn mukaan eldvi, jos ja vain jos
jokaiselle transitiolle ¢ ja jokaiselle alkumerkinnasta saavutettavissa olevalle merkin-
nalle M on olemassa merkintd M’ siten, ettd M’ on saavutettavissa M:sté ja t on
M'-vireessa.

Vaikka P/T-verkko olisi syklinen ja rajoitettu, se ei vélttdmatta ole elava, silld on
mahdollista, ettd jokin transitio ei ole minkaan saavutettavissa olevan merkinnan
kohdalla vireessa, ja silti jokaisesta saavutettavissa olevasta merkinnasta paastaan

o1

jokaiseen saavutettavissa olevaan merkintaan. Jos jokaiselle transitiolle on olemassa
alkumerkinnasta saavutettavissa oleva merkinta, jossa ko. transitio on vireessa, niin
syklisyydestd seuraa eldvyys, silld syklisen P/T-verkon kyseessd ollessa elavyyden
madritelmassa oleville ¢ ja M 16ydetddn ko. maéritelman mukainen M’ valitsemalla
M':ksi mika tahansa sellainen alkumerkinnésté saavutettavissa oleva merkinté, jossa
t on vireessi. Lihde [8] tarjoaa esimerkin P/T-verkosta, joka on eldvi ja rajoitettu
muttei syklinen.

P/T-verkko N on kontaktillinen, jos ja vain jos jossakin N:n alkumerkinnésta saavu-
tettavissa olevassa merkinnéssa on johonkin transitioon liittyva kontakti. Muussa
tapauksessa N on kontaktiton. Jos verkko N on kontaktiton ja verkko N’ eroaa
N:sté korkeintaan siten, ettd N':ssa joillakin tai vaikkapa kaikilla paikoilla on suu-
remmat kapasiteetit kuin N:ssi, niin N:n ja N':n saavutettavuusgraafit ovat samat.

7.1.3 P/T-verkkojen lineaarialgebrallinen esittdminen

Olkoon N P/T-verkko, Sy = {s1,...,8n}, ja M jokin N:n merkintd. M voidaan
tulkita vektoriksi (M (s1)... M(s,))T. Vektorit ovat matriiseja, ja matriisit maéri-
telladn matematiikassa usein funktioiksi.

P/T-verkon N insidenssimatriisi Cy on l&hteessi [8] annetun médritelmin mukaan
funktio Sy:n ja Tx:n karteesiselta tulolta kokonaisluvuille siten, ettd vaakarivit vas-
taavat paikkoja ja pystyrivit transitioita ja kaikille paikoille s ja kaikille transitioille
t patee

Wn(t,s) — Wn(s,t) , josja vain jos s € -t Nt

) Wh(t,s) , josjavainjosse€t-—-t
On(s:t) = —Wh(s,t) , jos ja vain jos s € -t — t- (9)
0 , muulloin.

7.1.4 S-invariantit

Olkoon N P/T-verkko ja i funktio, joka kuvaa Sy:n alkiot kokonaisluvuille. L&h-
teessd [8] annetun méadritelman mukaan ¢ on N:n S-invariantti, jos ja vain jos

Cri=o0, (10)

missa 7:lle on annettu samanlainen vektoritulkinta kuin verkon merkinnéille edella.

92

Selvastikin S-invarianttien kokonaislukukertoiminen lineaarikombinaatio on aina myés
S-invariantti. Lahteessé [8] on osoitettu, ettd jos ¢ on N:n S-invariantti, niin

T, T
M"i= Myi, (11)

oli M mika tahansa alkumerkinnasta My saavutettavissa oleva merkinta. Kutsun

tatd ominaisuutta sisdtuloinvarianssiominaisuudeksi.

S-invarianttia ¢ sanotaan positiiviseksi, jos ja vain jos i:n mikadn komponentti ei ole

negatiivinen ja vahintaén yksi 4:n komponentti on positiivinen.

P/T-verkkoa sanotaan lihteessd [8] annetun médritelmdn mukaan S-invarianttien
peittamaksi, jos ja vain jos jokaista paikkaa s kohti on olemassa positiivinen S-in-
variantti ¢ siten, ettd i(s) > 0.

Koska S-invarianttien kokonaislukukertoiminen lineaarikombinaatio on S-invariant-
ti, niin helposti todetaan, etta verkko on S-invarianttien peittama, jos ja vain jos
on olemassa sellainen S-invariantti, jonka kaikki komponentit ovat positiivisia. S-
invarianttien sisatuloinvarianssiominaisuuden perusteella on selvaa, etta S-invari-
anttien peittdma P/T-verkko on rajoitettu.

