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Knowledge discovery from data is an inherently iterative process. That is, what we know about the data
greatly determines our expectations, and therefore, what results we would find interesting and/or surprising.
Given new knowledge about the data, our expectations will change. Hence, in order to avoid redundant
results, knowledge discovery algorithms ideally should follow such an iterative updating procedure.

With this in mind, we introduce a well-founded approach for succinctly summarizing data with the most
informative itemsets; using a probabilistic maximum entropy model, we iteratively find the itemset that
provides us the most novel information—that is, for which the frequency in the data surprises us the most—
and in turn we update our model accordingly. As we use the Maximum Entropy principle to obtain unbiased
probabilistic models, and only include those itemsets that are most informative with regard to the current
model, the summaries we construct are guaranteed to be both descriptive and non-redundant.

The algorithm that we present, called MTV, can either discover the top-k most informative itemsets, or
we can employ either the Bayesian Information Criterion (BIC) or the Minimum Description Length (MDL)
principle to automatically identify the set of itemsets that together summarize the data well. In other words,
our method will ‘tell you what you need to know’ about the data. Importantly, it is a one-phase algorithm:
rather than picking itemsets from a user-provided candidate set, itemsets and their supports are mined
on-the-fly. To further its applicability, we provide an efficient method to compute the maximum entropy
distribution using Quick Inclusion-Exclusion.

Experiments on our method, using synthetic, benchmark, and real data, show that the discovered sum-
maries are succinct, and correctly identify the key patterns in the data. The models they form attain high
likelihoods, and inspection shows that they summarize the data well with increasingly specific, yet non-
redundant itemsets.
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1. INTRODUCTION
Knowledge discovery from data is an inherently iterative process. That is, what we al-
ready know about the data greatly determines our expectations, and therefore, which
results we would find interesting and/or surprising. Early on in the process of analyz-
ing a database, for instance, we are happy to learn about the generalities underlying
the data, while later on we will be more interested in the specifics that build upon
these concepts. Essentially, this process comes down to summarization: we want to
know what is interesting in the data, and we want this to be reported as succinctly as
possible, without redundancy.

As a simple example, consider supermarket basket analysis. Say we just learned
that pasta and tomatoes are sold together very often, and that we already knew that
many people buy wine. Then it would not be very interesting to be told that the com-
bination of these three items is also sold frequently; although we might not have been
able to predict the sales numbers exactly, our estimate would most likely have come
very close, and hence we can say that this pattern is redundant.

At the same time, at this stage of the analysis we are probably also not interested
in highly detailed patterns, e.g., an itemset representing the many ingredients of an
elaborate Italian dinner. While the frequency of this itemset may be surprising, the
pattern is also highly specific, and may well be better explained by some more general
patterns. Still, this itemset might be regarded as highly interesting further on in the
discovery process, after we have learned those more general patterns, and if this is the
case, we would like it to be reported at that time.

In a nutshell, that is the approach we adopt in this paper: we incrementally adjust
our model as we iteratively discover informative patterns, in order to obtain a non-
redundant summary of the data.

As natural as it may seem to update a knowledge model during the discovery pro-
cess, and in particular to iteratively find results that are informative with regard to
what we have learned so far, few pattern mining techniques actually follow such a dy-
namic approach. That is, while many methods provide a series of patterns in order of
interestingness, most score these patterns using a static model; during this process the
model, and hence the itemset scores, are not updated with the knowledge gained from
previously discovered patterns. For instance, Tan et al. [2002] and Geng and Hamilton
[2006] respectively study 21 and 38 interestingness measures, all of which are static,
and most of which are based on the independence model [e.g., Brin et al. 1997; Ag-
garwal and Yu 1998]. The static approach inherently gives rise to a typical problem of
traditional pattern mining: overwhelmingly large and highly redundant pattern sets.

Our objective is to mine succinct summaries of binary data, that is, to obtain a small,
yet high-quality set of itemsets that describes key characteristics of the data at hand,
in order to gain useful insight. This is motivated by the fact that many existing al-
gorithms often return too large collections of patterns with considerable redundancy,
as discussed above. The view that we take in this paper on succinctness and non-
redundancy is therefore a fairly strict one.

While we are not the first to propose a method that updates its scoring model
dynamically—examples include the swap randomization-based approach by Han-
hijärvi et al. [2009] and the compression-based approach by Vreeken et al. [2011]—
there are several differences with existing methods. For instance, the former requires
generating many randomized databases in order to estimate frequencies, whereas our
model is analytical, allowing for direct frequency calculation. The models for the latter
are not probabilistic, and while non-redundant with respect to compression, can con-
tain patterns that are variations of the same theme. We treat related work in more
detail in Section 2, but let us first discuss the basic features of our approach.
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To model the data, we use the powerful and versatile class of maximum entropy mod-
els. We construct a maximum entropy distribution that allows us to directly calculate
the expected frequencies of itemsets. Then, at each iteration, we return the itemset
that provides the most information, i.e., for which our frequency estimate was most
off. We update our model with this new knowledge, and continue the process. The non-
redundant model that contains the most important information is thus automatically
identified. Therefore, we paraphrase our method as ‘tell me what I need to know’.

While in general solving the maximum entropy model is infeasible, we show that in
our setting it can be solved efficiently—depending on the amount of overlap between
the selected patterns. Similarly, we give an efficient method for estimating frequencies
from the model. Further, we provide an efficient convex heuristic for effectively prun-
ing the search space when mining the most informative itemsets. This heuristic allows
us to mine collections of candidate itemsets on the fly, instead of picking them from a
larger candidate collection that has to be materialized beforehand.

Our approach does not require user-defined parameters such as a significance level
or an error threshold. In practice, however, we allow the user to specify itemset con-
straints such as a minsup threshold or a maximum size, which reduces the size of the
search space. Such constraints can be integrated quite easily into the algorithm.

We formalize the problem of identifying the most informative model both by the
Bayesian Information Criterion (BIC), and by the Minimum Description Length (MDL)
principle; both are well-known and well-understood model selection techniques that
have natural interpretations. To heuristically approximate these ideal solutions, we
introduce the MTV algorithm, for mining the most informative itemsets. Alternatively,
by its iterative nature, MTV can also mine the top-k most informative itemsets. Finally,
our approach easily allows the user to infuse background knowledge into the model (in
the form of itemset frequencies, column margins, and/or row margins), to the end that
redundancy with regard to what the user already knows can effectively be avoided.

Experiments on real and synthetic data show that our approach results in succinct,
non-redundant data summaries using itemsets, and provide intuitive descriptions of
the data. Since they only contain a small number of key patterns about the data, they
can easily be inspected manually by the user, and since redundancy is reduced to a
minimum, the user knows that every pattern he or she looks at will be informative.

An earlier version of this work appeared as Mampaey et al. [2011]. In this work we
significantly extend said paper in the following ways. We define an MDL-based quality
measure for a collection of itemsets, which is more expressive and supersedes the BIC
score presented earlier. To solve the maximum entropy model, we introduce a new and
faster algorithm employing Quick Inclusion-Exclusion to efficiently compute the sizes
of the transaction blocks in partitions induced by an itemset collection. Moreover, we
formulate how basic background information such as column margins and row margins
(i.e., the density of each row and column), can be included into the model, such that
results following from this background knowledge will not be regarded as informative,
since the background knowledge of the user determines what he or she will find in-
teresting. Further, we provide extensive experimental validation of our methods using
fourteen real and synthetic datasets covering a wide range of data characteristics.

The remainder of this paper is organized as follows. First, Section 2 discusses related
work. We cover notation and preliminaries in Section 3. Next, in Section 4 we give an
introduction to Maximum Entropy models and how to compute them efficiently, and
show how to measure the interestingness of a set of itemsets using BIC and MDL.
We give a formal problem statement in Section 5. Subsequently, we present the MTV
algorithm in Section 6. In Section 7 we report on the experimental evaluation of our
method. We round up with a discussion in Section 8 and conclude in Section 9. For
reasons of presentation some proofs have been placed in the Appendix.
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2. RELATED WORK
Selecting or ranking interesting patterns is a well-studied topic in data mining. Exist-
ing techniques can roughly be split into two groups.

2.1. Static Approaches
The first group consists of techniques that measure how surprising the support of an
itemset is compared against some null hypothesis: the more the observed frequency de-
viates from the expected value, the more interesting it is. In frequent itemset mining,
for instance, one can consider the null hypothesis to be that no itemset occurs more
than the minimum support threshold. Similarly, in tile mining [Geerts et al. 2004],
one searches for itemsets with a large area (support multiplied by size); here the un-
derlying assumption is that the area of any itemset is small. A simple and often-used
probabilistic null hypothesis is the independence model [Brin et al. 1997; Aggarwal
and Yu 1998]. More flexible models have been suggested, for example, Bayesian Net-
works [Jaroszewicz and Simovici 2004]. The major caveat of these approaches is that
the null hypothesis is static and hence we keep rediscovering the same information.
As a result, this will lead to pattern collections with high levels of redundancy.

Swap randomization was proposed by Gionis et al. [2007] and Hanhijärvi et al.
[2009] as a means to assess the significance of data mining results through random-
ization. To this end, Gionis et al. [2007] gave an algorithm by which randomized data
samples can be drawn by repeatedly swapping values locally, such that the background
knowledge is maintained—essentially, a Markov chain is defined. Then, by repeatedly
sampling such random datasets, one can assess the statistical significance of a result
by calculating empirical p-values. While the original proposal only considered row and
column margin as background knowledge, Hanhijärvi et al. [2009] extended the ap-
proach such that cluster structures and itemset frequencies can be maintained.

While a very elegant approach, swap randomization does suffer from some draw-
backs. First of all, there are no theoretical results on the mixing time of the Markov
chain, and hence one has to rely on heuristics (e.g., swap as many times as there
are ones in the data). Second, as typically very many swaps are required to obtain a
randomized sample of the data, and finding suitable swaps is nontrivial, the number
of randomized datasets we can realistically obtain is limited, and hence so is the p-
value resolution by which we measure the significance of results. As our approach is to
model the data probabilistically by the Maximum Entropy principle, we do not suffer
from convergence issues, and moreover, as our model is analytical in nature, we can
calculate exact probabilities and p-values.

2.2. Dynamic Approaches
The alternative approach to measuring informativeness statically, is to rank and select
itemsets using a dynamic hypothesis. That is, when new knowledge arrives, e.g., in
the form of an interesting pattern, the model is updated such that we take this newly
discovered information into account, and hence we avoid reporting redundant results.
The method we present in this paper falls into this category.

Besides extending the possibilities for incorporating background knowledge into a
static model, the aforementioned approach by Hanhijärvi et al. [2009] discusses that
by iteratively updating the randomization model, redundancy is eliminated naturally.

The MINI algorithm by Gallo et al. [2007] also uses row and column margins to rank
itemsets. It first orders all potentially interesting itemsets by computing their p-values
according to these margins. Then, as itemsets are added, the p-values are recomputed,
and the itemsets re-ordered according to their new p-values. However, this method
does not allow querying, and requires a set of candidates to be mined beforehand.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2012.



Summarizing Data Succinctly with the Most Informative Itemsets A:5

KRIMP, by Siebes et al. [2006]; Vreeken et al. [2011], employs the MDL principle
to select those itemsets that together compress the data best. As such, patterns that
essentially describe the same part of the data are rejected. The models it finds are
not probabilistic, and cannot straightforwardly be used to calculate probabilities (al-
though Vreeken et al. [2007] showed data strongly resembling the original can be sam-
pled from the resulting code tables). Further, while non-redundant from a compression
point of view, many of the patterns it selects are variations of the same theme. The
reason for this lies in the combination of the covering strategy and encoding KRIMP
utilizes. The former prefers long itemsets over short ones, while the second assumes
independence between all itemsets in the code table. Hence, for KRIMP it is sometimes
cheaper to encode highly specific itemsets with one relatively long code, than to encode
it with multiple slightly shorter codes, which may lead to the selection of overly specific
itemsets. Other differences to our method are that KRIMP considers its candidates in
a static order, and that it is unclear how to make it consider background knowledge.
Recent extensions of KRIMP include the SLIM algorithm by Smets and Vreeken [2012],
which finds good code tables directly from data by iteratively heuristically finding the
optimal addition to the code table, and the GROEI algorithm by Siebes and Kersten
[2011], which identifies the optimal set of k itemsets by beam search instead of identi-
fying the optimal set overall.

2.3. Modelling by Maximum Entropy
The use of maximum entropy models in pattern mining has been proposed by several
authors, e.g., [Tatti and Heikinheimo 2008; Tatti 2008; Wang and Parthasarathy 2006;
Kontonasios and De Bie 2010; De Bie 2011b]. Discovering itemset collections with good
BIC scores was suggested by Tatti and Heikinheimo [2008]. Alternatively, Tatti [2010]
samples collections and bases the significance of an itemset on its occurrence in the
discovered collections. However, in order to guarantee that the score can be computed,
the authors restrict themselves to a particular type of collections: downward closed
and decomposable collections of itemsets.

The method of Tatti [2008] uses local models. That is, to compute the support of
an itemset X, the method only uses sub-itemsets of X, and outputs a p-value. Unlike
our approach, it requires a threshold to determine whether X is important. Relatedly,
Webb [2010] defines itemsets as self-sufficient, if their support differs significantly from
what can be inferred from their sub- and supersets; therefore such a model is also local.

