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Abstract

High-dimensional phenotypes hold promise for richer figdim asso-
ciation studies, but testing of several phenotype traitgamtes the grand
challenge of association studies, that of multiple testiBgveral methods
have recently been proposed for testing jointly all traita high-dimensional
vector of phenotypes, with prospect of increased power tectismall ef-
fects that would be missed if tested individually. Howetlee, methods have
rarely been compared to the extent of enabling assessmémeipfelative
merits and setting up guidelines on which method to use, andth use it.
We compare the methods on simulated data and with a real cietaics
data set comprising 137 highly correlated variables andomately 550,000
SNPs.

Applying the methods to genome-wide data with hundredsaishnds
of markers inevitably requires division of the problem imanageable parts
facilitating parallel processing, parts correspondingnmividual genetic
variants, pathways, or genes, for example. Here we utilis&raightfor-
ward formulation according to which the genome is divide inlocks of
nearby correlated genetic markers, tested jointly for @ation with the
phenotypes. This formulation is computationally feasibéeluces the num-
ber of tests, and lets the methods take advantage of corghimfiormation
over several correlated variables not only on the phenddigee but also on
the genotype side.

Our experiments show that canonical correlation analyais figher
power than alternative methods, while remaining componatly tractable
for routine use in the GWAS setting, provided the number ofdas is suf-
ficient compared to the numbers of phenotype and genotyjebles tested.
Sparse canonical correlation analysis and regression|swité latent con-
founding factors show promising performance when the nurobsamples
is small compared to the dimensionality of the data.
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1 Introduction

The increasingly widely collected 'omics’ data, includiggnomics, transcrip-
tomics, metabolomics, and proteomics data sets, bring Eietp new opportu-
nities to genome-wide association studies (GWASs). GWABces for associa-
tions between the genome, typically represented as thkesingleotide polymor-
phisms (SNPs), and one phenotype variable, or trait. Exasrgiltraits could be a
disease indicator (binary, dichotomous) or the height ohdividual (continuous-
valued). The statistical challenge of the GWASSs is the negumultiple testing
correction to account for the large number of associations(f) to be tested,
see, e.g., Balding (2006). There is now a growing intereskeiiecting associa-
tions between genomics and the other types of omics dataewhe phenotype
is multivariate in contrast to the classical setting. Faaraple, associations be-
tween genotypes and gene expressions (transcriptomies)degen studied, see,
e.g., Parts et al. (2011) and Fusi et al. (2012); more regeh# genotypes have
been associated with metabolomics phenotypes (Tukiaingin 2012; Inouye et
al., 2012). With such studies, the problems related to thiipheitesting become
accentuated due to the growing dimensionality of the phgr®ovector.

To tackle the statistical challenge in the omics-omics ggs&ociation studies,
several alternatives have been proposed. The simplest astlocommonly used
approach is to test associations between each genotype{gpe pair in turn, and
then to apply a stringent significance cutoff to accounttientast number of tests
performed. For high-dimensional phenotypes this approaghires a very large
sample size, however, as it fails to utilize the fact that #%ifecting a phenotype
variable is likely to have an effect also on other phenotyaigables which are
highly correlated with the first one. The most straightfarvanodification to the
simple pairwise testing is a combination of several paievwests, at the simplest
by taking an average, for example.

However, it has been argued by Kim and Xing (2009a) that atiogifor the
correlations between multiple phenotypes while testinga&sociation is prefer-
able to combining results from several related experimenten ad hocman-
ner after the pairwise testing. Kim and Xing (2009a,b) usearse regression
models for multiple correlated traits. The models favorrsipa in the regres-
sion coefficients while encouraging sharing of common regpes for correlated
traits. Another class of statistical models that has beepgweed for GWASs of
high-dimensional phenotypes exploits latent variablesctmunt for hidden con-
founders that, if unaccounted, would blur the analysis hystey false positive
findings and reduced power. These latent variable regressoalels have earlier
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been successfully applied in association studies of gemesgion measurements
by Stegle et al. (2010) and Fusi et al. (2012). Canonicaletation analysis
(CCA) is yet another multivariate technique that has rdgdigen suggested as a
tool for analyzing high-dimensional phenotypes in genomiae association stud-
ies (Ferreira and Purcell, 2009). CCA is a generalizatiomoltivariate regres-
sion, where, instead of testing for an association betwegareof variables, an
association between two groups of variables is tested (lH@e1936). CCA is
conceptually related to the aforementioned latent vagiabyjression models, as
it can be cast into a probabilistic formulation accordingatioich the so-called
canonical correlation between the two groups of varialdexplained by hidden
factors affecting simultaneously both sets of variablesc{Band Jordan, 2005).
Sparse CCA has been proposed for situations in which therdiime of a data
set is too large to fit the classical CCA (Parkhomenko et #1092 Witten and
Tibshirani, 2009).

Given the list of methods, a researcher planning to carryaoGWAS with
a high-dimensional phenotype immediately faces the ahgdleof choosing the
method most appropriate for the data. The challenge isqodaitly hard as the
methods have been developed and presented independedtpasly even with-
out acknowledging each other. Thus, definite guidelingsalime an established
strategy on how to perform a statistical analysis in a GWAB whigh-dimensional
phenotype are clearly lacking. Our goal in this paper is vestigate the suitabil-
ity of various alternatives for GWAS with high-dimensionqddenotypes. As the
case study we use a recently published metabolomics data 4877 quantita-
tive traits with a genome-wide genotype data comprising@pmately half a
milloin single nucleotide polymorphisms sampled from 50@alated individuals
(Inouye et al., 2010). These data are particularly suitadsleur purpose because
the ground truth is available as the data have earlier besdgsad for associations
as a part of a larger data set (Tukiainen et al., 2012; Inotigk,£2012).