7.1.5 T-invariantit

Olkoon N P/T-verkko ja i funktio, joka kuvaa Tn:mn alkiot kokonaisluvuille. L&h-
teessd [8] annetun madritelman mukaan ¢ on N:n T-invariantti, jos ja vain jos

Cyi =0, (12)
missa 7:1le on annettu luontainen vektoritulkinta.

Selvistikin T-invarianttien kokonaislukukertoiminen lineaarikombinaatio on aina
myos T-invariantti.

T-invarianttia ¢+ sanotaan positiiviseksi, jos ja vain jos i:n mikdan komponentti ei
ole negatiivinen ja vahintaan yksi ¢:n komponentti on positiivinen.

P/T-verkkoa sanotaan lihteessé [8] annetun miiritelméan mukaan T-invarianttien

peittamaksi, jos ja vain jos jokaista transitiota ¢ kohti on olemassa positiivinen T-
invariantti ¢ siten, ettd i(¢) > 0.

Koska T-invarianttien kokonaislukukertoiminen lineaarikombinaatio on T-invariant-
ti, niin helposti todetaan, etta verkko on T-invarianttien peittama, jos ja vain jos
on olemassa sellainen T-invariantti, jonka kaikki komponentit ovat positiivisia.

23

N:n positiivinen T-invariantti ¢ on ldhteessd [8] annetun méaaritelmén mukaan to-
teutuva, jos ja vain jos

b, 0t €Ty I My,..., My
(M, on saavutettavissa My: sté ja
Vke {1,...,77,} Mk[ik >Mk_|_1 ja
VieTni(t)={j : 1<j<njat;=t}|).

(13)

Léhteessd [8] on osoitettu, ettd P/T-verkon saavutettavuusgraafin jokaista silmuk-
kaa x vastaa jokin T-invariantti, joka on toteutuva siten, ettd x on toteutuvuuden
méédritelmassa vaadittu polku. Lahteessd [8] on osoitettu myds, ettd jokainen eldava
ja rajoitettu P/T-verkko on T-invarianttien peittama.

7.1.6 P /T-verkkojen graafinen esittdminen

P /T-verkkoja on yleensd helpointa tarkastella johonkin merkintdén liittyvina graa-
fisina esityksina. Kuvaan seuraavassa sita esitystapaa, jota omissa esimerkeissani
kaytan.

Paikat piirretddn ympyrdind, transitiot suorakaiteina ja kaaret nuolina. Ykkosta
suurempi tai symbolisella vakiolla ilmaistu kaaripaino kirjoitetaan nakyviin kaaren
viereen. Kapasiteetteja ei laiteta mukaan piirrokseen, vaan ne kerrotaan verkkoa
kasittelevassa tekstissa. Verkon merkinta ilmaistaan piirtamalla merkit mustina
taplina paikkoja kuvaavien ympyroiden sisaan.

7.2 Prena

Prena on TKK:n digitaalitekniikan laboratoriossa kehitetty predikaatti-transitio-
verkkojen saavutettavuusanalysaattori. Prenalla voi tuottaa méérittelemélleen Pr/T-
verkolle saavutettavuusgraafin sekd kyselld monia saavutettavuusgraafiin liittyvia
asioita.

Kiytannollisesti katsoen P/ T-verkot eivit ole mitddn muuta kuin tietylld tavalla ra-
joittuneita Pr/T-verkkoja. N&in ollen Prenalla voi aivan hyvin analysoida puhtaita
P /T-verkkoja.

Prenaa on kuvattu tarkemmin ldhteessi [5].

o4

7.3 Modestin ja Simnonin valisen vastakeyhteyden muo-
dostamisen analysointi

7.3.1 Modestin ja Simnonin valisen vastakeyhteyden muodostamista mal-
littava P /T-verkko

Tarkastellaan kuvan 1 P/T-verkkoa. Kuvaan on piirretty alkumerkintd. Kaikkien
paikkojen kapasiteetit ovat ddrettomia.

Kutakin transitiota vastaa tapahtuma. Transitioita vastaavat tapahtumat ovat:
t1 : Modest kutsuu funktioita socket(), bind() ja listen(), tdssa jarjestyksessi.
to : Simnon kutsuu funktiota socket().
ts : Modest kutsuu funktiota accept().
t4 : Simnon kutsuu funktiota connect().
t5 : Modestin accept-kutsu osoittautuu tuloksettomaksi.
ts : Simnonin connect-kutsu osoittautuu tuloksettomaksi.
t7 : Modest ei luovuta, vaan yrittaa uudelleen yhteyden muodostamista.
tg : Simnon ei luovuta, vaan yrittaa uudelleen yhteyden muodostamista.
tg : Yhteys Modestin ja Simnonin vélille muodostuu.

t10 : Modestin tekemaéstia socket-kutsusta on kulunut tasan 30 sekuntia.

t11 : Simnonin tekemastd socket-kutsusta on kulunut tasan 30 sekuntia.