Wang and Parthasarathy [2006] incrementally build a maximum entropy model by
adding itemsets that deviate more than a given error threshold. The approach ranks
and adds itemsets in level-wise batches, i.e., first itemsets of size 1, then of size 2, and
so on. This will, however, not prevent redundancy within batches of itemsets.

De Bie [2011b] proposed an alternative to swap-randomization for obtaining ran-
domized datasets, by modeling the whole data by maximum entropy, using row and
column sums as background information; besides faster, and more well-founded, un-
like swap-randomization this approach does not suffer from convergence issues. Fur-
thermore, by its analytical nature, exact p-values can be calculated. Kontonasios and
De Bie [2010] used the model to analytically define an interestingness measure, Infor-
mation Ratio, for noisy tiles, by considering both the expected density of a tile, and the
complexity of transferring the true tile to the user.

Although both De Bie and ourselves model data by the Maximum Entropy principle,
there exist important differences between the two approaches. The most elementary
is that while we regard it a bag of samples from a distribution, De Bie considers the
data as a monolithic entity. That is, De Bie models the whole binary matrix, while we
construct probabilistic model for individual rows. Informally said, De Bie considers the
location of a row in the matrix important, whereas we do not. Both these approaches
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have different advantages. While our approach intuitively makes more sense when
modeling, say, a supermarket basket dataset, where the data consists of individual,
independent samples; the monolithic approach is more suited to model data where the
individual rows have meaning, say, for a dataset containing mammal presences for
geographic locations. Moreover, while for our models it is straightforward to include
itemset frequencies (which does not include specifying transaction identifiers), such
as tomatoes and pasta are sold in 80% of the transactions, this is currently not possi-
ble for the whole-dataset model. Additionally, while the De Bie framework in general
allows the background knowledge of a user to be false, in this work we only consider
background knowledge consistent with the data. As opposed to Kontonasios and De
Bie [2010], we do not just rank patterns according to interestingness, but formalize
model selection techniques such as BIC or MDL such that we can identify the optimal
model, and hence avoid discovering overly complex models.

As overall comments to the methods described above, we note that in contrast to our
approach, most of the above methods require the user to set one or several parameters
to asses the informativeness of itemsets, e.g., a maximum error threshold or a signif-
icance level (although we do allow thresholding the support of candidate itemsets).
Many also cannot easily be used to estimate the frequency of an itemset. Further, all
of them are two-phase algorithms, i.e., they require that the user first provides a col-
lection of candidate (frequent) itemsets to the algorithm, which must be completely
mined and stored first, before the actual algorithm itself is run.

3. PRELIMINARIES AND NOTATION
This section provides some preliminaries and the notation that we will use throughout
the rest of this paper.

By a transaction we mean a binary vector of size N generated by some unknown
distribution. The ith element in a random transaction corresponds to an attribute or
item ai, a Bernoulli random variable. We denote the set of all items byA = {a1, . . . , aN}.
We denote the set of all possible transactions by T = {0, 1}N.

The input of our method is a binary dataset D, which is a bag of |D| transactions.
Given the data D we define an empirical distribution

qD(a1 = v1, . . . , aN = vN ) = |{t ∈ D | t = v}|/|D| .
An itemset X is a subset of A. For notational convenience, given a distribution p, an

itemset X = {x1, . . . , xL}, and a binary vector v of length L, we often use p(X = v)
to denote p(x1 = v1, . . . , xL = vL). If v consists entirely of 1’s, we use the notation
p(X = 1). A transaction t is said to support an itemset X if it has 1’s for all attributes
that X identifies. As such, the support of an itemset X in a database D is defined as

supp(X) = | {t ∈ D | πx1(t) = 1, . . . , πxL
(t) = 1} | ,

where πx(t) ∈ {0, 1} is the projection of transaction t onto item x. Analogously, the
frequency of an itemset X in a dataset D is defined as

fr(X) = supp(X)/|D| = qD(X = 1) .

An indicator function SX : T → {0, 1} of an itemset X maps a transaction t to a
binary value such that SX(t) = 1 if and only if t supports X.

The entropy of a distribution p over T is defined as

H(p) = −
∑
t∈T

p(A = t) log p(A = t) ,

where the base of the logarithm is 2, and by convention 0 log 0 = 0. The entropy of p is
the expected number of bits needed to optimally encode a transaction t.
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Finally, the Kullback-Leibler divergence [Cover and Thomas 2006] between two dis-
tributions p and q over T is defined as

KL(p ‖ q) =
∑
t∈T

p(A = t) log
p(A = t)

q(A = t)
.

Intuitively, the KL divergence between two distributions p and q is the average number
of extra bits required to encode data generated by p using a coding optimal for q. Since
p defines the optimal coding distribution for this data, on average, it will always cost
extra bits when we encode data generated by p using a coding distribution q 6= p, and
hence KL(p ‖ q) is non-negative. The KL divergence equals 0 if and only if p equals q.

4. IDENTIFYING THE BEST SUMMARY
Our goal is to discover the collection C of itemsets and frequencies that is the most
informative for a dataset D, while being succinct and as little redundant as possible.
Here, by informative we mean whether we are able to reliably describe, or predict, the
data using these itemsets and their frequencies.

By non-redundancy we mean that, in terms of frequency, every element of C provides
significant information for describing the data that cannot be inferred from the rest of
the itemset frequencies in C. This is equivalent to requiring that the frequency of an
itemset X ∈ C should be surprising with respect to C \ X. In other words, we do not
want C to be unnecessarily complex as a collection, or capture spurious information,
since we only want it to contain itemsets that we really need.

Informally, assume that we have a quality score s(C, D) which measures the quality
of an itemset collection C with respect to D. Then our aim is to find that C with the
highest score s(C, D). Analogously, if we only want to know k itemsets, we aim to find
the collection C of size at most k, with the highest score s(C, D).

Next, we will detail how we define our models, how we define this score, provide
theoretical evidence why it is a good choice, and discuss how to compute it efficiently.

EXAMPLE 4.1. As a running example, assume that we have a binary dataset D with
eight items, a to h. Furthermore, consider the set of itemsets C = {abc, cd , def } with
frequencies 0.5, 0.4 and 0.8, respectively. Assume for the moment that based on C, our
method predicts that the frequency of the itemset agh is 0.19. Now, if we observe in the
data that fr(agh) = 0.18, then we can safely say that agh is redundant with regard to
what we already know, as it does not contribute a lot of novel information, and the
slight deviation from the expected value may even be coincidental. On the other hand,
if fr(agh) = 0.7, then the frequency of agh is surprising with respect to C, and hence
adding it to C would strongly increase the amount of information C gives us about the
data; in other words C ∪ {agh} provides a substantially improved description of D.

4.1. Maximum Entropy Model
In our approach we make use of maximum entropy models. This is a class of probabilis-
tic models that are identified by the Maximum Entropy principle [Csiszár 1975; Jaynes
1982]. This principle states that the best probabilistic model is the model that makes
optimal use of the provided information, and that is fully unbiased (i.e., fully random,
or, maximally entropic) otherwise. This property makes these models very suited for
identifying informative patterns: by using maximum entropy models to measure the
quality of a set of patterns, we know that our measurement only relies on the informa-
tion we provide it, and that it will not be thrown off due to some spurious structure in
the data. These models have a number of theoretically appealing properties, which we
will discuss after a formal introduction.
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Assume that we are given a collection of itemsets and corresponding frequencies

〈C,Φ〉 = 〈{X1, . . . , Xk} , {f1, . . . , fk}〉 , (1)

where Xi ⊆ A and fi ∈ [0, 1], for i = 1, . . . , k. Note that we do not require that the
frequencies fi of the itemsets are equal to the frequencies fr(Xi) in the data. If this
does hold, we will call 〈C,Φ〉 consistent with D. For notational convenience, we will at
times omit writing the frequencies Φ, and simply use C = {X1, . . . , Xk}, especially when
it is clear what the corresponding frequencies are. Now, we consider those distributions
over the set of all transactions T that satisfy the constraints imposed by 〈C,Φ〉. That
is, we consider the following set of distributions

P〈C,Φ〉 = {p | p(Xi = 1) = fi, for i = 1, . . . , k} . (2)

In the case that P〈C,Φ〉 is empty, we call 〈C,Φ〉 inconsistent. Among these distributions
we are interested in only one, namely the unique distribution maximizing the entropy

p∗〈C,Φ〉 = arg max
p∈P〈C,Φ〉

H(p) .

Again, for notational convenience we will often simply write p∗C , or even omit 〈C,Φ〉
altogether, especially when they are clear from the context.

The following famous theorem states that the maximum entropy model has an expo-
nential form. This form will help us to discover the model and will be useful to compute
the quality score of a model.

THEOREM 4.2 (THEOREM 3.1 IN [CSISZÁR 1975]). Given a collection of itemsets
and frequencies 〈C,Φ〉 = 〈{X1, . . . , Xk} , {f1, . . . , fk}〉, let P〈C,Φ〉 be the set of distributions
as defined in Eq. 2. If there is a distribution in P〈C,Φ〉 that has only nonzero entries, then
the maximum entropy distribution p∗〈C,Φ〉 can be written as

p∗〈C,Φ〉(A = t) = u0

∏
X∈C

u
SX(t)
X , (3)

where uX ∈ R, and u0 is a normalization factor such that p∗〈C,Φ〉 is a proper distribution.

Note that the normalization factor u0 can be thought of as corresponding to the
constraint that the empty itemset ∅ should have a frequency f∅ = 1. Theorem 4.2 has
a technical requirement that P needs to contain a distribution with nonzero entries.
The easiest way to achieve this is to apply a Bayesian shift [Gelman et al. 2004] by
redefining the frequencies f ′i = (1 − ε)fi + ε2−|Xi| for some small ε > 0. This way the
frequencies remain approximately the same, but no transaction has zero probability.

4.2. Identifying the Best Model
Here we describe how we can quantify the goodness of a pattern collection.

A natural first choice would be to directly measure the goodness of fit, using the
log-likelihood of the maximum entropy model, that is,

log p∗〈C,Φ〉(D) = log
∏
t∈D

p∗〈C,Φ〉(A = t) =
∑
t∈D

log p∗〈C,Φ〉(A = t) .

Note that if 〈C,Φ〉 is inconsistent, p∗ does not exist. In this case we define the likelihood
to be zero, and hence the log-likelihood to be −∞.

The following corollary shows that for exponential models, we can easily calculate
the log-likelihood.
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COROLLARY 4.3 (OF THEOREM 4.2). The log-likelihood of the maximum entropy
distribution p∗〈C,Φ〉 for a collection of itemsets and frequencies 〈C,Φ〉 is equal to

log p∗〈C,Φ〉(D) = |D|
(

log u0 +
∑

(Xi,fi)∈〈C,Φ〉

fi log uXi

)
.

PROOF. See the Appendix.

Thus, to calculate the log-likelihood of a collection 〈C,Φ〉, it suffices to compute the
parameters uX and u0 of the corresponding distribution p∗〈C,Φ〉.

The following theorem states that if we are searching for collections with a high
likelihood, we can restrict ourselves to collections that are consistent with the data.

THEOREM 4.4. For a fixed collection of itemsets C = {X1, . . . , Xk}, the likelihood
p∗〈C,Φ〉(D) is maximized if and only if 〈C,Φ〉 is consistent with D, that is, fi = fr(Xi) for
all i = 1 . . . , k.

For our goal, maximum entropy models are theoretically superior over any other
model. Let us discuss why. Let D1 and D2 be two datasets such that fr(X | D1) =
fr(X | D2) for anyX ∈ C. Let p∗1 and p∗2 be the corresponding maximum entropy models,
then, by definition, p∗1 = p∗2. In other words, the model depends only the support of
the chosen itemsets. This is a natural requirement, since we wish to measure the
quality of the statistics in C and nothing else. Similarly, Corollary 4.3 implies that
p∗1(D2) = p∗1(D1). This is also a natural property because otherwise, the score would
be depending on some statistic not included in C. Informally said, the scores are equal
if we cannot distinguish between D1 and D2 using the information C provides us. The
next theorem states that among all such models, the maximum entropy model has
the best likelihood, in other words, the maximum entropy model uses the available
information as efficiently as possible.

THEOREM 4.5. Assume a collection of itemsets C = {X1, . . . , Xk} and let p∗C be the
maximum entropy model, computed from a given dataset D. Assume also an alter-
native model r(A = t | f1, . . . , fk), where fi = fr(Xi | D), that is, a statistical model
parametrized by the frequencies of C. Assume that for any two datasets D1 and D2,
where fr(X | D1) = fr(X | D2) for any X ∈ C, it holds that

1/|D1| log r(D1 | f1, . . . , fk) = 1/|D2| log r(D2 | f1, . . . , fk) .

Then p∗C(D) ≥ r(D) for any dataset D.

PROOF. See the Appendix.

Using only log-likelihood to evaluate a model, however, suffers from overfitting:
larger collections of itemsets will always provide more information, hence allow for
better estimates, and therefore have a better log-likelihood. Consequently, we need to
prevent our method from overfitting. In order to do so, we will explore the Bayesian
Information Criterion (BIC), and the Minimum Description Length (MDL) principle—
both of which are well-known and well-founded model selection techniques. We start
by discussing BIC, which is the least strict, and least involved of the two.