The genome is inherited as continuous chunks of DNA, resylti high cor-
relations (linkage disequilibrium) between neighborids, see, e.g., Frazer et
al. (2007). To make the methods computationally feasibleractice, instead of
analyzing all SNPs together, we reduce the dimensionatigxiploiting this char-
acteristic of genotype data by dividing the genome into kdaxf correlated SNPs
(referred to as LD-blocks in the remainder of this paper)avhive analyse sepa-
rately (and in parallel) from each other. While joint an&ysf the whole-genome
genotype vector could be more accurate in principle, theskwise approach is
favourable in two respects: first, the number of tests iseceduand second, the
methods will be able to borrow information not only over ebated phenotypes,
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but also over several neighboring SNPs (for example if thesgaSNP happens
not to be present in the data set). The LD-block structurgohasously been uti-
lized in association studies of univariate traits (seeuwdismn by Balding, 2006)
and also to impute missing genotypes (Marchini and Howi&020

To summarize, we compare a set of recently developed saatiest methods
for realistic-sized GWAS with high-dimensional phenotgpeéBased on experi-
ences from the analysis of the real data along with compsheisimulations,
we provide practical suggestions on how data sets with aimoilaracteristics can
most appropriately be analyzed.

2 Methods

The main focus of this paper is to investigate how well déférmethods are able
to take advantage of a joint analysis of all phenotypes insso@ation study.
Here, we briefly outline the methods that we include in oudgtVe utilize the
LD-block structure to enable the methods to account formfdion over several
correlated SNPs. Thus, the association test scores prbliddifferent methods
are for LD-blocks, not individual SNPs, the idea being fistetect associated
regions, followed by investigation of SNP-wise weights\pded by the methods.
Consequently, if only SNP-wise scores are available fromesmethod, these are
combined into a single score in a straightforward mannerexample by taking
the maximum or average over the block, as explained in mawel delow. We
apply multiple-testing correction on the block level by smering the maximum
score over all blocks in permuted data sets.

2.1 Canonical correlation analysis

Canonical correlation analysis (CCA) is a multivariateni@que designed for de-
tecting associations between two groups of variables (ke 1936; see also
Mardia, 1979; Hardoon et al., 2004). LettiXgandY denote then x g andn x p
genotype and phenotype matrices and assuming without fogenerality that
they are centered, the goal of CCA is to find a linear combamedif the columns
of Y and a linear combination of the columnsXthat are maximally correlated

IWe note the argument of Donnelly (2008) that even fine mappingandidate regions is
unlikely to point to just one potentially causal SNP andtdasl, will typically narrow researchers’
attention to a set of such SNPs to be studied further in fanatiassays.
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with each other. This corresponds to finding veciesRY andb € RP such that

(Xa)-(YD

P(a.D) = Iavh

1)
becomes maximized. In CCA terminologya is called the best linear predictor
andY b the most predictable criterion, although the underlyinghematics is
symmetric.

Denoting byS, and S, the sample covariance matrices a8g the cross-
covariance matrix, the procedure for findiagndb starts by computing

K — S?l/ZS(yS]l/Z )
and
N; = KK/, N, = K'K. (3)
Then, by the singular value decomposition theor&nsan be written as
K=(ay,...,a0)D(B, .-, B, (4)
whereqa; and; are the standardized eigenvectorslpindNy, D = diag(}\ll/z, . ,)\kl/z)

is a diagonal matrix of non-zero eigenvaluedNef(or N), andk = rank(K). Now,
a=S"%a, and b=5""p (5)

are termed théth canonical correlation vectors for X and Y, respectivelihe
objective [1) is maximized by selectireg= a; andb = b;. Furthermorea, and
b, are the coefficient vectors that maximize the correlatiodenrthe constraint
that the resulting linear combinations are uncorrelatetth Wia andY b, and so
forth.

Canonical correlation analysis has recently been invadyin the context
of genome-wide association studies (Ferreira and Pur2@09; Naylor et al.,
2010; Tang and Ferreira, 2012). The difference betweerethdiles is in how
the problem is formulated in order to apply the CCA. Basicalhe is left with
the freedom of choosing the groups of variables betweenhwdssociations are
investigated. Naylor et al. (2010) divided their gene egpi@n measurements
into groups of three consecutive probes which were testeddsociation with
SNPs located in the corresponding genomic region. Tang anckiFa (2012)
used genes with pruning to remove highly correlated SNP®tio€l the groups
of SNPs to be tested for association with a relatively lomelsional phenotype
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(<£6). Recently, Inouye et al. (2012) tested each SNP indiVigwath groups
of phenotypes, where the phenotype groups correspondedsters of highly
correlated metabolites. In this paper, we consider twaradtéve strategies for
defining the SNP groups: (1) selecting blocks of neighbo&MNPs which are
highly correlated due to linkage disequilibrium (the metho®ing referred to as
CCA-blockhenceforth), or (2) analysing each SNP in the block indigltuand
taking the maximum of the individual scores as the score efltock CCA-
singlg. As the phenotype, we use all the metabolites jointly; & shmulations
we additionally consider analysing only a subset of higligrelated metabolites
at a time.

Two different approximations for determining the stagatisignificance of
whether any of the& correlationsp; is non-zero have been utilized in genetic
association studies. Both are based on the likelihood saditisticA = 1< ;(1—
p?), which has a Wilks\(p,n— 1 — g, q) distribution (see, e.g., Mardia, 1979).
The first one uses Bartlett's approximation (see, e.g.|&8rl941)

k
—(n—1—(p+q+ 1)/2>|n.|'l(1—pi2) ~ Xoa (6)

The second one uses Rao’s F-approximation:

Fafdh) = (%) X <3—E) : (7)
where
s=\[Fit dn=pa ®)
and
dfy = (W) s—p—29+1. ©)

Unless stated otherwise, the score @CA-blockis taken to be the value of the
maximum canonical correlation. Alternatively one coule yminus logarithm
of) the p-value calculated for the block using either Bét'ler Rao’s approxima-
tions. However, we present some comparisons of these thes#ybe approaches.
Note that withCCA-singleonly one canonical correlation may be calculated, giv-
ing a one-to-one mapping between the (maximum) canonicatledion and the
corresponding p-values.
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2.2 Sparse canonical correlation analysis

The classical CCA presented in the previous section asstimaéshe number
of samplesn is larger than the dimension of either of the data sgts p. In
practice, ifg or p is close ton, one can always find a linear combination having
canonical correlation near unity. To overcome the problegaeral variants have
been presented (Waaijenborg et al., 2008; Parkhomenkao, &0819; Witten and
Tibshirani, 2009; Chen et al., 2012). Common to these agpesis that they
favor vectors of linear combination coefficierdsand b in which some of the
elements are equal to zero, for example by assuming a Lgpsopenalty for
a andb (Tibshirani, 1996). As a representative sparse CCA methedise the
implementation from Parkhomenko et al. (2009), althoughyrat the methods
appear to be closely related (see a detailed discussiontieMand Tibshirani,
20009, for example).