Kutakin paikkaa vastaa ehto, joka on voimassa, jos ja vain jos ko. paikassa on
merkki. Paikkoja vastaavat ehdot ovat:

p1 : Modest on yhteyden muodostamisen kannalta alkutilassa.
p2 : Simnon on yhteyden muodostamisen kannalta alkutilassa.

p3 : Modest on valmis kutsumaan funktiota accept().

95

y4 D2

th tl t2 tll
P11 Pp3 Pa P12
1t ta []

Kuva 1: Modestin ja Simnonin valisen vastakeyhteyden muodostamista mallittava
P /T-verkko

26

Pa:

Ps -

Ds -

b7

DPs -

Do :

P1o -

P11 :

D12 :

Simnon on valmis kutsumaan funktiota connect().

Modest on juuri kutsunut funktiota accept() ja odottaa jonkin muun prosessin
connect-kutsua.

Simnon on juuri kutsunut funktiota connect() ja odottaa jonkin muun proses-
sin accept-kutsua.

Modest on juuri epaonnistunut yhteyden muodostamisessa.
Simnon on juuri epdonnistunut yhteyden muodostamisessa.
Modest voi lahettdd Simnonille tietoa tai vastaanottaa Simnonilta tietoa.
Simnon voi lahettad Modestille tietoa tai vastaanottaa Modestilta tietoa.

Modestin tekemista socket-kutsusta on kulunut korkeintaan 30 sekuntia. (Tés-
sa kohtaa on syyta muistaa, etta transition vireessaoloehdot ovat vain valtta-
méttémid ehtoja transition laukeamiselle. P/T-verkossa ei voida antaa riitta-
via ehtoja transition laukeamiselle, ts. transitiota ei voida pakottaa laukea-
maan.)

Simnonin tekemasta socket-kutsusta on kulunut korkeintaan 30 sekuntia.

Olkoon esimerkin P/T-verkko N. Insidenssimatriisi Cy, alkumerkintévektori My,
S-invarianttien kantavektorit ja T-invarianttien kantavektorit on esitetty kuvassa 2.
11, 1 ja i3 ovat S-invarianttien kantavektorit, j; ja jo puolestaan T-invarianttien
kantavektorit.

7.3.2 S-invariantti-analyysi

Verkon N S-invariantit olen ratkaissut kynéa ja paperia kdyttaen yhtélosta CLy = O.
Ko. yhtalon ratkaisu on y = o111 + 0919 + 03t3, missa 01, 09 ja o3 ovat mita tahansa
kokonaislukuja ja i1, 7o ja i3 ovat kuvassa 2 esitetyt kantavektorit.

Verkko N ei ole S-invarianttien peittdmaé, koska kaikissa S-invarianteissa paikkoihin
P11 ja pio liityvat komponentit ovat nollia.

o7

13

&

g1

to 13 ty ts te 1ty tg tg Lo tin

t

Cn

y4!

D2

Ps3

P4

Dbs

Ds

pr

yZ3

P9
P1o

P11

P12

J

J2

Kuva 2: Modestin ja Simnonin vilisen vastakeyhteyden muodostamista mallittavan
P /T-verkon insidenssimatriisi, alkumerkintévektori, S-invarianttien kantavektorit ja

T-invarianttien kantavektorit

28

Olkoon M mika tahansa /N:n alkumerkinnasta My saavutettavissa oleva merkinté.
Invariantin ¢; sisdtuloinvarianssiominaisuuden perusteella

M (p1) + M(ps3) + M (ps) + M (p7) + M (p1o)

14
= My(p1) + My(ps) + My(ps) + M(pr) + My(pro) =1. Y
Invariantin i9 sisdtuloinvarianssiominaisuuden perusteella
M (p2) + M (ps) + M (ps) + M (pg) + M (p1o) (15)
= Mny(p2) + My(ps) + Mn(ps) + My(ps) + My (p1o) = 1.
Invariantin i3 sisatuloinvarianssiominaisuuden perusteella
M (py) — M (p10) = Mn(pe) — Mn(p10) = 0. (16)
Naista tuloksista on suoraan nahtavissi, ettd missaan paikoista py, ..., p1g €l voi olla
kerralla enempéad kuin yksi merkki. Toisaalta ndhdaan, etta paikoissa pq,...,p1o on

yhteensa aina tasmalleen kaksi merkkia. Jos pg tai pig ei ole tyhja, niin ko. merkit
ovat pg:ssa ja pig:ssa. Jos pg ja pip ovat tyhjia, niin toinen merkeista on jossakin
paikoista p1, ps, ps ja pr ja toinen jossakin paikoista po, pa, pe ja ps.