The Bayesian Information Criterion (BIC) measures the quality of a model by taking
both its log-likelihood, and the number of parameters of said model into account. It
favors models that fit the data well using few parameters; in our setting, the number
of parameters of the model p∗ corresponds exactly to the number of itemsets k. It has
a strong theoretical support in Bayesian model selection [Schwarz 1978].
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Definition 4.6. Given a collection of itemsets 〈C,Φ〉 = 〈{X1, . . . , Xk}, {f1, . . . , fk}〉,
the BIC score with respect to a dataset D is defined as

BIC(〈C,Φ〉, D) = − log p∗〈C,Φ〉(D) + k/2 log |D| . (4)

The better a model fits the data, the higher its likelihood. On the other hand, the
more parameters the model has—i.e., the more complex it is—the higher its penalty.
Therefore, it is be possible that a model that fits the data slightly worse, but contains
few parameters, is favored by BIC over a model that fits the data better, but is also
more complex. From Corollary 4.3 we see that the first term of the BIC score is equal
to |D|H(p∗〈C,Φ〉). Hence, the likelihood term grows faster than the penalty term with
respect to the size of the D. As such, the more data (or evidence) we have, the more
complicated the model is allowed to be.

COROLLARY 4.7 (OF THEOREM 4.4). For a fixed collection of itemsets C =
{X1, . . . , Xk}, the BIC score BIC(〈C,Φ〉, D) is minimized if and only if 〈C,Φ〉 is consis-
tent with D, that is, fi = fr(Xi) for all i.

PROOF. Follows directly from Theorem 4.4 and the fact that the BIC penalty term,
k/2 log |D|, does not depend on the frequencies fi.

While the BIC score helps to avoid overfitting, it is somewhat simplistic. That is, it
only incorporates the number of itemsets to penalize a summary, and not their com-
plexity. As stated in the introduction, if possible, we would typically rather be given
some number of general patterns than the same number of highly involved patterns.
MDL provides us a means to define a score that also takes into account the complexity
of the itemsets in C.

The Minimum Description Length (MDL) principle [Rissanen 1978; Grünwald 2005],
like its close cousin MML (Minimum Message Length) [Wallace 2005], is a practical
version of Kolmogorov Complexity [Li and Vitányi 1993]. All three embrace the slogan
Induction by Compression. The MDL principle can be roughly described as follows.

Given a dataset D and a set of models M for D, the best model M ∈ M is the one
that minimizes

L(M) + L(D |M)

in which

—L(M) is the length, in bits, of the description of the model M , and
—L(D |M) is the length, in bits, of the description of the data, encoded with M .

This is called two-part MDL, or crude MDL. This stands opposed to refined MDL,
where model and data are encoded together [Grünwald 2007]. We use two-part MDL
because we are specifically interested in the model: the set of itemsets that yields
the best description length. Further, although refined MDL has stronger theoretical
foundations, it cannot be computed except for some special cases. We should also point
out that refined MDL is asymptotically equivalent to BIC if the number of transactions
goes to infinity and the number of free parameters stays fixed. However, for moderate
numbers of transactions there may be significant differences. Generally speaking, MDL
tends to be more conservative than BIC [Grünwald 2007].

To use MDL, we have to define what our set of modelsM is, how a model M describes
a database, and how all of this is encoded in bits. Intuitively, we want to favor item-
set collections that are small, i.e., collections which can describe the data well, using
few itemsets. At the same time, we also prefer collections with small itemsets over
collections with large ones.
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Definition 4.8. Given a collection of itemsets 〈C,Φ〉 = 〈{X1, . . . , Xk}, {f1, . . . , fk}〉,
let x =

∑k
i=1 |Xi|. We define the MDL score of 〈C,Φ〉 with respect to the dataset D as

MDL(〈C,Φ〉, D) = L(D | 〈C,Φ〉) + L(〈C,Φ〉) , (5)

where
L(D | 〈C,Φ〉) = − log p∗〈C,Φ〉(D) and L(〈C,Φ〉) = l1k + l2x+ 1 ,

with
l1 = log |D|+N log(1 +N−1) + 1 ≈ log |D|+ log e+ 1

and
l2 = logN .

Whenever D is clear form the context, we simply write MDL(〈C,Φ〉).
The first term is simply the negative log-likelihood of the model, which corresponds to
the description length of the data given the maximum entropy model induced by C. The
second part is a penalty term, which corresponds to the description length of the model.
It is a linear function of k = |C| and x =

∑
i |Xi|, of which the coefficients depend on N

and |D|. How it is derived is explained further below. The smaller this score, the better
the model. Given two collections with an equal amount of itemsets, the one containing
fewer items is penalized less; conversely, if they have the same total number of items,
the one that contains those items in fewer itemsets is favored. Consequently, the best
model is identified as the model that provides a good balance between high likelihood
and low complexity. Moreover, we automatically avoid redundancy, since models with
redundant itemsets are penalized for being too complex, without sufficiently improving
the likelihood.

With this quality score we evaluate collections of itemsets, rather than the (max-
imum entropy) distributions we construct from them. The reason for this is that we
want to summarize the data with a succinct set of itemsets, not model it with a distri-
bution. A single distribution, after all, may be described by many different collections
of itemsets, simple or complex. Further, we assume that the setM of models consists
of collections of itemsets which are represented as vectors, rather than as sets. This
choice keeps the quality score function computationally simple and intuitive, and is
not disadvantageous: if C contains duplicates, they simply increase the penalty term.
Additionally, we impose no restrictions on the consistency of 〈C,Φ〉, that is, there are
collections 〈C,Φ〉 for which P〈C,Φ〉 is empty, and hence the maximum entropy distribu-
tion does not exist. As mentioned above, in this case we define the likelihood to be zero,
and hence the description length is infinite.

We now describe the derivation of the penalty term, which equals

k log |D|+ x logN + (k + 1) + kN log(1 +N−1) .

To describe an itemset we encode a support using log |D| bits and the actual items
in the itemsets using logN bits. This gives us the first two terms. We use the third
term to express whether there are more itemsets, one bit after each itemset1. and one
extra bit to accommodate the case C = ∅. The term kN log(1 +N−1) is a normalization
factor, to ensure that the encoding is optimal for the prior distribution over all pattern
collections. That is, the encoding corresponds to a distribution

prior(〈C,Φ〉) = 2−l1k−l2x−1 ,

1Although it is intuitive, and it provides good results in practice, using 1 bit to signal the end of an itemset is
slightly inefficient; it could be further optimized by the decision tree encoding of Wallace and Patrick [1993].
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which assigns high probability to simple summaries, and low probability to complex
ones. The following equation shows that the above encoding is optimal for this prior.

∑
〈C,Φ〉

prior(〈C,Φ〉) =

∞∑
k=0

kN∑
x=0

(
kN

x

)
|D|k2−l1k−l2x−1

=

∞∑
k=0

2−k−12−kN log(1+N−1)2−k log |D||D|k
kN∑
x=0

(
kN

x

)
N−x

=

∞∑
k=0

2−k−12−kN log(1+N−1)(1 +N−1)kN

=

∞∑
k=0

2−k−1 = 1

The following corollary shows that for identifying the MDL optimal model, it suffices
to only consider summaries that are consistent with the data.

COROLLARY 4.9 (OF THEOREM 4.4). For a fixed collection of itemsets C =
{X1, . . . , Xk}, the MDL score MDL(〈C,Φ〉, D) is maximized if and only if 〈C,Φ〉 is con-
sistent with D, that is, fi = fr(Xi) for all i.

PROOF. Follows directly from Theorem 4.4 and the fact that for a fixed C, the fre-
quencies fi are encoded with a constant length log |D|, and hence the penalty term is
always the same.

Therefore, in the rest of this paper we will assume that 〈C,Φ〉 is always consistent with
D, and hence we will omit Φ from notation.

4.3. Reducing Redundancy
Here we show that our score favors collections of itemsets that exhibit low redun-
dancy, and make a theoretical link with some popular lossless redundancy reduction
techniques from the pattern mining literature. Informally, we define redundancy as
anything that does not deviate (much) from our expectation, or in other words is un-
surprising given the information that we already have. The results below hold for MDL
as well as for BIC, and hence we write s to denote either score.

A baseline technique for ranking itemsets is to compare the observed frequency
against the expected value of some null hypothesis. The next theorem shows that if
the observed frequency of an itemset X agrees with the expected value p∗(X = 1),
then X is redundant.

THEOREM 4.10. Let C be a collection of itemsets and let p∗ be the corresponding
maximum entropy model. Let X /∈ C be an itemset such that fr(X) = p∗(X = 1). Then
s(C ∪ {X} , D) > s(C, D).

PROOF. We will prove the theorem by showing that the likelihood terms for both
collections are equal. Define the collection C1 = C∪{X} and let P1 be the corresponding
set of distributions. Let p∗1 be the distribution maximizing the entropy in P1. Note
that since C ⊂ C1, we have P1 ⊆ P and hence H(p∗1) ≤ H(p∗). On the other hand,
the assumption in the theorem implies that p∗ ∈ P1 and so H(p∗) ≤ H(p∗1). Thus,
H(p∗) = H(p∗1) and since the distribution maximizing the entropy is unique, we have
p∗ = p∗1. This shows that the likelihood terms in s(C, D) and s(C1, D) are equal. The
penalty term in the latter is larger, which concludes the proof.
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Theorem 4.10 states that adding an itemset X to C improves the score only if its ob-
served frequency deviates from the expected value. The amount of deviation required
to lower the score, is determined by the penalty term. This gives us a convenient ad-
vantage over methods that are based solely on deviation, since they require a user-
specified threshold.

Two useful corollaries follow from Theorem 4.10, which connect our approach to well-
known techniques for removing redundancy from pattern set collections—so-called
condensed representations. The first corollary relates our approach to closed item-
sets [Pasquier et al. 1999], and generator itemsets (also known as free itemsets [Bouli-
caut et al. 2003]). An itemset is closed if all of its proper supersets have a strictly lower
support. An itemset is called a generator if all of its proper subsets have a strictly
higher support.

COROLLARY 4.11 (OF THEOREM 4.10). Let C be a collection of itemsets. Assume
that X,Y ∈ C such that X ⊂ Y and fr(X) = fr(Y ) 6= 0. Assume that Z /∈ C such that
X ⊂ Z ⊂ Y . Then s(C ∪ {Z} , D) > s(C, D).

PROOF. Let p ∈ P, as defined in Eq. 2. We have that p(X = 1) = fr(X) = fr(Y ) =
p(Y = 1). Hence we must have p(Z = 1) = fr(Z). Since p∗ ∈ P, it must hold that
p∗(Z = 1) = fr(Z). The result follows from Theorem 4.10.

Corollary 4.11 implies that if the closure and a generator of an itemset Z are already
in the collection, then adding Z will worsen the score. The second corollary provides a
similar relation with non-derivable itemsets [Calders and Goethals 2007]. An itemset
is called derivable if its support can be inferred exactly given the supports of all of its
proper subsets.

COROLLARY 4.12 (OF THEOREM 4.10). Let C be a collection of itemsets. Assume
that X /∈ C is a derivable itemset and all proper sub-itemsets of X are included in C.
Then s(C ∪ {X} , D) > s(C, D).

PROOF. The proof of this corollary is similar to the proof of Corollary 4.11.

An advantage of our method is that it can avoid redundancy in a very general
way. The closed and non-derivable itemsets are two types of lossless representations,
whereas our method additionally can give us lossy redundancy removal. For example,
in the context of Corollary 4.11, we can choose to reject X from C even if fr(X) does not
equal fr(Y ) exactly, and as such we can prune redundancy more aggressively.

4.4. Efficiently Computing the Maximum Entropy Model
Computing the maximum entropy model comes down to finding the uX and u0 pa-
rameters from Theorem 4.2. To achieve this, we use the well-known Iterative Scaling
procedure by Darroch and Ratcliff [1972], which is given here as Algorithm 1. Sim-
ply put, it iteratively updates the parameters of an exponential distribution, until
it converges to the maximum entropy distribution p∗ which satisfies a given set of
constraints—itemset frequencies in our case. The distribution is initialized with the
uniform distribution, which is done by setting the uX parameters to 1, and u0 = 2−N

to properly normalize the distribution. Then, for each itemset X ∈ C, we adjust the
corresponding parameter uX to enforce p(X = 1) = fr(X) (line 5,6). This process is
repeated in a round robin fashion until p converges, and it can be shown (see Darroch
and Ratcliff [1972]) that p always converges to the maximum entropy distribution p∗.
Typically the number of iterations required for convergence is low (usually <10 in our
experiments).
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ALGORITHM 1: ITERATIVESCALING(C)
input : itemset collection C = {X1, . . . , Xk}, frequencies fr(X1) , . . . , fr(Xk)
output : parameters uX and u0 of the maximum entropy distribution p∗C satisfying

p∗C(Xi) = fr(Xi) for all i
1 initialize p
2 repeat
3 for each X in C do
4 compute p(X = 1)

5 uX ← uX
fr(X)

p(X=1)
1−p(X=1)
1−fr(X)

6 u0 ← u0
1−fr(X)

1−p(X=1)

7 end
8 until p converges
9 return p

EXAMPLE 4.13. In our running example, with C = {abc, cd , def }, the maximum en-
tropy model has three parameters u1, u2, u3, and a normalization factor u0. Initially
we set u1 = u2 = u3 = 1 and u0 = 2−N = 2−8. Then, we iteratively loop over the
itemsets and scale the parameters. For instance, for the first itemset abc with frequency
0.5, we first compute its current estimate to be 2−3 = 0.125. Thus, we update the first
parameter u1 = 1 · (0.5/2−3) · ((1 − 2−3)/0.5) = 7. The normalization factor becomes
u0 = 2−8 · 0.5/(1 − 2−3) ≈ 2.2 · 10−3. Next, we do the same for cd , and so on. After a
few iterations, the model parameters converge to u1 = 28.5, u2 = 0.12, u3 = 85.4 and
u0 = 3 · 10−4.