The idea of Parkhomenko (2009) is to introduce soft-thrleBhg parameters
Aa and Ay for variable selection from seds andY, respectively. The parameters
control how many variables (columns) of each type will bduded in the solu-
tion. During the iterative algorithm used for estimatim@ndb, the coefficients
whose absolute value is below the limit specified by the tiwkebng parameters
are set to zero. The values of the thresholding parameterdedermined using
k-fold cross-validation over a grid oA§,Ap) values. The values that maximize the
canonical correlation in the test sample are selected. diexperiments, we run
the algorithm with default options for the grid values &nd

Since sparse CCA has been introduced in the genetic cohtead been used
to compute the canonical correlation between all phenactypel either all SNPs
or all SNPs in a single chromosome at a time. However, suekesfies become
computationally infeasible as the numbers of SNPs and smriptrease. We
investigate two approaches of using sparse CCA for scoriiwplocks. The first
one is obtained by simply calculating the canonical coti@hebetween all SNPs
in a block and all phenotypes using sparse CCA. Howeverrritstout that this
strategy does not work very well (s&esulty. As an alternative, we consider
an approach where the genome is divided into larger windgnshbcatenating
neighboring LD-blocks such that the number of SNPs withinidew exceeds
a given threshold (we used 2,000 SNPs in our experiments)xs8LCA is then
applied to the window of SNPs and all phenotypes. After tifis,score for each
LD-block within the window is obtained by calculating theassical canonical
correlation value between all SNPs within the block having-aero coefficients,
and all phenotypes. The difference between this seconggyrandCCA-blockis
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that sparsity is enforced among the SNPs in the block byzirtdionly the SNPs
with non-zero coefficients from the initial window-wide spa CCA.

2.3 Sparse regression for multiple correlated traits

In the machine learning community, several regularizedaggjon methods have
recently been introduced for modeling correlated pheredygee, for instance,
Kim and Xing (2009a,b) and Sohn and Kim (2012). In these nathihe columns

yk of the phenotype matriX are often modeled using separate regression models

Yk =XBc+&, k=1....p. (10)

One popular method, GFlasso (Kim and Xing, 2009a), fatdgaborrowing of
information between correlated phenotypes through legrtiie parameters with
penalized least squaﬁes

B= argminZ(Yk —XB) T (yk — XBx)+

A ; Z | Bik| + V( Z r%l ; | Bim — sign(rmi) Bji |,

ml)eE

(11)

whereB contains jointly the estimated parameter vectfys In (1), there are
two regularization parametera, andy, to be learned through cross-validation.
The purpose of the parameteis to shrink the coefficients towards zero, favoring
models with few non-zero coefficients. The term including flparameter has
been included to favor sharing information; it encouradpessizes of the effects
Bjm andp; of SNP j on correlated phenotypesandl to be similar. In Equation
(@), ry is the correlation between tieth andlth phenotypes anél is ana priori
specified phenotype correlation graph with edges repriegeoorrelations to be
accounted for in the model.

2.4 Regression with hidden confounding factors

High-dimensional phenotypes are often correlated dueddem confounders not
related to genetic factors. For example, gene expressiasunements may be af-
fected by environmental conditions and experimental ptoces (Leek and Storey,

2This particular formulation is termeddElasso by Kim and Xird (2009a). We used cutoff 0.7
in our analyses to define the eddem the correlation graph.
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2007; Gibson, 2008), which, unaccounted, would cause eztipower and in-
creased false positive rate in association studies. Toléantth confounders,
several methods where the hidden determinants are ekphuoitdeled (Stegle et
al., 2010; Parts et al., 2011; Fusi et al., 2012) have beesepted. The basic
model has the form:

Y=Uu+SV+XW-+e¢, (12)

whereu represents phenotype-specific mean tedhandS denote the observed
genotypes and hidden confounders, respectively, with dneesponding regres-
sion coefficients collected into the matrid®sandV. Theeg is a matrix comprising
Gaussian i.i.d. noise terms.

The methods differ in the way the model specified in Equafl@) (s learned.
The most thorough way (Fusi et al., 2012) is to jointly ledra hidden factors
and SNPs that influence the phenotype. Here, to faciliteagg$itforward parallel
processing of the genotype blocks, we utilize an approXxondamplemented in
PEER software (Stegle et al., 2010), where the hidden faauoe first learned
independently of the genotypes and their effects on thegilipas are removed.
The resulting residuals are then used in the place of theqiees to test for
associations with the genotypes using univariate metheslsribed below.

2.5 Exhaustive pairwise testing, principal component angssis,
and multivariate analysis of variance

As the baseline we use three methods; the first one is genasat in univariate
association analyses, and the other two are straightfdrmaitivariate methods.
We use linear regression models to test for assocation batgenotype; and
phenotypeyi,i=1,...,pandj=1,....Q:

Yi = Bo+ BaXj + &i. (13)

The score for an LD-block is taken to be either the smallegalpe for the;
coefficient in any of the genotype-phenotype pairs testefdired to abest-pail),
or the average of the corresponding t-test scores overratitgpe-phenotype pairs
(avg-pair). As the second simple baseline method we calculate as margyal
components for both genotypes and phenotypes as needeplaineat least 99.5
percent of the variation in each data set. Then we test focégons between the
principal components using the univariate test describedea

As the third baseline method we use the standard multiesaiadlysis of vari-
ance (MANOVA). As with univariate ANOVA, the idea is to divedhe total vari-
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ation in phenotypes to within and between group variatiamene the groups are
defined by the value of a particular SNP. We apply MANOVA tole&NP in
an LD-block in turn, and take the smallest p-value as theesobthe block. We
obtain the p-value by computing

Wi

A="21
Tl

(14)
whereT (for total) andw (within) are the matrices of sums of squares and prod-
ucts for phenotypes and residuals (after subtracting tbepgymeans), respec-
tively. The variableA has Wilk's Lambda distribution which is approximated
using the F-distribution (see, e.g., Mardia, 1979).