Saadut tulokset osoittavat, ettd paikoille py,...,pi;o annetut tulkinnat ovat kes-
kenddn konsistentteja. Paikoista pi; ja p1o S-invariantti-analyysi ei kerro mitaéan.

7.3.3 T-invariantti-analyysi

Verkon N T-invariantit olen ratkaissut kynaé ja paperia kayttaen yhtalosta Cyy = O.
Ko. yhtalon ratkaisu on y = 71j1 + 77J2, missa 7; ja 7o ovat mita tahansa kokonais-
lukuja ja j; ja jo ovat kuvassa 2 esitetyt kantavektorit.

Verkko N ei ole T-invarianttien peittama, koska esimerkiksi transitiota ¢; vastaava
komponentti on nolla jokaisessa T-invariantissa. N ei ole elava, silla jos N olisi
eldva, niin N olisi T-invarianttien peittdmé, koska N on rajoitettu. (Sen, ettd N on
rajoitettu, osoittaa saavutettavuusanalyysi, ks. osio 7.3.4.)

Selvistikin N:n T-invariantti y = 71j; + 79J2 on positiivinen, jos ja vain jos 71 ja T
ovat ei-negatiivisia ja ainakin toinen 7y:sta ja 7o:sta on positiivinen.

Jokainen N:n positiivinen T-invariantti on toteutuva, koska alkumerkinnasta paas-
tadn transitiosekvenssilla £1t5 merkintdan, jossa ps:ssa, ps:Ssd, pi1:SSd ja pig:ssa on

99

merkki ja joka on saavutettavissa itsestdan muun muassa sellaisella transitiosek-
venssilla, jossa esiintyy 7y kertaa alisekvenssi t3tst; ja 7o kertaa alisekvenssi t4tgts,
kun 7, ja 7 ovat ei-negatiisia ja ainakin toinen 7y:sta ja 7y:sta on positiivinen.

7.3.4 Saavutettavuusanalyysi

Invarianttianalyysi on erdanlaista saavutettavuusanalyysia, jossa savvutettavuusg-
raafia ei muodosteta. Varsinaisessa saavutettavuusanalyysissd muodostetaan saa-
vutettavuusgraafi. Liitteessd 1 on Prenalla tuotettu saavutettavuusgraafi verkolle
N.

Saavutettavuusgraafin tilastotiedot kertovat, ettd graafissa ei ole kontakteja (over-
flow). Tama tulos kertoo, ettd Prenalle annetussa verkkokuvauksessa tehty kapasi-
teettien valinta on taysin sopiva, vaikka /N:n maaritelman mukaan kaikki kapasiteetit
ovat adrettomia. Tulos vahvistaa myds sen, ettd N on rajoitettu.

Kuolleita paikkoja ei ole, toisin sanoen ei ole sellaisia paikkoja, joiden merkkimaara
olisi nolla kaikissa saavutettavuusgraafin solmuissa.

Kuolleita transitioita ei ole, toisin sanoen ei ole sellaista transitiota, joka ei olisi
vireessd missaan saavutettavuusgraafin solmussa.

Graafissa on kaksi lukkiutumaa. Toinen lukkiutumista on merkinta, jossa paikoissa
P9 ja p1o on kummassakin yksi merkki eikd muissa paikoissa ole merkkeja. Tama
lukkiutuma on toivottu lopputila, silla kyseisessa tilassa yhteys on valmis. Toinen
lukkiutumista on puolestaan merkinté, jossa paikoissa p7 ja pg on kummassakin yksi
merkki eika muissa paikoissa ole merkkeja. Tama lukkiutuma on se lopputila, johon
pitaakin paatya silloin, jos yhteytta ei saada aikaiseksi 30 sekunnin kuluessa siita,
kun ensimmainen prosesseista tekee socket-kutsun.

Graafissa on perati 29 vahvasti kytkettya komponentteja. Mukana on paitsi yksisol-
muisia myos monisolmuisia vahvasti kytkettyja komponentteja. Monisolmuiset vah-
vasti kytketyt komponentit ovat ongelmallisia, silld ne antavat periaatteessa mah-
dollisuuden siihen, ettd kumpaankaan edelld mainituista lopputiloista ei paasta kos-
kaan.