Straightforward as this procedure may be, the greatest computational bottleneck is
the inference of the probability of an itemset on line 4 of the algorithm,

p(X = 1) =
∑
t∈T

SX (t)=1

p(A = t) . (6)

Since this sum ranges over all possible transactions supporting X, it is infeasible to
calculate by brute force, even for a moderate number N items. In fact, it has been
shown that querying the maximum entropy model is PP-hard in general [Tatti 2006].

Therefore, in order to be able to query the model efficiently, we introduce a partition-
ing scheme, which makes use of the observation that many transactions have the same
probability in the maximum entropy distribution. Remark that an itemset collection C
partitions T into blocks of transactions which support the same set of itemsets. That
is, two transactions t1 and t2 belong to the same block T if and only if SX(t1) = SX(t2)
for all X in C. Therefore, we know that p(A = t1) = p(A = t2) if p is of the form in Eq. 3.
This property allows us to define SX(T ) = SX(t) for any t ∈ T and X ∈ C. We denote
the partition of T induced by C as TC . Then the probability of an itemset is

p(X = 1) =
∑
T∈TC

SX (T )=1

p(A ∈ T ) . (7)

The sum in Eq. 6 has been reduced to a sum over blocks of transactions, and the infer-
ence problem has been moved from the transaction space T to the block space TC . In
our setting we will see that |TC | � |T |, which makes inference a lot more feasible. In
the worst case, this partition may contain up to 2|C| blocks, however, through the inter-
play of the itemsets, it can be as low as |C| + 1. As explained below, we can exploit, or
even choose to limit, the structure of C, such that practical computation is guaranteed.
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ALGORITHM 2: COMPUTEBLOCKSIZES(C)
input : itemset collection C = {X1, . . . , Xk}
output : block sizes e(T ) for each T in TC

1 for T in TC do
2 I ←

⋃
{X | X ∈ sets(T ; C)}

3 c(T )← 2N−|I|

4 end
5 sort the blocks in TC
6 for Ti in TC do
7 e(Ti)← c(Ti)
8 for Tj in TC , with j < i do
9 if Ti ⊂ Tj then

10 e(Ti)← e(Ti)− e(Tj)
11 end
12 end
13 end
14 return TC

All we must do now is obtain the block probabilities p(A ∈ T ). Since all transactions
t in a block T have the same probability

p(A = t) = u0

∏
X∈C

u
SX(t)
X ,

it suffices to compute the number of transactions in T to get p(A ∈ T ). So, let us define
e(T ) to be the number of transactions in T , then

p(A ∈ T ) =
∑
t∈T

p(A = t) = e(T )u0

∏
X∈C

u
SX(T )
X .

Algorithm 2 describes COMPUTEBLOCKSIZES, as given in [Mampaey et al. 2011]. In
order to compute the block sizes e(T ), we introduce a partial order on TC . Let

sets(T ; C) = {X ∈ C | SX(T ) = 1}
be the itemsets of C that occur in the transactions of T . Note that every block corre-
sponds to a unique subset of C; conversely a subset of C either corresponds to an empty
block of transactions, or to a unique nonempty transaction block. We can now define
the partial order on TC as follows,

T1 ⊆ T2 if and only if sets(T1; C) ⊆ sets(T2; C) .
In order to compute the size e(T ) of a block, we start from its cumulative size,

c(T ) =
∑
T ′⊇T

e(T ′) , (8)

which is the number of transactions that contain at least all the itemsets in sets(T ; C).
For a given block T , let I =

⋃
{X | X ∈ sets(T ; C)}. That is, I are the items that

occur in all transactions of T . Then it holds that c(T ) = 2N−|I|, where N is the total
number of items. To obtain the block sizes e(T ) from the cumulative sizes c(T ), we use
the Inclusion-Exclusion principle. To that end, the blocks are topologically sorted such
that if T2 ⊂ T1, then T1 occurs before T2. The algorithm then reversely iterates over
the blocks in a double loop, subtracting block sizes, using the identity

e(T ) = c(T )−
∑
T ′)T

e(T ′) . (9)
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Table I: Transaction blocks for the running example above, with X1 = abc, X2 = cd ,
and X3 = def .

X1 X2 X3 c(T ) e(T ) p(A = t)

1 1 1 4 4 u0u1u2u3

1 1 0 16 12 u0u1u2

1 0 0 32 16 u0u1

0 1 1 16 12 u0u2u3

0 1 0 64 36 u0u2

0 0 1 32 16 u0u3

0 0 0 256 160 u0

EXAMPLE 4.14. Assume again that we have a dataset with eight items (a to h ), and
an itemset collection containing three itemsets C = {abc, cd , def } with frequencies 0.5,
0.4 and 0.8, respectively.

Table I shows the sizes of the transaction blocks. Note that while there are 256 trans-
actions in T , there are only 7 blocks in TC , whose sizes and probabilities are to be com-
puted (the eighth combination ‘abc and def but not cd ’ is clearly impossible).

Let us compute the size of the first three blocks. For the first block, I = abcdef and
therefore c(T ) = 4, for the second block I = abcd , and for the third block I = abc.
Since the first block is the maximum with respect to the order ⊆, its cumulative size is
simply its size, so e(T ) = 4. For the second block, we subtract the first block, and obtain
e(T ) = 16 − 4 = 12. From the third block we subtract the first two blocks, and we have
e(T ) = 32 − 12 − 4 = 16. Now, to compute, say, p(abc = 1), we simply need the sizes of
the blocks containing abc, and the current model parameters,

p(abc = 1) = 4(u0u1u2u3) + 12(u0u1u2) + 16(u0u1) .

Since the algorithm performs a double loop over all transaction blocks, the complex-
ity of COMPUTEBLOCKSIZES equalsO(|TC |2). Note that topologically sorting the blocks
(line 5) takes O(|TC | log |TC |) ≤ O(|TC |k), however, we can also simply ensure that the
blocks are topologically sorted by construction.

In this work, we substantially improve upon the COMPUTEBLOCKSIZES algorithm,
by using a generalized version of the Quick Inclusion-Exclusion (QIE) algorithm, in-
troduced by Calders and Goethals [2006]. The new algorithm presented here, called
QIEBLOCKSIZES, has a lower complexity than COMPUTEBLOCKSIZES. The idea be-
hind Quick Inclusion-Exclusion is to reuse intermediate results to reduce the number
of subtractions. The standard QIE algorithm computes the supports of all generalized
itemsets based on some given itemset of size k (a generalized itemset is an itemset con-
taining both positive and negative items, e.g., abmeans a and not b), using the supports
of all of its (positive) subsets. For instance, from the supports of ab, a, b, and the empty
set, we can infer the support of ab: supp

(
ab
)

= supp(∅) − supp(a) − supp(b) + supp(ab).
QIE therefore works on an array of size 2k, which allows an implementation of the al-
gorithm to employ efficient array indexing using integers, and makes it easy to locate
subsets using bit operations on the indices—where a positive item is represented by a
1 and a negative item by a 0.

In our setting, we want to find the sizes of transaction blocks which correspond to
subsets of C, starting from the cumulative sizes of said blocks. We can represent each
block T by a binary vector defined by the indicator functions SX . However, an impor-
tant difference with the QIE algorithm is that not every possible binary vector neces-
sarily corresponds to a (nonempty) transaction block, i.e., it is possible that |TC | < 2k.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2012.



Summarizing Data Succinctly with the Most Informative Itemsets A:17

Clearly, if |TC | � 2k, it would be inefficient to use an array of size 2k. Therefore, we
must take this fact into account. Before we can discuss the algorithm itself, we first
need to introduce the following definitions.

Definition 4.15. Given a collection of itemsets C = 〈X1, . . . , Xk〉 and an integer j ∈
{0, . . . , k}, the j-prefix of C is defined as

Cj = {X1, . . . , Xj} .

For a subcollection G of C, we define the closure : 2C → 2C as

closure(G) = {Xi ∈ C | Xi ⊆
⋃
X∈G

X} .

The j-closure of G is defined as

closure(G, j) = G ∪ {Xi ∈ C | Xi /∈ Cj and Xi ⊆
⋃
X∈G

X}

= G ∪ (closure(G) \ Cj)
The following lemma states that there is a one-to-one mapping between the closed

subsets G of C, and the transaction blocks of TC .

LEMMA 4.16. Let G be an itemset collection. Then G = closure(G) if and only if there
exists a block T in TC such that G = sets(T ; C).

PROOF. Assume that G = closure(G). Let U =
⋃

X∈G X and let t ∈ T be such that
ti = 1, if ai ∈ U , and ti = 0 otherwise. Let T ∈ TC be the block containing t. If X ∈ G,
then SX(t) = 1. On the other hand, if SX(t) = 1, then X ⊆ U and consequently X ∈
closure(G) = G. Hence, G = sets(T ; C).

Assume now that there is a T such that G = sets(T ; C), let t ∈ T and U =
⋃

X∈G X.
It follows that SU (t) = 1. Let X ∈ closure(G), then X ⊆ U and SX(t) = 1. Hence,
X ∈ sets(T ; C) = G. Since G ⊆ closure(G), the lemma follows.

Using the above lemma, we can introduce the following function, which maps sub-
sets of C to their corresponding blocks.

Definition 4.17. For a subset G of a collection of itemsets C, we define

block(G) =

{
T ∈ TC s.t. sets(T ; C) = G if closure(G) = G ,
∅ otherwise .

That is, if G is closed, the block function simply maps it to the corresponding block
in TC . If G is not closed, it is mapped to the empty transaction block. Note that
block(sets(T ; C)) = T for all T ∈ TC .

QIEBLOCKSIZES is given as Algorithm 3. As before, we first compute the cumulative
size of every block T in TC (line 3). Then, for each itemset Xi (line 5), the algorithm
subtracts from each block T for which Xi /∈ G = sets(T ; C), the current size of the
block T ′ corresponding to G′ = closure(G ∪ {Xi}, i− 1) if T ′ exists in TC , i.e., the size of
T ′ = block(G′).

The following theorem states that QIEBLOCKSIZES correctly computes the sizes of
all blocks of transactions in TC . For the proof, please refer to the Appendix.

THEOREM 4.18. Given a collection of itemsets C = {X1, . . . , Xk}, let TC be the cor-
responding partition with respect to C. The algorithm QIEBLOCKSIZES correctly com-
putes the block sizes e(T ) for T ∈ TC .
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ALGORITHM 3: QIEBLOCKSIZES(C)
input : itemset collection C = {X1, . . . , Xk}
output : block sizes e(T ) for each T in TC

1 for T in TC do
2 I ←

⋃
{X | X ∈ sets(T ; C)}

3 c(T )← 2N−|I|

4 end
5 for i = 1, . . . , k do
6 foreach T in TC do
7 G ← sets(T ; C)
8 if Xi /∈ G then
9 G′ ← closure(G ∪ {Xi}, i− 1)

10 T ′ ← block(G′)
11 if T ′ 6= ∅ then
12 e(T )← e(T )− e(T ′)
13 end
14 end
15 end
16 end

EXAMPLE 4.19. Let us apply QIEBLOCKSIZES to our running example. Recall that
C = {abc, cd , def } (see Table I). For brevity, we restrict ourselves to the first three blocks.
In step 1, the first three blocks remain unaffected, since they all contain X1. In step
2, only the third block does not contain X2; we subtract the second block from it, to
obtain 32 − 16 = 16. In step 3, we subtract the first block from the second block, and
get 16 − 4 = 12. From the third block we do not have to subtract anything, since the
3-closure of the corresponding block does not appear in TC . We have thus calculated the
sizes of the first three blocks using two subtractions, rather than three, as was previously
required in Example 4.14.

Finally, we can significantly optimize the algorithm as follows. Assume that we can
divide C into two disjoint groups C1 and C2, such that if X1 ∈ C1 and X2 ∈ C2, then
X1 ∩ X2 = ∅. Let B =

⋃
C1 be the set of items occurring in C1. Theorem 4.2 implies

that p∗(A) = p∗(B)p∗(A\B). In other words, the maximum entropy distribution can be
factorized into two independent distributions, namely p∗(B) and p∗(A \ B), and more
importantly, the factor p∗(B) depends only on C1. Consequently, if we wish to compute
the probability p∗(X = 1) such that X ⊂ B, we can ignore all variables outside B and
all itemsets outside C1. The number of computations to be performed by QIEBLOCK-
SIZES can now be greatly reduced, since in the case of independence it holds that
|TC | = |TC1 | × |TC2 |, and we can simply compute the block sizes for TC1 and TC2 sep-
arately. Naturally, this decomposition can also be applied when there are more than
two disjoint groups of itemsets.