2.6 Metabolomics data set

As the real test case, we used a data set published by Inoaye(2010) which
consists of genome-wide SNP data along with metabolomi@sorements (for
details concerning metabolomics data collection, seeiSanet al., 2009, and
Kettunen et al., 2012). SNPs with low minor allele frequeey.02) and de-
viation from Hardy-Weinberg equilibriump(< 0.00001) were removed as a pre-
processing step, leaving approximately 550,000 SNPs fié8rurelated individ-
uals. The metabolomics data set comprised 137 metabaotitest,of which repre-
sented NMR quantified levels of lipoproteins classified hwubclasses (VLDL,
IDL, LDL, HDL), together with quantified levels of amino asidgsome serum ex-
tracts and a set of quantities derived as ratios of the afatioreed metabolites.
The final sample size was 509 individuals having both dategygffects of age,
sex, and lipid lowering medication were regressed from th&ivolomics data as
a pre-processing step (with the latent variable regressppnoach this was done
jointly with removing the effects of the hidden confounderdhe correlation
matrix of the metabolomics data is shown in Figure 1. A dgtishing character-
istic of the data is the blocklike structure composed of geoof highly correlated
metabolites.

We defined the genotype block structure by setting block Hatias at loci
where adjacent SNPs were more than 0.01 cM apart using gemep from
HapMap Release 22 (NCBI 36) (Frazer et al., 2007). This teduh 68,124 LD-
blocks with sizes ranging from 1 (32 percent of the blockspusing 4 percent of
the SNPs) to 426 SNPs. Based on graphical inspection, tiegtefined in this
way seemed to capture the block-diagonal correlation stre®f the genotype

11
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Figure 1: Empirical correlation matrix for the metabolomics dathefore the
confounder correction). The subgroups are separated b lnes.

data reasonably accurately, although we acknowledge tierent arbitrariness
related to any single fixed cutoff value. By visual companissimilar divisions
could be obtained with the Haploview software (Barrett, 200

2.7 Simulated data

As the basis of our simulations we used two randomly selelcBedhlocks from
the real genotype data. The genotypes for the simulatecsdtgavere created by
sampling with replacement from the set of all available ggpes in these regions.
A single SNP was used to generate the effects using a linedelmAfterwards,
this causal variant was removed from the genotype datarigavhetwork of pos-
sibly non-linear relationships between the remaining Salirkphenotypes. This
corresponds to the scenario that the true causal variamdtdseen included in
the data set. After generating the effects, the empiricaketation matrix of the
metabolomics data was used to simulate correlated additNgvariate Gaussian-
distributed noise on top of the simulated phenotypes.

The following factors were varied in the experiments: (1gBize of the LD-
block was either 6 or 22 before removing the causal vari&)tTfe correlation
between the causal variant and the closest SNP in the datasdixed by manu-

12
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ally selecting the causal SNP having the desired correlatith the other SNPs.
(3) As the noise correlation matrix we used either the whostatmolomics ma-
trix (137 features) or submatrices corresponding to IDLe@dires) or VLDL (31
features) metabolite subgroups. (4) When the full 137 ptygreofeatures were
simulated, the affected traits were selected by mimickiregdffects observed in
real data (see Figure 1 in Tukiainen et al., 2012) such treatdtal number of
affected traits was 23. These traits were selected suchthibgtcorresponded
to three different groups of correlated traits, effects am of the groups having
a different sign from the other two. With smaller numbers iofiidated pheno-
types, the affected traits were selected analogously siathiey corresponded to
some correlated subclass of the real metabolites. (5) Theteiizes were drawn
randomly from the interval0.750Bmax Bmax, WhereBmaxis the value reported in
Results. Note that actual effects are smaller as the caagahtis not present in
the genotype data. Consequently, an upper bound for thegrop of variance
explained (PVE) by an effect can be obtained from

Braar(x)

PVE=
BéVar(x) + 1’

(15)

where Vatx) is the variance of the causal variant, which in our simutatiovas
always< 0.5. Thus, ifBmax<< 1, the PVE can be roughly bound from above by

0.582ax

3 Results

3.1 Real data

We compared the methods using as the ground truth a set of B$ &gorted by
Tukiainen et al. (2012), compactly summarized in Table 1Busfiainen (201ﬁ.
These findings have been obtained using the standard ekieapairwise linear
regression with a data set of 8,330 individuals (data in twdysis a subset of
these data).

We first checked whether the methods were able to find the grvuth LD-
blocks with significant scores. Multiple-testing corretteresholds for LD-block
scores were obtained by considering maximum scores in Ji¥ated analyses

3During the writing of this article a study using CCA for one Bt a time was published by
Inouye et al. (2012). We did not include findings of that detio our baseline, in order not to bias
the results in favor of CCA.

13



preprint, to appear in Statistic

Rankings of LD-blocks with known SNP-metabolite associations
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Figure 2: Rankings of LD-blocks with known causal varian®he rankings of

all 68,124 LD-blocks were scaled linearly to the interj@ll] such that the block
with the highest score got rank 1 and the block with the loweste got rank O.
Rankings of the LD-blocks with known causal variants arenshon the y-axis

(notice the logarithmic scale for better separation of galalose to unity). The
LD-blocks with causal SNPs are ordered according to thedfizke block (the

number of SNPs in a block shown on the x-axis). Thus, the naistiaath highest

scores in the left end of the x-axis are those with the langeser based on small
blocks, whereas those having highest scores in the rightand largest power
based on large blocks. To keep the figure readable, resalshakvn only for the
most promising methods for which the median ranking of kneausal loci was
> 0.8. The ranking of a block was set to zero by sparse CCA (sccayi¢ of the

SNPs in the block got non-zero weights.

with permuted data sets (except for GFlasso due to extensimputation time).
With the limited amount of data, only one of the LD-blockshvitausal variants
scored significantly after the multiple-testing correntiolhe significant scores
were given by method8CA-singleand PEER. To further examine how well the
different methods are able to highlight the LD-blocks witiolvn causal SNPs,
we ordered all LD-blocks using the scores from the methots.rénkings of the
blocks with known causal SNPs are shown in Figure 2 with a sammiven in
Table[1. Detailed listing of the rankings and the actual es@re given in Sup-
plementary Tables 1 and 2 (including methods not shown lockedp the results
uncluttered). The following main conclusions can be drasemfthe results:

14
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Table 1: Comparison of the methods with the real dakarst five columns show
summary of the rankings of 31 LD-blocks containing knownszdwariants. The
columns are interpreted as followbest the number of times the method gave
the highest ranking (of all methods considered) to a blodk wiknown causal
variant,> 0.95: the number of blocks with known causal variants ranked amon
the top 5 percent of all blocksnediaimaxXmean the median/maximum/mean
rankings of the blocks with known causal variants (aftetisgahe ranks linearly

to [0,1]), sign the number of significant findings. The two best methods are
shown in bold in each column. The last coluntime, shows the computation
times for a single run (i.e., not including permutation itegt. The number of
significant findings for GFlasso is not available due to esitecomputation time
required by the permutation sampling.

best >095 median max mean sign time
CCA-single 8 9 0.868 1.000 0.814 1 7h

CCA-block 1 6 0.864 0.9980.806 0  1h
CCA-block (p-val) 1 2 0.158 0.994 0358 0  1h
PEER 2 5  0.827 1.000 0.742 1  20h
best-pair 3 8 0.777 1.000 0.743 0  20h
PCA 3 8 0.878 0994 0798 0  11h
gfLasso 1 3 0517 0.969 0.487 NA 2,200h
MANOVA 3 6 0848 0976 0801 O  13h
Sparse CCA 9 10 0.835 0999 0539 0  8h

1. In generalCCA-singleand sparse CCA gave higher rankings to the causal
blocks than other methods, wi@CA-singlethe preferred method in small
blocks (consisting of less than fifteen SNPs) and sparse GClarger
blocks.

2. Sparse CCA applied directly to LD-blocks did not work weliowever,
when first applied to larger genomic windows, and then compgugcores
for LD-blocks using the sparsity patterns learned from thedew-based
analysis, sparse CCA worked very well (see Figure 7 in AppeAdor a
comparison.) The results shown for sparse CCA are basedsoayproach.

3. Removing the effects of confounding factors (PEER) keefairwise testing
improved the median ranking of the causal blocks. FurtheenfEER was
the only method along wit@CA-singlewith which any of the causal blocks
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got significant scores after the multiple testing correttio

. However, the top 5 methods (according to the median rajkiere PCA,

CCA-single CCA-block MANOVA, and sparse CCA, all of which test for
association with all phenotypes jointly. All of these medkovere also com-
putationally feasible even with permutation sampliﬂg.

. GFlasso did not perform well. We conjecture the reasonetdghiat the

Lasso type regularization ceases to work reasonably wremumber of
SNPs is too small and the SNPs represent a single block wiktivedy
high inter-correlations. Furthermore, the hyperparansdéarned by cross-
validation were different for different blocks, which maffezt the ranking
of the blocks by the maximum regression coefficient. Somd &irpooling
to learn a single common hyperparameter would seem reasoziadh will
be worth studying later. Alternatively, we expect that gppd regularized
regression to larger genomic windows would likely improlre tesults (as
with sparse CCA). However, this approach was not feasildealextensive
computation time.

To illustrate the results with the real data on a more detddeel, Figurd B
shows SNP-wise results fro@CA-singleand PEER for the LD-block that ob-
tained significant scores by these methods. The SNP-wisghtgefrom CCA-
block and sparse CCA are added for comparison. Because we usedtpgom
sampling to obtain multiple-testing corrected significarscores for the whole
block, the SNP-wise scores are not as such comparable betaatbods (to avoid
confusion, scores from each method are therefore scalf@ Ipinterval in the
figure). However, it is of interest to investigate the relesa of different SNPs
in a block to see how well the location of the causal SNP istiled. The main
conclusion from the figure is that sparse CCA &A-blockgive high scores to
fewer SNPs in the block. This is not surprising as the methbdsscore each
SNP separatelyJCA-singleand PEER) are expected to give high scores to all
SNPs that are correlated with the causal SNP, wheZ€xas-blockand especially
sparse CCA are expected to pick a sparse combination of 3MPs tmaximally
correlated with the phenotypes. This general trend wadiegrby plotting the
proportion of high-scoring SNPs in each block, see Figure&gpendix A.

4We note that the running times depend on the underlying imefgation. For GFlasso we
used the executable provided by the authors. Otherwisagtforward R implementations avail-
able either as standard R functions or from the authors afehigective methods were used.
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Figure 3: SNP-wise weights for the LD-block significantly associatgith the
metabolomics profiles The location of the known causal lead variant (SNP
rs174547 is denoted by the red vertical line; however, this SNP wagnesent

in our data set. Other SNPs with reported associations wétialolite traits (from
dbSNP, Sherry et al., 2001) are shown with blue verticalsling/ith PEER and
CCA-singlethe relative weights of SNP importance are obtained by censig
the negative logarithm of the corresponding p-values. Tis®late values of the
canonical weights are shown as the SNP-weight<IGA-blockand SCCA. All
weights are scaled to the interyal 1).

Using the p-values from Rao’s approximation to rank the Lbcks (CCA-
block (p-val)in Table[1) seems to work badly compared to using directly the
maximum canonical correlatiolCCA-blocR. Indeed, when we investigated the
p-values more closely, many of them were very close to umticating that the
distribution of the test scores does not match with the apsioms underlying
the significance test. Tang and Ferreira (2012) used geagyming to reduce
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collinearity between SNPs to resolve this problem. Howesirce in this type
of data both the genotypes and the phenotypes are highlglatead, the pruning
strategy seems too conservative to be motivated from tHediaal perspective.
The downside of using the maximum canonical correlatiornét targer blocks
area priori more likely to obtain high canonical correlations, leadingeduced
power with smaller blocks. Introducing sparsity among tiNPS with sparse
CCA seems to improve results in this respect, althdQ@iA-single which forms
the score of a whole block using the single most correlate® 8Nly, is still
preferred with small blocks.

Finally, Supplementary Table 1 shows SNP-wise rankingsive to all 550,000
SNPs for 8 causal SNPs (as opposed to blocks) that were gttindur data set.
Although these rankings are not directly comparable to tbekbrankings, it is
notable that the SNP-wise CCA utilized by Inouye et al. (20di2es for 7/8
SNPs lower rankings than the blockwise CCA formulationghiercorresponding
blocks.

3.2 Simulations

We investigated the power of the methods to detect assoegin two different
simulation setups. Throughout, we used data sets simulateeffect size set to
zero to determine significance thresholds yielding the eogdifalse positive rate
equal to 0.05.