Elolukkoja ei ole. (Elolukko on vapaa suomennos termille livelock.) Prenassa elolu-
kolla tarkoitetaan sellaista saavutettavuusgraafin vahvasti kytkettya komponenttia,
jonka solmuista ei ole mahdollista paasta muihin kuin komponentin omiin solmuihin
ja joka ei kuitenkaan ole lukkiutuma eiké koko saavutettavuusgraafi. Tassa luvussa

60

kaytan sanaa elolukko tassa merkityksessa.

Olettakaamme, ettd mikaan transitio ei voi olla pysyvésti vireessd koskaan laukea-
matta. Talloin kumpikin transitioista ¢ ja to laukeavat joskus. Transition t; laukea-
minen virittaa transition ¢;y. Transition ¢ laukeaminen virittaa transition ¢1;. Kun
transitio £15 on kerran virittynyt, virityneisyytta ei poista mikaan muu tapahtuma
kuin t;p:n laukeaminen. Vastaava tulos patee tii:lle. Transitiot 1y ja £;; laukea-
vat siis joskus. Saavutettavuusgraafista ndhdaan, ettd paikassa pi; ei ole koskaan
enempéd kuin yksi merkki. Sama tulos patee paikalle pio. Valttamatta paadytaan
siis tilaan, jossa yhdessdkdan paikoista pi, ps, pi11 ja pi2 ei ole merkkid. S-invari-
antti-analyysin tulosten perusteella kyseisessa tilassa verkossa on tasmalleen kaksi
merkkia, joista toinen on jossakin paikoista ps, ps, p7 ja pg ja toinen jossakin paikois-
ta pa, Pe, Ps ja p1o- Paikkoihin pi; ja pio ei mikaan transitoiden laukeamissekvenssi
tuo endd merkkeja, joten transitoita t; ja tg ei saada endd vireeseen. Saadut tulokset
yvhdessa sen olettamuksen kanssa, etta mikaan transitio ei voi olla pysyvasti vireessa
koskaan laukematta, merkitsevat sita, etta valttamatta paadytaan jompaankum-
paan jarjestelman kahdesta lukkiutumasta, jotka siis aiemmin todettiin korrekteiksi
lopputiloiksi.

7.4 Simulointitulosten valittamisen analysointi
7.4.1 Simulointitulosten vilittdmistd mallittava P /T-verkko

Tarkastellaan kuvan 3 P/T-verkkoa. Kuvaan on piirretty alkumerkintd. Kaikkien
paikkojen kapasiteetit ovat aarettomia.

n on yhden simuloinnin aikana Simnonilta Modestille kulkevan tiedon maara ta-
vuina. k£ on se madra tavuja, mikd vastakkeeseen kerrallaan enimmillddn mahtuu.
UNIX-kohdealueen vastakkeen tapauksessa yleensa k > n, mutta Internet-kohdea-
lueen vastakkeen tapauksessa voi olla my6s mahdollista k& < n. (Olen toteuttanut
Modest-Simnon- liitdnnén niin, ettd tapaus k£ < n ei aiheuta vaikeuksia.)

Kutakin transitiota vastaa tapahtuma. Transitioita vastaavat tapahtumat:
t1 : Modest ldhettda Simnonille SIMU-komennon.

to : Simnon kirjoittaa yhden tavun vastakkeeseen. Jokaista Simnonin suorittamaa
atomista kirjoitusoperaatiota esittaa sarja perakkaisia transition ¢, laukea-
misia.

61

Kuva 3: Simulointitulosten valittdmistd mallittava P/T-verkko. Paikassa ps on k
merkkia.

t3 : Modest lukee yhden tavun vastakkeesta. Jokaista Modestin suorittamaa ato-
mista lukuoperaatiota esittaa sarja perakkaisia transition t3 laukeamisia.

t4 : Modest jatkaa laskentaansa saatuaan kaikki simulointitulokset.

Transitiot t, ja t3 mallittavat tavuvirtaa. Write-kutsulla kirjoitettujen ja read-kut-
sulla luettujen palasten ei tarvitse olla yksitellen samoja, vaan riittaa, etta vastaano-
tettujen tavujen maara on sama kuin lahetettyjen tavujen maara. Tiedon jarjestyk-
sen sailyminen on selvaa, koska kaytossa on virtavastake. Kuvan 3 verkossa tiedon
jarjestyksen sailymista ei edes malliteta.