Moreover, in order to guarantee that we can apply the above separation, we could
reduce the solution space slightly by imposing a limit on the number of items (or
itemsets) per group, such that the number of blocks for each group remains small.
Alternatively, we could first partition the items of the dataset into smaller, approx-
imately independent groups, and subsequently apply the algorithm for each group
separately—for which the approach of Mampaey and Vreeken [2010] of identifying
the optimal partitioning by MDL would be a logical choice.
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4.5. Querying the Model
We have seen how we can efficiently query the probability of an itemset X ∈ C when
given the maximum entropy distribution p∗C . In order to compute the probability of
an arbitrary itemset Y that is not a member of C, we do the following. We first set
C′ = C ∪ {Y } and compute the block probabilities e(T ′) for all T ′ in TC′ by calling
QIEBLOCKSIZES. Then, we can simply use the parameters of p∗C to compute p∗C(Y = 1)
as follows,

p∗C(Y = 1) =
∑

T∈TC′
SY (T )=1

e(T )
∏
X∈C

u
SX(T )
X .

Thus, to obtain the probability of an itemset, it suffices to compute the block probabil-
ities in TC′ , for which we know that |TC′ | ≤ 2|TC |.

4.6. Computational Complexity
Let us analyze the complexity of the ITERATIVESCALING algorithm. To this end, we
define nb(C) = |TC | as the number of blocks in TC . The computational complexity of
QIEBLOCKSIZES is

O (k · nb(C) log nb(C)) ,
for a given collection C, with |C| = k. The logarithmic factor comes from looking for
the block T ′ on line 11. Note that nb(C) ≤ 2k, and hence log nb(C) ≤ k. Assume now
that we can partition C into L disjoint parts C = C1 ∪ · · · ∪ CL, such that if X ∈ Ci and
Y ∈ Cj then X ∩ Y = ∅. As mentioned in Section 4.4, we can now simply compute L
independent distributions at a lower total cost. Denoting Bi =

⋃
X∈Ci X, it holds that

nb(Ci) ≤ min
(
2|Ci|, 2|Bi|

)
. If Ci cannot be partitioned further, this usually means that

either |Ci| is small, or the itemsets in Ci overlap a lot and nb(Ci) � 2|Ci|. The total
execution time of ITERATIVESCALING is

O

(
K

L∑
i=1

|Ci|nb(Ci) log nb(Ci)

)
,

whereK is the number of iterations, which is usually low. The complexity of estimating
the frequency of an itemset requires running QIEBLOCKSIZES once and, hence equals

O

(
L∑

i=1

|Ci|nb(Ci) log nb(Ci)

)
.

4.7. Including Background Knowledge into the Model
Typically, when analyzing data we have some basic background knowledge about the
data. For instance, we may already know the individual frequencies of the items, i.e.,
the column margins. These margins supply some basic information about the data,
for instance whether tomatoes are sold often or not in a supermarket database. These
individual frequencies are intuitive and easy to calculate, yet already provide informa-
tion on whether some combinations of items are more or less likely to occur frequently.
For this reason, many existing techniques use the independence model as a basis to
discover interesting patterns, [e.g., Brin et al. 1997; Aggarwal and Yu 1998]. Another
form of background information that is often used are the row margins of the data,
that is, the probabilities that a transaction contains a certain number of items, e.g.,
[Gionis et al. 2007; Hanhijärvi et al. 2009; Kontonasios and De Bie 2010; Tatti and
Mampaey 2010]. If we know that most transactions are rather small, large itemsets
are likely to have low frequencies.
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Clearly, when we analyze data we want to incorporate this background knowledge,
since otherwise we would simply rediscover it. If we do include it in our analysis, we
discover itemsets that are interesting with respect to what we already know. Therefore,
we extend the BIC and MDL quality scores of Definition 4.8 to incorporate background
knowledge, say, B. Although in this section we focus on row and column margins as
forms of background knowledge, many other patterns or count statistics that can be
expressed as linear constraints on transactions could be used, for instance, a set of as-
sociation rules and their confidences. Therefore, we intentionally omit the specification
of B.

Definition 4.20. Given a dataset D and some background knowledge B, we define
the BIC score for a collection of itemsets C = {X1, . . . , Xk}, with respect to B as

BIC(C, D;B) = − log p∗B,C(D) + k/2 log |D| . (10)

Similarly, we define the MDL score of C with respect to B as
MDL(C, D;B) = − log p∗B,C(D) + l1k + l2x+ 1 , (11)

where p∗B,C is the maximum entropy distribution satisfying the background knowledge
B and p∗B,C(X = 1) = fr(X) for all X ∈ C, and l1 and l2 are the same as in Definition 4.8.

Note that while the background knowledge is included in the log-likelihood term of
s(C, D;B) (where s denotes either BIC or MDL), it is not included in the penalty term.
We choose not to do so because we will assume that our background knowledge is
consistent with the data and invariable. We could alternatively define

s(C, D,B) = s(C, D;B) + L(B) ,

where L(B) is some term which penalizes B, however, since this term would be equal
for all C, for simplicity it might as well be omitted. If we were to compare different
models that use different background knowledge, though, it must be included.

In this section, we show how to include row and column margins as background
knowledge into our algorithm without, however, blowing up its computational com-
plexity. If we were, for instance, to naively add all singleton itemsets I and their fre-
quencies to an itemset collection C, the number of transaction blocks in the correspond-
ing partition would become |TC∪I | = |T | = 2N, by which we would be back at square
one. Therefore, we will consider the row and column margins separately from C in our
computations.

First, let us consider using only column margins, viz., item frequencies. With these,
we build an independence model, while with C we partition the transactions T as
above; then we simply combine the two to obtain the maximum entropy distribution.
As before, the maximum entropy model has an exponential form:

p∗C′(A = t) = u0

∏
X∈C

u
SX(t)
X

∏
i∈I

v
Si(t)
i . (12)

The second part of the product defines an independence distribution

v(A = t) = v0

∏
i

v
Si(t)
i , (13)

where v0 is a normalization factor. It is not difficult to see that v(ai = 1) = vi/(1 + vi),
for all for ai ∈ A. It should be noted that while p∗(ai = 1) = fr(ai), in general it does
not necessarily hold that v(ai = 1) = fr(ai). Now we can write

p∗C′(A ∈ T ) = v(A ∈ T )
u0

v0

∏
X∈C

u
SX(T )
X . (14)
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Thus, we simply need to compute v(A ∈ T ) for each block T , which is computed very
similarly to e(T ), using QIEBLOCKSIZES. Note that e(A = t) is in fact nothing more
than a uniform distribution over T , multiplied by 2N. To compute v(A ∈ T ), we simply
initiate the algorithm with the cumulative sizes of the blocks with respect to v, which
are equal to

c(A ∈ T ) = v0

∏
i∈I

vi ,

where I =
⋃
sets(T ; C). Hence, we can include the item frequencies at a negligible

additional cost. To update the vi parameters, we must query the probability of a single
item. We can achieve this by simply adding the corresponding singleton to C, in exactly
the same way as described in Section 4.5.

Next, we also include row margins in the background information. Let us define the
indicator functions Sj(t) : T → {0, 1} for j ∈ {0, . . . , N} such that Sj(t) = 1 if and only
if the number of ones in t, denoted as |t|, is equal to j. Further, for any distribution p
on A, let us write p(|A| = j) to indicate the probability that a transaction contains j
items. Again, the maximum entropy distribution has an exponential form,

p∗B,C(A = t) = u0

∏
X∈C

u
SX(t)
X

∏
i∈I

v
Si(t)
i

N∏
j=0

w
Sj(t)
j . (15)

The row and column margins define a distribution

w(A = t) = v0

∏
i∈I

v
Si(t)
i

N∏
j=0

w
Sj(t)
j , (16)

where v0 is a normalization factor. Now, for the probabilities p∗(A ∈ T ), we have

p∗(A ∈ T, |A| = j) = w(A ∈ T, |A| = j)
u0

v0

∏
X∈C

u
SX(T )
X

= wjv(A ∈ T, |A| = j)
u0

v0

∏
X∈C

u
SX(T )
X

for j = 0, . . . , N , and we marginalize over j to obtain

p∗(A ∈ T ) =

N∑
j=0

p∗(A ∈ T, |A| = j)

=
u0

v0

∏
X∈C

u
SX(T )
X

N∑
j=0

wjv(A ∈ T, |A| = j)

As above, we compute the probabilities v(A ∈ T, |A| = j) using QIEBLOCKSIZES. Let
I =

⋃
{X | X ∈ sets(C;T )}, then the corresponding cumulative probability becomes

c(A ∈ T, |A| = j) = v0

∏
i∈I

vi · v(|A| = j | I = 1)

Computing the probabilities v(|A| = j), and similarly v(|A| = j | I = 1), can be done
from scratch in O(N2) time and O(N) space, using the following recurrence relation,

v(|Ai| = j) = v(ai) · v(|Ai−1| = j − 1) + (1− v(ai)) · v(|Ai−1| = j) ,

where Ai = {a1, . . . , ai}. Starting from A0 = ∅, the COMPUTESIZEPROBABILITIES al-
gorithm adds each item ai until we have computed all probabilities v(|AN | = j) where
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AN = A; see Algorithm 4. The time complexity can be reduced to O(N), by applying
the updates that ITERATIVESCALING performs on v(ai), to the probabilities v(|A| = j)
as well, this is done by UPDATESIZEPROBABILITIES in Algorithm 5. The algorithm
first removes the item, and then re-adds it with the updates probability. For further
details we refer to Tatti and Mampaey [2010]. Computing item frequencies is done by
adding singletons to C. To compute the row margin probabilities p∗(|A| = j), we simply
marginalize over TC ,

p∗(|A| = j) =
∑
T∈TC

p∗(A ∈ T, |A| = j) .

Hence, including the row margins increases the time and space complexity of model
computation and inference by a factor of N .

ALGORITHM 4: COMPUTESIZEPROBABILITIES(v)
input : independence distribution v over A, with probabilities vi = v(ai = 1) for i = 1, . . . , N
output : probabilities gj = v(|A| = j) for j = 0, . . . , N

1 g0 ← 1
2 for j = 1, . . . , N do
3 gj ← 0
4 end
5 for i = 1, . . . , N do
6 for j = i, . . . , 1 do
7 gj ← vi · gj−1 + (1− vi) · gj
8 end
9 g0 ← (1− vi) · g0

10 end
11 return g

ALGORITHM 5: UPDATESIZEPROBABILITIES(v, g, ai, x)
input : probabilities gj = v(|A| = j) for independence distribution v, with parameters

vi = v(ai = 1), updated probability v′i for item ai

output : updated probabilities gj = v(|A| = j) for j = 0, . . . , N
1 g0 ← g0/(1− vi)
2 for j = 1, . . . , N do
3 gj ← (gj − vigj−1) /(1− vi)
4 end
5 update v such that v(ai = 1) = v′i
6 for j = N, . . . , 1 do
7 gj ← v′i · gj−1 + (1− v′i) · gj
8 end
9 g0 ← (1− v′i) · g0

10 return g

5. PROBLEM STATEMENTS
In this section we identify four different problems that we intend to solve using the
theory introduced above. We assume some given set B that represents our background
knowledge, e.g., the individual item frequencies, some arbitrary collection of itemsets,
or simply the empty set. We start simple, with a size constraint k and a collection F of
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potentially interesting itemsets to choose from, for instance, frequent itemsets, closed
itemsets, itemsets of a certain size, etc.

PROBLEM 1 (MOST INFORMATIVE k-SUBSET). Given a dataset D, a set B that rep-
resents our background knowledge, an integer k, and a collection of potentially interest-
ing itemsets F , find the subset C ⊆ F with |C| ≤ k such that s(C, D;B) is minimal.

Note that if we choose k = 1, this problem reduces to ‘Find the Most Interesting
Itemset in F ’, which means simply scoring C = {X} with respect to B for each set
X ∈ F , and selecting the best one. Further, these scores provide a ranking of the
itemsets X ∈ F with regard to what we already know, that is, B.

Now, if we do not want to set k ourselves, we can rely on either BIC or MDL to identify
the best-fitting, least-redundant model, a problem we state as the following.

PROBLEM 2 (MOST INFORMATIVE SUBSET). Given a dataset D, a set B that repre-
sents our background knowledge, and a collection of potentially interesting itemsets F ,
find the subset C ⊆ F such that s(C, D;B) is minimal.

When we do not want to constrain ourselves to a particular itemset collection F , we
simply use all itemsets. Problem 1 then generalizes to the following.

PROBLEM 3 (k MOST INFORMATIVE ITEMSETS). Given a dataset D, an integer k,
and a set B that represents our background knowledge, find the collection of itemsets C,
with |C| ≤ k, such that s(C, D;B) is minimal.

Similarly, and most generally, we can simply consider finding the best collection of
itemsets altogether.

PROBLEM 4 (MOST INFORMATIVE ITEMSETS). Given a dataset D and a set B
that represents our background knowledge, find the collection of itemsets C such that
s(C, D;B) is minimal.

Note that these problem statements do not require F to be explicitly available be-
forehand (let alone the complete set of itemsets), i.e., it does not have to be mined or
materialized in advance (we postpone the details of this to Section 6.2).