3.2.1 Whole metabolomics profile simulation

In the first setup, we investigated how the size of the eftbethumber samples,
and the correlation between the causal variant and thestlobeserved SNP affect
the power of the different methods to detect associatioresfiX®d the dimension
of the phenotype vector to 137 (using the whole metabologoclation matrix
to generate the noise). The results are summarized in Hjufiehe following
conclusions can be drawn:

1. The classical CCA is the best method when of humber of sssnipllarge
enough relative to the dimension of the genotype and phpeobjocks
tested, but breaks down otherwise. The difference betwees@CA-single
andCCA-blockis intuitive: if none of the SNPs present is highly correthte
with the causal variant, thé CA-blockis capable of better utilizing the in-
formation in the whole genotype block, outperformi@gA-single On the
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other hand, when some observed SNP is highly correlatedanvidiingle)
causal variantCCA-blockhas no advantage ovE€ICA-single We also note
that, in line with what was observed with the real data, thersp CCA
does not work well when testing for association of a singdatively small
LD-block (here 22 SNPs) against the phenotypes.

2. PEER is among top-three methods in all setups and seemedhe Imethod
of choice when the number of observations is small comparétetdimen-
sion, that is, the realm for which it was originally develdp&he power of
PEER decreases as the effect size gets large enough. Tlagidrels ex-
pected and can be explained by the fact that PEER startsexgjaway the
true effect with latent confounders. A possible solutioggested by Stegle
et al. (2010) would be to iterate between learning the effant latent con-
founders. Alternatively, joint learning of the effects arwhfounders (Fusi
et al., 2012) would likely improve the results in this regpec

3. GFlasso did not work well in our simulation setup, the ogasbeing the
same as discussed for the real data. Discouraged by thests rege did
notinclude GFlasso in the second simulation setup (seabé&bsave some
computation time. To check that the conclusion is not spetfiGFlasso,
but more generally to Lasso-type regression, we additipnah the whole
metabolomics simulation scenario with another Lasso ssgwa method,
the Sparse Group Lasso (SGL) by Hastie and Tibshirani (204®yever,
we note that this method is not specifically designed for ivaiitate re-
sponses. Therfore, we ran SGL separately for each phenatygpheéook
the maximum over the these as the overall score. The resalshawn in
Figure[10 (Appendix A) and provide support to the stated kesian.

4. PCA performs better than the other methods when no sidgiev@dth high
correlation with the causal variant is present in the dataa®l sample
size is small relative to the dimension of data (the fourthgban Figure
[4)). However, in this setup, even PCA seems to require usteaalily large
effects sizes before satisfactory behaviour can be exgecte

Figures 910, and 11 in Appendix A provide additional insigtthe behavior
of the methods. Figurig 9 compares the powe€6fA-blockusing the canonical
correlation directly vs. p-values calculated using eittier Bartlett's or Rao’s
approximation as the test score. The results are in line witht was observed

19



preprint, to appear in Statistical Applications in Genetics and Molecular Biology

n=500, p=0.84 n=150, p=0.84 n=500, p=0.24 n=150, p=0.24

e —0— 0
f\\x \+
R\
x_st\ .~
—— ——————— ——
16 0.4 0.1 0.025 0.006 16 04 0.1 0.025 0.006 16 0.4 01 0.025 0.006 16 04 0.1 0.025 0.006
Effect size Effect size Effect size Effect size

J,
I
Y,

%5”‘3?\
NN

XYoo o N o =
V===V —9—v
— T

O cca.single
A cca.block
+ peer

X best.pair

+
/%
% \, |V dflasso

S/

Pospoootoe

Power
02 05 08 1
Power
002 05 08 1
Power
002 05 08 1

0 02 05 08 1

e}
N
° mgX:Xgr:ij&ﬁ:z

Figure 4:Power of different methods in the whole metabolomics prefikeilation
scenario. Factors that were varied incluae the number of individualsp, the
largest correlation between the (not included) causabwaand any of the SNPs
included in the data set, and the effect size. The value oétteet size shown
in the figure is relative to one standard deviation of noisarr€sponding to each
parameter configuration, 200 data sets with the specifiedtedind 200 data sets
with zero effect were analyzed. The empirical false positate was fixed to 0.05
by selecting an appropriate significance threshold usiegdtita sets simulated
under no effect. In the panel on the left the curve@@A-singleis behindCCA-
block

with the real data, namely that using the canonical coioglas preferred to using
the p-values.

Figure[10 shows results similar to Figlide 4 for methods nciuihed in Fig-
ure[4 for clarity. The most interesting of these is MANOVA, ialn shows very
good performance. A closer inspection reveals that theopednce profile of
MANOVA is very similar to CCA-single except that the power is always lower
than or equal taCCA-single The same behaviour was also observed in all other
simulations (exact results not shown). The similarity of NK®BVA and CCA-
singlecan be expected because, although the objective functrenscd exactly
the same, both are essentially trying to find the best SNP iloeklio explain
variation in all phenotypes. MANOVA does this by trying toptain the variance
with group means, groups defined by individuals having ciifieé SNP values (0,1,
or 2). CCA-single on the other hand, tries to find a linear relationship betwee
the SNP and the phenotypes, resulting in a more restrictetbhvath increased
power.

Finally, we checked how sensitive the results are with resfoethe assump-
tion that only one causal SNP is used to simulate the effectd §ubsequently
removed from the data set before the analysis). Figure Mshesults when two
causal SNPs were used, and neither was removed from datagefleeal trends
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Figure 5: Power of different methods in the metabolite subgroup strarn sce-
nario. The titles of the panels show the numbeGSdPs and the maximum corre-
lation between the causal variant and the most correlatd®l [BBisent in data.
Text phe:x/yin the title tells the number of phenotypic trait9 @nd the number
of traits affected by the causal variam).(High residual correlation corresponds
to using the empirical correlation matrix of a specific graifighly correlated
metabolites to simulate the noise. The less correlated sitaare created by
raising the correlation matrix to powers 10, 20, 40 and 8@gcéfely pulling the
off-diagonal elements of the correlation matrix towardsozeCorresponding to
each parameter configuration, 400 data sets with the spkeifiect and 400 data
sets with zero effect were analyzed. The empirical fals&ipesate was fixed to
0.05 using the data sets simulated under no effect. PEEReogew in less than
5 percent of the data sets with 6 phenotypes (the third cojuamd is not shown
for these data sets.

are very similar to those observed in Figlre 4, with the méfference being the
improved performance d€CA-singlewith the lower sampler size. This is not
surprising as the scenario with the true causal SNPs presdata is favourable
to CCA-singlewhich tries to find the best single SNP to explain the varratio
the phenotypes.
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3.2.2 Metabolite subgroup simulation

In the second setup, we investigated the effect of residwalr{oise) correlation,
number of features in the genotype and phenotype data setsha number of
affected traits on the power to detect associations. As déisestof simulating the
phenotypes we used the empirical correlation matrix of IBEe@atures) or VLDL
(31 features) metabolite subgroups. The results from #tigpsare summarized
in Figure5.