Paikkojen tulkinnat:
p1 : Modest on valmis antamaan SIMU-komennon, jos ja vain jos p;:ssid on merkki.
p2 ¢ Simnonilla on yhtd monta tavua kirjoittamatta kuin py:ssa on merkkeja.
p3 : Modest on lukenut yhta monta tavua kuin p3:ssa on merkkeja.

ps - Vastakkeessa on yhta monta tavua tietoa kuin p,:ssi on merkkeja.

62

CN tl tg t3 t4 MN 7:1 i2
P | —1 0 0 1 1(n 0
Do n —1 0 0 01 0
D3 0 0 1 —-n 0|1 0
p| O 1 -1 0| 0|1 1
D5 0 -1 1 0 k|0 1

] 1 n on 1

Kuva 4: Simulointitulosten vélittimistd mallittavan P/T-verkon insidenssimatriisi,
alkumerkintavektori, S-invarianttien kantavektorit ja T-invarianttien kantavektorit

ps - Vastakkeessa on vapaata tilaa yhta monta tavua kuin ps:ssi on merkkeja.

Olkoon esimerkin P/T-verkko N. Insidenssimatriisi Cy, alkumerkintévektori My,
S-invarianttien kantavektorit ja T-invarianttien kantavektorit on esitetty kuvassa 4.
11 ja 1o ovat S-invarianttien kantavektorit, j puolestaan T-invarianttien kantavektori.

7.4.2 S-invariantti-analyysi

Verkon N S-invariantit olen ratkaissut kynia ja paperia kiyttiaen yhtélosta Chy = O.
Ko. yhtalon ratkaisu on y = 017 + 0919, missa o1 ja 0y ovat mita tahansa kokonais-
lukuja ja i1 ja 7o ovat kuvassa 4 esitetyt kantavektorit.

Verkko N on S-invarianttien peittdma, silla S-invariantin 71 + 4o kaikki komponentit
ovat positiivisia. /N on siis rajoitettu.

Olkoon M mika tahansa N:n alkumerkinnastad My saavutettavissa oleva merkinta.
Invariantin ¢; sisdtuloinvarianssiominaisuuden perusteella

nM(p1) + M(p2) + M(ps) + M(ps)
= nMp(p1) + Mn(p2) + Mn(p3) + Mn(ps) = n.

pi:lle, po:lle, p3:lle, py:lle ja n:lle annetut tulkinnat ovat siis keskenéén konsistentteja.
Lisdksi todetaan, ettd M(p;) < 1, M(ps) < n, M(p3) < nja M(py) < n.

(17)

Invariantin 7o sisdtuloinvarianssiominaisuuden perusteella

M (ps) + M(ps) = My(ps) + Mn(ps) = k. (18)

psaille, ps:lle ja k:lle annetut tulkinnat ovat siis keskenaan konsistentteja. Lisaksi
todetaan, ettd M(ps) < k ja M(ps) < k.

63

7.4.3 T-invariantti-analyysi

Verkon N T-invariantit olen ratkaissut kynaé ja paperia kayttaen yhtalosta Cyy = O.
Ko. yhtalon ratkaisu on y = 75, missa 7 on mika tahansa kokonaisluku ja j on ku-
vassa 4 esitetty kantavektori.

Verkko N on T-invarianttien peittama, silla T-invariantin j kaikki komponentit ovat
positiivisia. /NV:n pitaakin olla T-invarianttien peittama, koska /V selvastikin on elava
ja N on edella todettu rajoitetuksi.

j on toteutuva, silla mika tahansa alkumerkinnasta saavutettavissa oleva merkinta
on saavutettavissa itsestaan sellaisella transitiosekvenssilla, jossa ¢; esiintyy kerran,
to n kertaa, t3 n kertaa ja t4 kerran. Koska kaikki N:n T-invariantit ovat j:n ker-
rannaisia, niin todetaan, ettd kaikki /N:n positiiviset T-invariantit ovat toteutuvia.

Koska verkon N saavutettavuusgraafin jokaista silmukkaa valttamatta vastaa jo-
kin toteutuva T-invariantti, niin todetaan, ettd mikéain tila ei ole saavutettavissa
itsestdan muuten kuin sellaisella transitiosekvenssilla, jossa t; esiintyy kerran, t5 n
kertaa, t3 n kertaa ja t4 kerran. Minkaanlaisia jarjestelman toiminnan tuloksellisuu-
den kannalta hyodyttomia silmukoita saavutettavuusgraafissa ei siis ole.