Next, we discuss how we can efficiently mine sets of itemsets to solve the above
problems.

6. MINING INFORMATIVE SUCCINCT SUMMARIES
In Section 4 we described how to compute the maximum entropy model and its BIC or
MDL quality score given a set of itemsets. Finding the optimal collection as stated in
Section 5, however, is clearly nontrivial. The size of the search space is

k∑
j=0

(
|F|
j

)
≤ 2|F| .

If we do not restrict the candidate itemsets, then the number of all (non-singleton)
itemsets is |F| = 2N − N − 1. Moreover, our quality scores are not monotonic, nor
is there to our knowledge some easily exploitable structure, which prevents us from
straightforwardly exploring the search space.

Therefore, we resort to using a heuristic, greedy approach. Starting with a set
of background knowledge—for instance the column margins—we incrementally con-
struct our summary by iteratively adding the itemset that reduces the score function
the most. The algorithm stops either when k interesting itemsets are found, or when
the score no longer decreases. The pseudo-code for our MTV algorithm, which mines
Maximally informaTiVe itemset summaries, is given in Algorithm 6.
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ALGORITHM 6: MTV(D, B, k)
input : binary dataset D, background knowledge B, integer k ≤ ∞
output : itemset collection C

1 I ← items in D
2 while s(C, D;B) decreases and |C| < k do
3 X ← FINDMOSTINFORMATIVEITEMSET(∅, I, ∅)
4 C ← C ∪ {X}
5 p∗B,C ← ITERATIVESCALING(C)
6 compute s(C, D;B)
7 end
8 return C

Due to its incremental nature, we note that we can apply an optimization to the al-
gorithm. When we call ITERATIVESCALING on line 5, rather than computing p∗ from
scratch, we can initialize the algorithm with the parameters of the previous p∗ (line 1
of Algorithm 1), instead of with the uniform distribution. In doing so, the ITERATIVE-
SCALING procedure converges faster. Further, we can also reuse part of the computa-
tions from QIEBLOCKSIZES.

6.1. A Heuristic for Scoring Itemsets
Finding the most informative itemset to add to the current collection is practically
infeasible, since it involves solving the maximum entropy model for each and every
candidate. This remains infeasible even if we restrict the search space (for example,
using only frequent itemsets). Therefore, instead of selecting the candidate that opti-
mizes the BIC or MDL score directly, we select the candidate that maximizes a heuristic
which expresses the divergence between its frequency and its estimate. To derive and
motivate this heuristic we first present the following theorem.

THEOREM 6.1. Given an itemset collection C, a dataset D, and a candidate collec-
tion of itemsets F . Let s denote either BIC or MDL. It holds that

arg min
X∈F

s(C ∪ {X}) = arg max
X∈F

KL
(
p∗C∪{X} ‖ p

∗
C

)
− r(X)

= arg min
X∈F

KL
(
qD ‖ p∗C∪{X}

)
+ r(X)

where

r(X) =

{
0 if s = BIC

|X| logN/|D| if s = MDL

PROOF. Let us write C′ = C∪{X}. Corollary 4.3 states that− log p∗C′(D) = |D|H(p∗C′) .
In addition, we can show with a straightforward calculation that

KL(p∗C′ ‖ p∗C) = H(p∗C)−H(p∗C′) .

For BIC the difference in the penalty terms of s(C) and s(C′) is equal to 1/2 log |D|,
which is identical for all itemsets X, and hence may be eliminated from the arg max.
For MDL, the difference in penalty terms can similarly be reduced to |X| logN . The
second equality follows similarly.

Thus, we search for the itemsetX for which the new distribution diverges maximally
from the previous one, or equivalently, brings us as close to the empirical distribution
as possible—taking into account the penalty term for MDL. Note that for BIC, since
r(X) = 0, the algorithm simply tries to maximize the likelihood of the model, and
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the penalty term functions as a stopping criterion; the algorithm terminates when
the increase in likelihood (i.e., decrease of the negative log-likelihood) is not sufficient
to counter the increase of the penalty. When we use MDL, on the other hand, r(X)
represents a part of the penalty term, and hence this guides the algorithm in its search.

The heuristic we employ uses an approximation of the above KL divergence, and is
in fact a simpler KL divergence itself. In the expression

KL(p∗C′ ‖ p∗C) =
∑
t∈T

p∗C′(A = t) log
p∗C′(A = t)

p∗C(A = t)
(17)

we merge the terms containing X into one term, and the terms not containing X into
another term. To differentiate between these two divergences, let us write the function
kl : [0, 1]× [0, 1]→ R+ as follows,

kl(x, y) = x log
x

y
+ (1− x) log

1− x
1− y

, (18)

then we approximate Eq. 17 by kl (fr(X) , p∗C(X = 1)). We will write the latter simply as
kl(X) when fr and p∗ are clear from the context. To compute this heuristic, we only need
the frequency ofX, and its estimate according to the current p∗ distribution. This gives
us a measure of the divergence between fr(X) and p∗C(X = 1), i.e., its surprisingness
given the current model.

The following theorem shows the relation between KL and kl .

THEOREM 6.2. For an itemset collection C and an itemset X, it holds that

0 ≤ kl(X) ≤ KL
(
p∗C∪{X} ‖ p

∗
C

)
.

Moreover, kl(X) = 0 if and only if KL
(
p∗C∪{X} ‖ p

∗
C

)
= 0, i.e., when fr(X) = p∗C(X = 1).

PROOF. Both inequalities follow directly from the log-sum inequality, which states
that for any nonnegative numbers ai, bi, with a =

∑
i ai and b =

∑
i bi, it holds that∑

i

ai log
ai
bi
≥ a log

a

b
.

For equality to zero, we have kl(fr(X) , p∗C(X = 1)) = 0 if and only if fr(X) = p∗C(X = 1).
In this case it holds that p∗C′ = p∗C which is true if and only if KL(p∗C′ ‖ p∗C) = 0.

Using Theorem 6.1, the heuristic function we employ is defined as

h(X) = kl(fr(X) , p∗C(X = 1))− r(X) (19)

and we will make use of the following assumption:

arg min
X∈F

s(C ∪ {X}) = arg max
X∈F

h(X) .

Note that h has an elegant interpretation: it is equal to the Kullback-Leibler diver-
gence after exactly one step in the ITERATIVESCALING algorithm—when initializing
p∗ with the parameters from the previous model, as discussed above. Since the KL di-
vergence increases monotonically during the Iterative Scaling procedure, if the total
divergence is large, then we expect to already see this in the first step of the procedure.

6.2. Searching for the Most Informative Itemset
To find the itemset maximizing h(X), we take a depth-first branch-and-bound ap-
proach. We exploit the fact that kl is a convex function, and employ the bound in-
troduced by Nijssen et al. [2009] to prune large parts of the search space as follows.
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ALGORITHM 7: FINDMOSTINFORMATIVEITEMSET(X, Y , Z)
input : itemset X, remaining items Y , currently best set Z
output : itemset between X and XY maximizing h, or Z

1 compute fr(X) and p∗(X)
2 if h(X) = kl(fr(X) , p∗(X))− r(X) > h(Z) then
3 Z ← X
4 end
5 compute fr(XY ) and p∗(XY )
6 b ← max{kl(fr(X) , p∗(XY )), kl(fr(XY ) , p∗(X))} − r(X)
7 if b > h(Z) then
8 for y ∈ Y do
9 Y ← Y \ {y}

10 Z ← FINDMOSTINFORMATIVEITEMSET(X ∪ {y}, Y , Z)
11 end
12 end
13 return Z

Say that for a candidate itemset X in the search space, its maximal possible exten-
sion in the branch below it is X ∪ Y (denoted XY ), then for any itemset W such that
X ⊆W ⊆ XY it holds that

h(W ) = kl(W )− r(W ) ≤ max
{
kl
(
fr(X), p∗(XY )

)
, kl
(
fr(XY ), p∗(X)

)}
− r(X) . (20)

If this upper bound is lower than the best value of the heuristic seen so far, we know
that no (local) extension W of X can ever become the best itemset with respect to the
heuristic, and therefore we can safely prune the branch of the search space below X.
The FINDMOSTINFORMATIVEITEMSET algorithm is given in Algorithm 7.

An advantage of this approach is that we do not need to collect the frequencies of all
candidate itemsets beforehand. Instead, we just compute them on the fly when we need
them (line 1). For instance, if we wish to pick itemsets from a collection F of frequent
itemsets for some minimum support threshold, we can integrate the support counting
with the depth-first traversal of the algorithm, rather than first mining and storing F
in its entirety. Since for real datasets and nontrivial minimal support thresholds bil-
lions of frequent itemsets are easily discovered, this indubitably makes our approach
more practical.

7. EXPERIMENTS
In this section we experimentally evaluate our method and empirically validate the
quality of the returned summaries.

7.1. Setup
We implemented our algorithm in C++, and provide the source code for research pur-
poses.2 All experiments were executed on a 2.67GHz (six-core) Intel Xeon machine with
12GB of memory, running Linux. All reported timings are of the single-threaded im-
plementation of our algorithm.

We evaluate our method on three synthetic datasets, as well as on eleven real
datasets. Their basic characteristics are given in Table II.

The Independent data has independent items with random frequencies between 0.2
and 0.8. In the Markov dataset each item is a noisy copy of the previous one, with
a random copy probability between 0.5 and 0.8. The Mosaic dataset is generated by

2http://www.adrem.ua.ac.be/implementations
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randomly planting five itemsets of size 5 with random frequencies between 0.2 and
0.5, in a database with 1% noise.

The Abstracts dataset contains the abstracts of all accepted papers at the ICDM
conference up to 2007, where all words have been stemmed and stop words have been
removed [Kontonasios and De Bie 2010].

The Accidents, Kosarak, Mushroom, and Retail datasets were obtained from the
FIMI dataset repository [Goethals and Zaki 2004; Geurts et al. 2003; Brijs et al. 1999].

The Chess (kr–k) and Plants datasets were obtained from the UCI ML Reposi-
tory [Frank and Asuncion 2010], the former was converted into binary form, by cre-
ating an item for each attribute-value pair. The latter contains a list of plants, and the
U.S. and Canadian states where they occur.

The DNA Amplification data contains information on DNA copy number amplifica-
tions [Myllykangas et al. 2006]. Such copies activate oncogenes and are hallmarks of
nearly all advanced tumors. Amplified genes represent attractive targets for therapy,
diagnostics and prognostics. In this dataset items are genes, and transactions corre-
spond to patients.

The Lotto dataset was obtained from the website of the Belgian National Lottery,
and contains the results of all lottery draws between May 1983 and May 2011.3 Each
draw consist of seven numbers (six plus one bonus ball) out of a total of 42.

The Mammals presence data consists of presence records of European mammals
within geographical areas of 50×50 kilometers [Mitchell-Jones et al. 1999].4 Heikin-
heimo et al. [2007] analyzed the distribution of these mammals over these areas, and
showed they form environmentally distinct and spatially coherent clusters.

The MCADD data was obtained from the Antwerp University Hospital. Medium-
Chain Acyl-coenzyme A Dehydrogenase Deficiency (MCADD) [Baumgartner et al.
2005; Van den Bulcke et al. 2011] is a deficiency newborn babies are screened for
during a Guthrie test on a heel prick blood sample. The instances are represented by a
set of 21 features: 12 different acylcarnitine concentrations measured by tandem mass
spectrometry (TMS), together with 4 of their calculated ratios and 5 other biochemical
parameters, each of which we discretized using k-means clustering with a maximum
of 10 clusters per feature.

The core of our method is parameter-free. That is, it will select itemsets from the
complete space of possible itemsets. In practice, however, it may not always be feasible
or desirable to consider all itemsets. For dense or large datasets, for instance, we might
want to explicitly exclude low-frequency itemsets, or itemsets containing many items.
General speaking, choosing a larger candidate space, yields a larger search space, and
hence potentially better models. In our experiments we therefore consider collections
of frequent itemsets F mined at support thresholds as low as feasible. The actual
thresholds and corresponding size of F are depicted in Table II. Note that although
the minimum support threshold is used to limit the size of F , it can be seen as an
additional parameter to the algorithm. To ensure efficient computation, we impose
a maximum of 10 items per group, as described at the end of Section 4.4. Further, we
terminate the algorithm if the runtime exceeds two hours. For the sparse datasets with
many transactions (the synthetic ones, Accidents, Kosarak, and Retail), we mine and
store the supports of the itemsets, rather than computing them on the fly. Caching the
supports is faster in these cases, since for large datasets support counting is relatively
expensive. The runtimes reported below include this additional step.

3http://www.nationaleloterij.be
4The full version of the Mammals dataset is available for research purposes from the Societas Europaea
Mammalogica at http://www.european-mammals.org
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Table II: The synthetic and real datasets used in the experiments. Shown for each
dataset are the number of items |A|, the number of transactions |D|, the minimum
support threshold for the set of candidate frequent itemsets F and its size.