The most obvious trend is the improved performance of CCAnthe resid-
ual correlation increases. Some intuition to this behaw#r be obtained by in-
terpreting then observations for variableg andx; as vectors in an-dimensional
space, and noticing that the correlation between any twiabias equals the co-
sine of the angle between the correponding vectors (se¢ Magdia, 1979). In
particular, the canonical correlation defined in Equatrig the cosine of the an-
gle between linear combinatioXsaandY b Thus, canonical correlation analysis
attempts to minimize the angle between the linear comhinati Figuré 6 illus-
trates this in a simplified situation with two phenotypes ansingle genotype.
One of the phenotype®l, is correlated with the genotype, that is, it has a com-
ponent that points to the same direction as the genotypeothiee phenotype?2,
falls on the plane perpendicular to the genotype, and iefber uncorrelated with
the genotype. WheR1 andP2 are correlated (left panelp2 can be used to can-
cel the component dP1 that is perpendicular to the genotype, leading to higher
canonical correlation. In the other extrefg andP2 would be completely un-
correlated (perpendicular to each other), in which d&evould be of no use in
making the angle betwed?il and the genotype smaller. Thus, better use can be
made of the component pointing to the same direction withgéreotype if the
phenotypes are correlated, which explains the higher d¢ealororrelations with
correlated phenotypes.

Similar reasoning can be used to explain the behavior rbbgeothers (Fer-
reira and Purcell, 2009; Tang and Ferreira, 2012; Waaijenéital., 2008) that the
power of CCA decreases if the genotype affects simultarigaliphenotypes. If
all phenotypes are positively correlated and have an equmaponent to the di-
rection of the genotype, it is easy to visualize that that ponent is removed
simultaneously when subtracting the component perpelattito the genotype.
In our simulations this behavior was not prominent. The awation is that, al-
though in our simulations the causal SNP affected a groupotlated SNPs,
the exact effect sizes were selected randomly from a spewtécval, thus not
canceling each other completely when taking linear conilains.
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P2

Figure 6:Graphical illustration for why CCA works better with coregéd data
The green vector®1 andP2 represent two phenotypes mdimensional space.
The blue vector represents the genotype. NoteRhditas a component that points
to the same direction as the genotype. The red arrow shovia#ae combination
of the phenotypes that has the minimum angle with the geeotyythe left panel
P1 andP2 are highly correlated, i.e. pointing roughly to the sanredation, in the
right panel, the correlation betwe®i andP2 is small.

4 Discussion

In this work, we have investigated methods that can be useetert small effects
in GWASs with high-dimensional phenotypes, by taking theolehphenotype
vector jointly into account. Our main conclusion, suppdiy both simulations
and analysis of a real data set, is that canonical correlatalysis appears to be
the most powerful approach for this purpose. If the numbeaaiples is reduced
to the level of the dimension of the genotype or phenotypeigto be tested,
regression models with latent confounders (such as impieedan PEER) also
seem promising. Furthermore, with the real data, PEER andl @€re the only
methods in our study with which any of the known causal vasigiot significant
scores after multiple-testing correction.

We allowed the methods to combine information in the genotgata in a
computationally feasible way, by dividing the genome intocks of correlated
SNPs. Compared to analysing the whole genome jointly, tesipiity to process
the blocks in parallel makes the methods considered inftiniysscomputationally
feasible even with permutation sampling to obtain multigsting corrected sig-
nificance thresholds. Even if CCA analysis using jointly thiéset of genotypes
was possible, the interpretation of the canonical compisnernght be tedious,
as discussed e.g. by Waaijenborg (2008). Considering & ldbaeighboring
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SNPs at a time focuses the putative effect on certain paiteogenome making
the interpretation easier. Further, picking the SNP with Ilrgest coefficient in

the canonical correlation vector seems a promising way ajvering the SNPs
most correlated with the phenotypes, the strategy alsoestigd by Naylor et al.

(2010). On the other hand, compared to analysing each SNiPately, the block-

wise approach reduces the dimensionality of the problessel@ing the multiple-
testing problems. In our simulations, we saw increased p¢weetect causal
variants that were not included in the data set when the wiiolgk of genotypes

was tested jointly. Further, with the real data the blockhwausal variants were
ranked higher by CCA (relative to all blocks) than the actzalsal SNPs (relative
to all SNPs).

Although the approach where all SNPs in a block are jointyae against all
phenotypes with CCA had the highest power in the simulafigrgas the prob-
lem that the canonical correlation, which was used as thestese, depends on
the size of the block and overfits when the number of samplelose to the di-
mensionality of data. A methodological solution to thislgeon is to regularize
the model to obtain a sparse solution giving non-zero wsighbonly a subset of
SNPs and/or phenotypes. We included in our analysis twantsof this concept:
one where a sparse combination of SNPs was learned usinglfoegularization
techniques, the other where the score of the block was sitakén to be the max-
imum canonical correlation between any single SNP and tlkeaqtigpes. These
two approaches were also the best methods on the real datéprther ranking
large and the latter small LD-blocks on average higher thharanethods. How-
ever, it is worth pointing out that for satisfactory behawuioe regularized CCA
needed first to be applied to larger windows and not to the ldeks directly. Af-
ter this, the learned sparsity structure in the SNP data wgdoged heuristically
to calculate the scores for the LD-blocks using the clas€I€a. It is notable that
although sliding window approaches are relatively ofteggasted for analysing
large data sets, there does not seem to exist a commonly aisedlfstrategy for
comparing and combining results between different windath differing hy-
perparameters. Developing a rigorous way to do this woulligkly beneficial
when analysing large data sets in practice, both with spa@& as well as with
other sparse methods, such as regression models.