7.4.4 Saavutettavuusanalyysi

Liitteessa 2 on Prenalla tuotettu saavutettavuusgraafi verkolle N kun n ja k on kiin-
nitetty. Luvut ovat tietenkin aivan vaarad suuruusluokkaa mutta analyysin kannalta
taysin edustavia. Valitsin tarkoituksellisesti n:n ja k:n siten, etta £ > 1 ja n > 2k.

Saavutettavuusgraafin tilastotiedot kertovat, etta graafissa ei ole kontakteja. Pre-
nalle annetussa verkkokuvauksessa tehty kapasiteettien valinta on siten taysin sopi-
va, vaikka N:n maaritelman mukaan kaikki kapasiteetit ovat aarettomia.

Lukkiutumia, elolukkoja, kuolleita paikkoja tai kuolleita transitioita ei ole.

Vahvasti kytkettyja komponentteja on vain yksi. Saavutettavuusgraafi on siis vah-
vasti kytketty, mista seuraa verkon N syklisyys, koska saavutettavuusgraafissa sol-
muja on enemman kuin yksi. N:n elavyys seuraa siita, etta N on syklinen ja N:ssa
ei ole kuolleita transitioita.

Syklisyys, elavyys ja se T-invariantti-analyysin osoittama tulos, ettd kaikki esiinty-
vat silmukat ovat jarjestelman toiminnan tuloksellisuuden kannalta toisiinsa verrat-

64

tuna yhta hyodyllisia, merkitsevat yhdessa sita, etta kyseessa oleva jarjestelman osa
toimii aina ehdottoman tarkoituksenmukaisesti.

65

8 Yhteenveto

Tamaéan tyon tavoitteena oli luoda estimointiohjelma Modestin ja simulointiohjelma
Simnonin valille sellainen yhteys, etta Modestin kasittelemat ongelmat voitaisiin
kuvata Simnonin korkeatasoisella kuvauskielella ja ettd Modest voisi laskennassaan
kayttaa Simnonia mahdollisimman taysimittaisesti hyvakseen. Yhden estimointi-
tehtdvan suorittaminen sisaltda yleensd runsaasti simulointia, joten simulointioh-
jelman kdyttdminen estimointiohjelman palvelijana on luontevaa. Simnon tarjoaa
mahdollisuuden maaritella malleja modulaarisesti. Vastaavaa mahdollisuutta ei ole
vanhassa FORTRAN-malleja kayttaviassa Modestissa. Simnon-kielisista jatkuvista
ja diskreeteista systeemeista voidaan koota monia sellaisia malleja, jotka eivat ole
kuvattavissa vanhassa perus-Modestissa.

Tyon tuloksena syntyi UNIX-ymparistossa toimiva Modest-versio, jonka oleellisena
osana on Modest-Simnon-liitanté.

Modest-Simnon-liitdnnan toteutin UNIXissa prosessien vilisen kommunikoinnin kei-
noin. Simnonin lahdetiedostot olivat kaupallisesti suojattuja, eikd Simnoniin liitty-
vien lupien ostamista katsottu aiheelliseksi ainakaan ennen kuin mahdollisimman
tehokas prosessien valiseen kommunikointiin perustuva liitanta olisi valmis.

Lukuisista tarjolla olleista UNIXIN prosessien vilisen kommunikoinnin mekanismeis-
ta valitsin UNIX-kohdealueen virtavastakkeet. (Vastake on vapaa suomennos ter-
mille socket.) Ratkaisevia tekij6itd valinnassa oli kolme:

1) Komentojen vélittdminen Simnonin standardisy6tevirtaan vaati kdytdnnossa
joko putkien tai vastakkeiden kayttoa.

2) Suorittamani vertailu osoitti Modest-ajon keston olevan, sydteaineistosta riip-
pumatta, UNIX-kohdealueen virtavastakkeita kiytettaessa saman kuin nimet-
tyja putkia kaytettaessa tai viestijonoja yhdessd UNIX-kohdealueen virtavas-
takkeiden kanssa kaytettaessa.

3) Jos Modest-Simnon-liitdnta joskus hajautettaisiin, silloin mitd todennékdisim-
min tultaisiin kayttdméaan vastakkeita.