Data Properties Candidate Collection
Dataset |A| |D| minsup |F|
Independent 50 100 000 5 000 1 055 921
Markov 50 100 000 5 000 377 011
Mosaic 50 100 000 5 000 101 463
Abstracts 3 933 859 10 75 061
Accidents 468 340 183 50 000 2 881 487
Chess (kr–k) 58 28 056 5 114 148
DNA Amplification 391 4 590 5 4.57·1012

Kosarak 41 270 990 002 1 000 711 424
Lotto 42 2 386 1 139 127
Mammals 121 2 183 200 93 808 244
MCADD 198 31 924 50 1 317 234
Mushroom 119 8 124 100 66 076 586
Plants 70 34 781 2 000 913 440
Retail 16 470 88 162 10 189 400

In all experiments, we set the background information B to contain the column mar-
gins, i.e., we start from the independence model. For Chess (kr–k) and Mushroom, we
also perform experiments which include the row margins, since their original form is
categorical, and hence we know that each transaction has a fixed size. For the Lotto
data we additionally use only the row margins, which implicitly assumes all numbers
to be equiprobable, and uses the fact that each draw consist of seven numbers.

7.2. A First Look at the Results
In Tables III and IV we present the scores and sizes of the discovered summaries,
the time required to compute them, and for comparison we include the score of the
background model, using BIC and MDL respectively as quality score s. For most of the
datasets we consider, the algorithm identifies the optimum quite rapidly, i.e., within
minutes. For these datasets, the number of discovered itemsets, k, is indicated in bold.
For three of the datasets, i.e., the dense MCADD dataset, and the large Kosarak and
Retail datasets, the algorithm did not find the optimum within two hours.

For both BIC and MDL, we note that the number of itemsets in the summaries is
very small, and hence manual inspection of the results by an expert is feasible. We
see that for most datasets the score (and thus relatedly the negative log-likelihood)
decreases a lot, implying that these summaries model the data well. Moreover, for
highly structured datasets, such as DNA, Kosarak, and Plants, this improvement is
very large, and only a handful of itemsets are required to describe their main structure.

Comparing the two tables, we see that the number of itemsets selected by BIC com-
pared to MDL tends to be the same or a bit higher, indicating that BIC is more per-
missive in adding itemsets—an expected result. If we (crudely) interpret the raw BIC
and MDL scores as negative log-likelihoods, we see that BIC achieves lower, and hence
better scores. This follows naturally from the larger collections of itemsets that BIC se-
lects; the larger the collection, the more information it provides, and hence the higher
the likelihood.
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Table III: Statistics of the discovered summaries using BIC, with respect to the back-
ground information B. Shown are the number of itemsets k, the wall clock time, the
score of C, and the score of the empty collection. (Lower scores are better.) Values for k
identified as optimal by BIC are given in boldface.

Dataset k time BIC(C, D;B) BIC(∅, D;B)

Independent 7 2m14s 4 494 219 4 494 242
Markov 62 15m44s 4 518 101 4 999 963
Mosaic 16 6m06s 807 603 2 167 861
Abstracts 220 27m21s 233 483 237 771
Accidents 74 18m35s 24 592 869 25 979 244
Chess (kr–k) 67 83m32s 766 235 786 651
DNA Amplification 204 4m31s 79 164 183 121
Kosarak 261 120m36s 66 385 663 70 250 533
Lotto 29 0m31s 64 970 65 099
Mammals 76 25m23s 99 733 119 461
MCADD 80 121m02s 2 709 240 2 840 837
Mushroom 80 28m11s 358 369 441 130
Plants 94 66m56s 732 145 1 271 950
Retail 62 121m46s 8 352 161 8 437 118

Table IV: Statistics of the discovered summaries using MDL, with respect to the back-
ground information B. Shown are the number of itemsets k, the wall clock time, the de-
scription length of C, and the description length of the empty collection. (Lower scores
are better). Values for k identified as optimal by MDL are given in boldface.

Dataset k time MDL(C, D;B) MDL(∅, D;B)

Independent 0 1m57s 4 494 243 4 494 243
Markov 62 16m16s 4 519 723 4 999 964
Mosaic 15 7m23s 808 831 2 167 861
Abstracts 29 1m26s 236 522 237 772
Accidents 75 19m35s 24 488 943 25 979 245
Chess (kr–k) 54 76m20s 767 756 786 652
DNA Amplification 120 1m06s 96 967 183 122
Kosarak 262 120m53s 66 394 995 70 250 534
Lotto 0 0m01s 65 100 65 100
Mammals 53 2m17s 102 127 119 461
MCADD 82 123m34s 2 700 924 2 840 838
Mushroom 74 22m00s 361 891 441 131
Plants 91 63m9s 734 558 1 271 951
Retail 57 122m44s 8 357 129 8 437 119

7.3. Summary Evaluation
Next, we inspect the discovered data summaries in closer detail.

For the Independent dataset we see that using MDL the returned summary is empty,
i.e., no itemset can improve on the description length of the background model, which
is the independence model. In general, MDL does not aim to find any underlying ‘true’
model, but simply the model that it considers best, given the available data. In this
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Fig. 1: The description length of the Mosaic dataset, as a function of the summary
size k. The first five discovered itemsets correspond to the process which generated the
dataset. The minimum MDL score is attained at k = 15.

case, however, we see that the discovered model correctly corresponds to the process
by which we generated the data. Using BIC, on the other hand, the algorithm discovers
7 itemsets. These itemsets have an observed frequency in the data which is slightly
higher or lower than their predicted frequencies under the independence assumption.
Among the 7 itemsets, the highest absolute difference between those two frequencies
is lower than 0.3%. While these itemsets are each significant by themselves, after
correcting their p-values to account for Type I error (see Section 7.5), we find that
none of them are statistically significant.

For the Markov data, we see that all itemsets in the discovered summary are very
small (about half of them of size 2, the rest mostly of size 3 or 4), and they all con-
sist of consecutive items. Since the items in this dataset form a Markov chain, this
is very much in accordance with the underlying generating model. In this case, the
summaries for BIC and MDL are identical. Knowing that the data is generated by a
Markov chain, we can compute the MDL score of the ‘best’ model. Given that B contains
the singleton frequencies, the model that fully captures the Markov chain contains all
49 itemsets of size two containing consecutive items. The description length for this
model is 4 511 624, which is close to what our algorithm discovered.

The third synthetic dataset, Mosaic, contains 5 itemsets embedded in a 1%-noisy
database. The five first itemsets returned, both by BIC and MDL, are exactly those
itemsets. These sets are responsible for the better part of the decrease of the score, as
can be seen in Figure 1, which for MDL depicts the description length as a function of
the summary size. After these first five highly informative itemsets, a further ten ad-
ditional itemsets are discovered that help explain the overlap between the itemsets—
which, because we construct a probabilistic model using itemset frequencies cannot be
inferred otherwise—and while these further itemsets do help in decreasing the score,
their effect is much less strong than for the first sets. After discovering fifteen item-
sets, the next best itemset does not decrease the log likelihood sufficiently to warrant
the MDL model complexity penalty, and the algorithm terminates.

For Lotto, we see that using MDL, our algorithm fails to discover any informative
itemsets.5 Using BIC, we find a summary of 29 itemsets, which are all combinations of
3 numbers, having been drawn between one and three times in the past twenty-odd

5This is a desired result, assuming of course that the lottery is fair.
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Fig. 2: Detail of the DNA Amplification dataset (left), along with six of the discovered
itemsets (right).

years. While for each itemset individually this is significantly lower than the expected
absolute support (which is about 11), when we adjust for Type I error, they are no
longer statistically significant. This gives evidence that in our setup, and with these
data sizes, BIC may not be strict enough. We additionally ran experiments using only
row margins as background knowledge, i.e., using the fact that every transaction con-
tains exactly seven items, the numbers of each lottery draw. Then, according to the
maximum entropy background distribution, this implies that every number has ex-
actly the same probability of being picked in a particular draw—namely 1/6. If our algo-
rithm should find that a ball is drawn significantly more or less often, then it would be
included in the model. Further, if there were any meaningful correlation between some
of the numbers (positive or negative), these numbers would be included in a reported
itemset. Using MDL, our algorithm again finds no itemsets of interest. Using BIC, we
find 7 itemsets (in a timespan of two hours, after which the algorithm was terminated),
which are all combinations of five or six numbers, with absolute supports between 2
and 4, which is higher than expected. After applying Bonferroni adjustment, none of
these itemsets turn out to be significant.

In the case of the DNA Amplification data, our algorithm finds that the data can be
described using 120 itemsets. As this dataset is banded, it contains a lot of structure
[Garriga et al. 2011]. Our method correctly discovers these bands, i.e., blocks of consec-
utive items corresponding to related genes, which lie on the same chromosomes. The
first few dozen sets are large, and describe the general structure of the data. Then,
as we continue, we start to encounter smaller itemsets, which describe more detailed
nuances in the correlations between the genes. Figure 2 depicts a detail of the DNA
dataset, together with a few of the itemsets from the discovered summary.

For the Chess (kr–k) and Mushroom datasets, we also ran experiments including
the row margins, since we know that these datasets originated from categorical data,
and hence the margins of these datasets are fixed. As remarked in Section 4.7, this
increases the runtime of the algorithm by a factor N = |A|. For both BIC and MDL, the
algorithm therefore took longer to execute, and was terminated after two hours for both
datasets. The size of the summaries in all cases was equal to 6. Comparing between
them reveals that some (but not all) of the itemsets also occur in the summaries that
did not use the row margins as background knowledge, which leads us to conclude that
the use of row margins as background information for these datasets does not have a
substantial effect on the discovered summaries, at least not for the top-six.
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Fig. 3: For the Mammals dataset, for four of the itemsets discovered by our method,
we depict the transactions (i.e., locations) that support that itemset in blue (dark). A
transaction supports the itemset if all of the mammals identified by the set have been
recorded in the data to occur in that area.

The items in the Mammals data are European mammals, and the transactions cor-
respond to their occurrences in geographical areas of (50×50) km2. The discovered
itemsets represent sets of mammals that are known to co-exist in certain regions.
For instance, one such set contains the Eurasian elk (moose), the mountain hare, the
Eurasian lynx, and the brown bear, which are all animals living in colder, northern
territories. Going back to the transactions of the data, we can also look at the areas
where these itemsets occur. Figure 3 depicts the geographical areas for some of the
discovered itemsets. Some clear regions can be recognized, e.g., Scandinavia (for the
aforementioned itemset), Central Europe, the Iberian peninsula, or Eastern Europe.
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Heikinheimo et al. [2007] considered the same data, annotated with environmental
data, and applied mixture modelling and k-means clustering to identify regions with
similar mammal presence. When comparing to these expert-validated results, we ob-
serve a strong correlation to the regions (i.e., itemsets) MTV discovers. Although our
method does not hard-cluster the map, we observe that our itemsets relate to clusters
are various level of detail; the region identified in the top-right of Fig. 3 shows strong
correlation to the large ‘mainland’ cluster of [Heikinheimo et al. 2007] at k = 2, 3
whereas the mammals identified in the bottom-left plot of Fig. 3 correspond to 2 clus-
ters that only show up at k ∈ [11, 13].

The Plants dataset is similar to the Mammals data, except than now the
plants form transactions, and the items represent the U.S. and Canadian states
where they occur. The discovered itemsets, then, are states that exhibit simi-
lar vegetation. Naturally, these are typically bordering states. For instance, some
of the first discovered itemsets are {CT, IL, IN, MA, MD, NJ, NY, OH, PA, VA} (North-
Western states), {AL, AR, GA, KY, LA, MO, MS, NC, SC, TN} (South-Western states),
and {CO, ID, MT, OR, UT, WA, WY} (North-Eastern states).

Finally, for the MCADD data, we find about 80 itemsets after running the algorithm
for two hours. The attributes in this dataset are measured fatty acid concentrations,
ratios between these, and some further biochemical parameters, which have all been
discretized. The items therefore are attribute-value pairs. In the discovered summary,
we see that the selected itemsets mostly consist of items corresponding to a few known
key attributes. Furthermore, we can identify strongly correlated attributes by regard-
ing those combinations of attributes within the itemsets selected in the summary. As
an example, one of the first itemsets of the summary corresponds to particular values
for attributes {MCADD , C8, C8

C2 ,
C8
C10 ,

C8
C12}, respectively the class label, an acid, and

some of its calculated ratios. This acid and its ratios, and the identified values, are
commonly used diagnostic criteria for screening MCADD, and were also discovered in
previous in-depth studies [Baumgartner et al. 2005; Van den Bulcke et al. 2011], and
similarly for other itemsets in the summary.

7.4. Comparison with Other Methods
In Table V, we give the top-10 itemsets in the Abstracts dataset, as discovered by our al-
gorithm (using MDL), the method by Kontonasios and De Bie [2010], the compression-
based KRIMP algorithm [Vreeken et al. 2011], and Tiling [Geerts et al. 2004]. We see
that our algorithm discovers important data mining topics such as support vector ma-
chines, naive bayes, and frequent itemset mining. Further, there is little overlap be-
tween the itemsets, and there is no variations-on-the-same-theme type of redundancy.

The results of the Information-Theoretic Noisy Tiles algorithm by Kontonasios and
De Bie [2010], based on the Information Ratio of tiles, are different from ours, but seem
to be more or less similar in quality for this particular dataset.

The KRIMP algorithm does not provide its resulting itemsets in an order, so in order
to compare between the different methods, following its MDL approach, we selected the
top-10 itemsets from the code table that have the highest usage, and hence, shortest
associated code. From a compression point of view, the items in these sets co-occur of-
ten, and thus result in small codes for the itemsets. Arguably, this does not necessarily
make them the most interesting, however, and we observe that some rather general
terms such as state [of the] art or consider problem are ranked highly.