The regularized CCA utilized in this article is not the onl{eanative to ex-
tend the usability of CCA to high-dimensional data sets urstheall n large p
conditions. Other approaches include Bayesian (Wang, ;20@mi and Kaski,
2007; Virtanen et al., 2011) and kernel CCA (Hardoon et &I04). These types
of methods often rely on computationally extensive techeg] such as cross-
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validation, to learn the hyperparameters of the model. dtigation of possible
gains at the price of increased computational burden wahstec-sized GWAS
data sets remains an open question. Besides CCA, thereraenoéthods that
have been proposed for detecting associations betweeivanigte genetic data
sets, including sparse partial least squares (PLS, Lé Calo, 2008) and sparse
reduced rank regression (RRR, Vounou et al., 2010). WheZ€&s maximizes
the correlation between two data sets, PLS maximizes thariemce. However,
as our phenotype data includes measurements on differ@lessd is reasonable
to scale the data before the analysis, after which we expedifference between
CCA and PLS to be small. RRR, on the other hand, tries to finddomensional
projections of the genotype data to be used as regressaedicithe phenotypes.
For a discussion on the conceptual differences between €C8,and RRR, see
Vounou et al. (2010).

Throughout the paper, we have advocated the strategy dfidliythe geno-
type side into computationally manageable parts. Indeedgel that developing
multivariate methods that attempt to take the whole gereigio account simul-
taneously are destined to fail, as present-day GWAS datarsaf contain tens of
millions of SNPs, and even loading such data sets in commgernory as a whole
may be impossible. On the other hand, we have demonstratehitialividing the
problem appropriately into parts, even computationallgmsive techniques, such
as cross-validation to learn the hyperparameters of sjgt#e may be feasible.
In addition to the growing dimensionality of the genotypéagd#éhe data can grow
both in terms of the number of phenotypes as well as the nuofadividuals
present in a data set. Here we have considered a phenotypistouy of 135
traits. As long as the number of individuals is large rekatio the number of
phenotypes, the classical CCA and MANOVA are feasible. @&sPCA and ex-
haustive pairwise testing, which work well with very highreénsional data, also
sparse CCA and PEER have been demonstrated with thousaptemdtypes;
however, usually with a relatively small number, say a fewmdred, of individu-
als.

The largest GWASs may nowadays comprise hundreds of thdas#rindi-
viduals. For example, Deloukas et al. (2012) analysed &3¢aSes and 130,681
controls for coronary artery disease. Besides dividingy#meotypes into manage-
able parts, a strategy commonly used in international GWAfepts with data
from several collaborators is to divide the individualoistibsets to be analyzed
separately. The results are then combined over the datasiats meta-analysis
techniques, see, e.g., Thompson et al. (2012). The simplsto do this is to
estimate the effect and its variance separately for eachs#ditand to pool the re-
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sults by taking the precision (inverse variance) weightestage of the individual
effect estimates. Assumption of a common fixed effect siz#edies this pro-
cedure, and can be relaxed by applying random effects mddelsxample. We
were not able to find studies were outcome of a multivariaissical analysis us-
ing CCA would have been combined over several data sets mitasfashion. At
the very least, this would require that estimates of a temescanonical correla-
tion) with approximated errors could be formed for each dataEspecially with
sparse CCA analytical error bounds for the canonical caticel are not avail-
able, and even with the classical CCA their existence dependassumptions
such as normality of the data. On the other hand, samplingdbechniques,
such as bootstrap, might be used to approximate the vasasfdbe canonical
correlation estimates. These could then be used to contmifbled estimate as
the weighted average of individual estimates; howevelh sucapproach clearly
requires further investigation.

Supplementary Data

The Supplementary Data referred to in the text is availabkesingle zip-file from
http://users.ics.aalto.fi/pemartti/high_dimensional_supplementary/.
The file contains Supplementary Tables 1-2 and the capttihetsupplementary
Tables.
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Appendix A: Additional figures

Rankings of LD-blocks, comparison of sparse cca formulations
Ao _A-D- A ==&
o ot A NG A7é\ﬁ/$—A s R
NS WAL
° o
O / o o\
o °‘0~o

d \o/ o ld-block
AN

A window 1
—A-A-
T 1
2 3

+ window 2

\ AT

%-% A-b A A A-b
8

Ranking
0 02 04 06 08 1

T T T T T T

R 1 o]
o

T T
5 6 10 12 13 13 14 14 16 16 17 18 25 26 31 33 37 39 40 42 58 79 108 323

LD-block

T
3 5

Figure 7: Comparison of three different sparse CCA formulations lth real
data The figure shows rankings of the LD-blocks with known ca&dPs, and
is interpreted exactly as Figuré 2. The formulations édeblock the score of a
block is obtained by computing the canonical correlationveen the SNPs in the
block and the phenotypes using the sparse CCA metiadadow X The score
of a block is obtained by computing as the first step the spaasenical correla-
tion between a large window with several LD-blocks (contagrmore than 2,000
SNPs intotal) and all phenotypes, and then, as the secgnastaputing for each
block the classical canonical correlation between all SthiBsobtained non-zero
weights in the block and all phenotypesindow 2 The score is obtained as in
window lexcept that in the second step only the phenotypes which tiadero
weights in the first step are used to compute the classicahizal correlation.
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Proportions of high—scoring SNPs in LD-blocks with known causal SNPs
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Figure 8:Proportions of high-scoring SNPs in the LD-blocks with knavausal
SNPs A high-scoring SNP is defined as a SNP whose score is largerttie
average of the smallest and the largest scores in a blockscnes of the different
methods are defined as in Figlre 3.
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Figure 9: A comparison of three possible scoring alternatives for@@@A-block
method using the whole metabolomics profile simulationpsetihe figure is in-
terpreted exactly as Figuré 4, except that the list of methbdt are compared is
different. The following methods are includecta.block perform CCA between
the genotype and phenotype blocks, and take the maximumiahaorrela-
tion as the test scorecca.bartlett use (-logarithm of) p-value obtained for all
canonical correlations using Bartlett's approximatiaca.f.test is the same as
cca.bartlett except that Rao’s F-approximation is used to compute theye.
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Figure 10: Power of additional methods in the whole metabolomics graiin-
ulation scenario. The figure is interpreted similarly to Figuré 4, only diffate
methods are shown.
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Figure 11:Power in the simulation scenario with two SNP&he figure is inter-
preted similarly to Figurel4, except that two causal SNPewsed when simu-
lating the effects and, unlike in Figuré 4, the causal SNR®wet removed from
the genotype data set.
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