Tyon suurimmat ongelmat koskivat kokonaislaskennan nopeutta. Simnoniin liite-

tyn ulkoisen systeemin avulla sain ratkaistua nopeusongelman karkealla tasolla. Ul-
koinen systeemi kirjoittaa Simnonin laskemat simulointitulokset vastakkeeseen suo-

66

raan binaarimuodossa. Interpoloinnin kdyttoonotto paransi viela jonkin verran ko-
konaislaskennan nopeutta. Simnon laskee simulointitulokset valitsemissaan pisteis-
sa. Ulkoinen systeemi valittaa Modestille tietyn maaran simulointituloksia, joi-
den perusteella Modest laskee tulokset niissa pisteissa, joiden tuloksia Modest var-
sinaisesti tarvitsee. Simnonia kayttava Modest suoriutuu tehtavastaan keskimaarin
kaksi kertaa niin pitkassa ajassa kuin samaa tehtavaa suorittava Simnonia kaytta-
maton Modest. Kaytannossa tama merkitsee tyypillisesti esimerkiksi kahta minuut-
tia yhden minuutin sijasta.

Liitannan toimivuuden osoittamiseksi analysoin kahta keskeista kommunikointivai-
hetta, vastakeyhteyden muodostaminen ja simulointitulosten vélittdminen, P/T-
verkkojen avulla. Kumpaakin em. vaihetta mallitin omalla P/T-verkollaan. Jos
liitanta ajatellaan jarjestelmaksi, eri kommunikointivaiheet edustavat ko. jarjestel-
mén osia. S-invariantti-analyysi osoitti, ettei P/T-verkoilla mallittamissani jirjes-
telmén osissa esiinny kiellettyja tiloja. T-invariantti-analyysi naytti, millaisilla ta-
pahtumasekvensseilla mallittamieni jarjestelman osien jokin tila on saavutettavissa
itsestdan. Saavutettavuusanalyysi osoitti, ettei mallittamissani jarjestelmén osis-
sa ole lukkiutumia, jos korrekteja lopputiloja ei lasketa mukaan. Vastakeyhteyden
muodostamisessa korrekteja lopputiloja oli olemassa ja saavutettavuusanalyysi S-
invarianttianalyysin tukemana osoitti, ettd johonkin korrekteista lopputiloista aina
lopulta paastdaan, jos oletetaan, ettd mikaan transitio ei voi olla pysyvasti virees-
si koskaan laukeamatta. Simulointitulosten vilittdmistd mallittaneen P/T-verkon
saavutettavuusanalyysi ja T-invariantti-analyysi puolestaan yhdessa osoittivat, etta
kaikki saavutettavissa olevat tilat ovat saavutettavissa toisistaan ja etta kyseessa
oleva jarjestelméan osa toimii aina ehdottoman tarkoituksenmukaisesti.

Uusi Modest otettaneen Kemira Oy:n Espoon tutkimuskeskuksessa kayttoon heti,
kun tarvittava UNIX-kone on sinne saatu.

67

Lahdeluettelo

[1] Bach, M. J., The Design of the UNIX Operating System. Prentice Hall, Eng-
lewood Cliffs, New Jersey, 1986, 471 s.

[2] Ben-Ari, M., Principles of Concurrent and Distributed Programming. Prentice
Hall, New York, 1990, 225 s.

[3] Haario, H., Epdlineaarinen regressio. INSKO 40-91 VIII, Helsinki, 1991, 11 s.

[4] Kahaner, D., Moler, C. & Nash, S., Numerical Methods and Software. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, 495 s.

[5] Leszak, M. & Eggert, H., Petri-Netz-Methoden und -Werkzeuge. Hilfsmittel zur
Entwerkungsspezifikation und -validation von Rechensystemen. Springer-Verlag,
Berlin, 1989, 254 s.

[6] NetIPC Programmer’s Guide, HP 9000 Series 300 and 800. Hewlett-Packard
Company, Fort Collins, Connecticut, January 1989.

[7] Peterson, J. L. & Silberschatz, A., Operating System Concepts. Addison-Wesley,
Reading, Massachusetts, 1985, 625 s.

[8] Reisig, W., Petri Nets. Springer-Verlag, Berlin, 1985, 161 s.

[9] SCO UNIX System V, Development System, Programmer’s Reference. The San-
ta Cruz Operation, Inc., Santa Cruz, California, 1989.

[10] Simnon Reference Manual for UNIX Systems, Version 8.0. SSPA Systems, Go-
teborg, March 1990, 112 s.

[11] Simnon User’s Guide for MS-DOS Computers, Version 3.0. SSPA Systems,
Goteborg, January 1990, 228 s.

[12] SimuSolv, Modeling and Simulation Software. The Dow Chemical Company,
Midland, Michigan, 1990, 10 s.

[13] Stevens, W. R., UNIX Network Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1990, 772 s.

[14] TKK, Kurssin Tik-76.152, Tietokoneverkot, opetusmonisteet. Otapaino, Espoo,
1989, 215 s.

68