Finally, for Tiling we provide the top-10 tiles of at least two items, i.e., the ten tiles
whose support times their size is highest. Without the minimum size constraint, only
singleton itemsets are returned, which, although objectively covering the largest area
individually, are not very informative. Still, the largest discovered tiles are of size two,
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Table V: The top-10 itemsets of the Abstracts dataset for our MTV algorithm using
MDL (top left), Kontonasios and De Bie [2010] (top right), KRIMP [Vreeken et al. 2011]
(bottom left), and Tiling [Geerts et al. 2004] (bottom right).

MTV Information-Theoretic Noisy Tiles

support vector machin svm support vector machin
associ rule mine effici discov frequent pattern mine algorithm
nearest neighbor associ rule mine algorithm database

frequent itemset mine train learn classifi perform set
naiv bay frequent itemset

linear discrimin analysi lda mine high dimensional cluster
cluster high dimension synthetic real

state art time seri
frequent pattern mine algorithm decis tree classifi

synthet real problem propos approach experiment result

KRIMP Tiling

algorithm experiment result set algorithm mine
demonstr space algorithm base

larg databas result set
consid problem approach problem

knowledg discoveri propos method
experiment demonstr experiment result

rule mine associ databas algorithm perform
algorithm base approach cluster model base

state art set method
global local algorithm gener

and contain quite some redundancy, for instance, the top-10 contains only 13 (out of
20) distinct items.

Each of these methods formalize the task of summarization differently, and hence
optimize objective scores quite different from ours. It therefore is impossible to fairly
and straightforwardly quantitatively compare to these methods; neither construct a
itemset-frequency-prediction model as we do, and not even result itemsets together
with their frequencies. Tiling and Information Theoretic Tiling both result in tiles, sets
of itemsets with tid-lists, while KRIMP code tables contain itemsets linked to relative
usage frequencies of covering the data without overlap. It hence makes as little sense
to score KRIMP itemsets by our score, as it would to consider our itemsets as a code
table.

7.5. Significant Itemsets
Next, we investigate the significance of the itemsets that are included in the sum-
maries we discover, as well as the significance of the itemsets in F that were not
included. To properly compute the p-values of the itemsets, we employ holdout eval-
uation, as described by Webb [2007]. That is, we equally split each dataset into an
exploratory (training) set De and a holdout (test) set Dh, apply our algorithm to the
exploratory data, and evaluate the itemsets on the holdout set. Since De contains less
data than D, the discovered models tend to contain fewer itemsets (i.e., as there is less
data to fit the model on, BIC and MDL both allow for less complex models).

The significance of an itemset X is evaluated as follows. We compute its estimated
probability p∗(X = 1) (using either B, or B and C, consistent with De). This is the null
hypothesis. Then, we calculate the two-tailed p-value given the observed frequency in
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the holdout data, fr(X). Let us write d = |Dh| = |D|/2, f = d · fr(X), and p = p∗(X = 1).
The p-value of X expresses the probability of observing an empirical frequency qDh

(X)
at least as extreme (i.e., improbable) as the observed frequency fr(X), with respect to
the model, according to a binomial distribution parametrized by d and p

B(d; p)(f) =

(
d

f

)
pf (1− p)(d−f) .

Assuming that fr(X) ≥ p∗(X = 1), we calculate the two-tailed p-value of X as

p-value = Prob(qDh
(X) ≥ f | p) + Prob(qDh

(X) ≤ f ′ | p)

=

d∑
i=f

(
d

i

)
pi(1− p)d−i +

f ′∑
i=0

(
d

i

)
pi(1− p)d−i

where

f ′ = max{f ′ ∈ [0, dp) | B(d; p)(f ′) ≤ B(d; p)(f)} .
The p-value for the case fr(X) < p∗(X = 1) is defined similarly.

It is expected that the itemsets that our algorithm discovers are significant with
respect to the background model. Simply put, if the frequency of an itemset is close
to its expected value, it will have a high p-value, and thus it will not be significant.
Moreover, it will also have a low heuristic value h(X), and hence it will not greatly
improve the model. The following demonstrates this connection between kl (and hence
h), and the p-value. Using Stirling’s approximation, we can write the logarithm of the
binomial probability B(d; p)(f) as follows.

log

(
d

f

)
pf (1− p)d−f ≈ d log d− f log f − (d− f) log(d− f)

+ f log p+ (d− f) log(1− p)

= −f log
f

dp
− (d− f) log

d− f
d(1− p)

= −d · kl(X)

Therefore, when we maximize the heuristic h, we also indirectly minimize the p-value.
Note, however, that in our algorithm we do not employ a significance level as a param-
eter; we simply let BIC or MDL decide when to stop adding itemsets. Further, we can
also take the complexity of the itemsets into account.

In Table VI we show the number of significant selected and unselected itemsets.
Since we are testing multiple hypotheses, we apply Bonferroni adjustment, to avoid
Type I error—falsely rejecting a true hypothesis [Shaffer 1995]. That is, if we were to
test, say, 100 true hypotheses at significance level 0.05, then by chance we expect to
falsely reject five of them. Therefore, at significance level α, each p-value is compared
against the adjusted threshold α/n where n is the number of tests performed.

The first column of Table VI shows the number of itemsets in C that are significant
with respect to the background knowledge B. In general, we see that all itemsets are
significant. However, for the Accidents dataset, e.g., we find two itemsets that are not
significant with respect to B. Nevertheless, they are not redundant in this case; upon
inspection, it turns out that these itemsets (say, X1 and X2) are subsets of another
itemset (say, Y ) in C that was significant. After adding Y to the model, the estimates of
X1 andX2 change, causing them to become significant with respect to the intermediate
model. A similar observation is made for the Chess (kr–k) and Mushroom datasets. In
the second column, we therefore also show the number of itemsets Xi+1 ∈ C that are
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significant with respect to the previous model Ci. In this case we see that indeed all
itemsets are significant, from which we conclude that all itemsets really contribute to
the summary, and are not redundant.

Next, we compute the p-values of the itemsets in the candidate set F that were not
included in C. Since for all datasets the candidate set F is very large, we uniformly
sample 1 000 itemsets from F \ C, and compute their p-values with respect to p∗B,C . We
see that for seven of the datasets, there are few significant itemsets, which means that
C captures the data quite well. For two datasets (Mushroom and Retail), a few hundred
are significant, but still many are not. For the five remaining datasets, however, we see
that almost all itemsets are significant. Nonetheless, this does not automatically mean
that the discovered models are poor. That is, apart from considering the deviation of
an itemset’s frequency, we also consider its complexity and the complexity of a model
as a whole. This means that even if the observed frequency of an itemset is surprising
to some degree, it may be too complex to include it; upon inspection, we indeed find
that among the sampled itemsets, there tend to be many large ones.

Table VI: The number of significant itemsets in the discovered summary C, with re-
spect to background knowledge B and each intermediate model Ci, and the number of
significant itemsets among 1 000 itemsets sampled from F \ C, denoted by S. We use a
significance level of 0.05, and Bonferroni-adjusted p-values.

X ∈ C X ∈ S
# signif.
w.r.t. B

# signif.
w.r.t. Ci

|C| # signif.
w.r.t. C |S|

Independent 0 0 0 0 1 000
Markov 64 64 64 6 1 000
Mosaic 14 14 14 0 1 000
Abstracts 12 12 12 14 1 000
Accidents 69 71 71 883 1 000
Chess (kr–k) 42 42 43 37 1 000
DNA Amplification 87 87 87 990 1 000
Kosarak 268 268 268 993 1 000
Lotto 0 0 0 0 1 000
Mammals 39 39 39 986 1 000
MCADD 61 61 61 89 1 000
Mushroom 59 63 63 139 1 000
Plants 87 87 87 998 1 000
Retail 65 65 65 302 1 000

8. DISCUSSION
The approach introduced in this paper fulfills several intuitive expectations one might
have about summarization, such as succinctness, providing a characteristic description
of the data, and having little redundancy. The experiments show that quantitatively
we can achieve good BIC and MDL scores with only a handful of itemsets, and that
these results are highly qualitative and meaningful; moreover, we can discover them
in a relatively short amount of time. In practice, we see that the results using MDL are
slightly better than those using BIC; the former tends to be a bit more conservative,
in the sense that it does not discover spurious itemsets. Furthermore, using our MDL
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score, we have more control over the complexity of the summary, since it takes into
account not only the summary size but also the sizes of the itemsets within it.

MDL does not provide a free lunch. First of all, although highly desirable, it is not
trivial to bound the score. For Kolmogorov complexity, which MDL approximates, we
know this is incomputable. For our models, however, we have no proof one way or
another. Furthermore, although MDL gives a principled way to construct an encoding,
this involves many choices that determine what structure is rewarded. As such, we do
not claim our encoding is suited for all goals, nor that it cannot be improved. Since we
take a greedy approach, and in each step optimize a heuristic function, we also do not
necessarily find the globally optimal solution with respect to MDL or BIC. However, we
argue that in practice it is not strictly necessary to find an optimal summary, but to
find one that provides a significant amount of novel information.

In this paper we consider data mining as an iterative process. By starting off with
what we already know—our background knowledge—we can identify those patterns
that are the surprising to us. Simply finding the itemset that is most surprising, is
a problem that Hanhijärvi et al. [2009] describe as ‘tell me something I don’t know’.
When we repeat this process, in the end, we will have identified a group of itemsets
that ‘tell me all there is to know’ about the data. Clearly, this group strongly overfits
the data. This is where the MDL principle provides a solution, as it automatically iden-
tifies the most informative group. Hence, we paraphrase our approach as ‘tell me what
I need to know’. As such, by our Information Theoretic approach it can be seen as an
instantiation of the general iterative framework recently proposed by De Bie [2011a].

The view that we take here on succinctness and non-redundancy is fairly strict. Ar-
guably, there are settings conceivable where limited redundancy (at the cost of brevity)
can give some robustness to a technique, or provide alternative insights by restating
facts differently. However, this is not the intention of this paper, and we furthermore
argue that our method can perfectly be complemented by techniques such as redescrip-
tion mining [Zaki and Ramakrishnan 2005].

Data mining is not only an iterative process, but also an interactive one. The MTV
algorithm above simply returns a set of patterns to the user, with respect to his or
her background knowledge. However, in practice we might want to dynamically guide
the exploration and summarization process. That is, we may want to add or remove
certain itemsets, next let the algorithm add some more itemsets, etc. Our algorithm
can easily be embedded into an interactive environment. Deleting an itemset from a
summary is quite straightforward; we just collapse the transaction partition, and re-
run the iterative scaling algorithm to discover the parameters of the simplified model.

Even though in this paper we significantly extend upon Mampaey et al. [2011], there
are some further improvements possible for our method. For instance, one problem
setting in which our method is applicable, is that of finding the best specialization of a
given itemset X. That is, to identify the superset Y of X that provides the best score
s(C ∪ {Y }). This setup allows experts to interactively discover interesting itemsets. As
part of future work, we are currently investigating this in practice for finding patterns
in proteomics and mass-spectrometry data.

The experiments showed that we discover high-quality summaries, and that we can
efficiently compute the maximum entropy model for a given collection of itemsets in
practice—even though the latter is an NP-hard problem in general. In specific cases,
however, there is room for further optimization. For computational reasons, we split
up the distribution into smaller groups, by restricting the number of items per group.
However, this does imply that exactly modeling a (very) long Markov chain, for in-
stance, is not possible, as only parts up to n items will be modeled. While a complete
Markov chain can easily be described by our model, computing it may prove to be dif-
ficult in practice. It would be interesting to see then, how modeling techniques as de-
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composition, for instance, using junction trees [Cowell et al. 1999], could be combined
with our methods.

We see several further possibilities for improving upon our current, unoptimized,
implementation of MTV. For example, massive parallelization can be applied to the
search for the most informative itemset. This requires computing itemset probabili-
ties with respect to a single model, for many candidates, which can easily be done in
parallel. This can also benefit pruning in this phase, since we can use the maximum
heuristic value over all processes. Another option is to simplify the computation of the
row margin distribution, which adds a factorN to the runtime of the algorithm. Rather
than computing the probability that a transaction contains a certain number of items,
we could group these probabilities in to a coarser granularity, to reduce this factor.

9. CONCLUSION
We introduced a well-founded method for iteratively mining non-redundant collec-
tions of itemsets that form high-quality summaries of transaction data. By employ-
ing the Maximum Entropy principle, we obtain unbiased probabilistic models of the
data, through which we can identify informative itemsets, and subsequently itera-
tively build succinct summaries of the data by updating our model accordingly. As
such, unlike static interestingness models, our approach does not return patterns that
are redundant with regard to what we have learned, or already knew as background
knowledge, and hence the result is kept succinct and maximally informative.

To this end, we presented the MTV algorithm for mining informative summaries,
which can either mine the top-k most informative itemsets, or by employing either
the Bayesian Information Criterion (BIC) or the Minimum Description Length (MDL)
principle, we can automatically identify the set of itemsets that as a whole provides a
high quality summary of the data. Hence, informally said, our method ‘tells you what
you need to know’ about the data.

Although in the general case modeling by Maximum Entropy is NP-hard, we showed
that in our case we can do so efficiently using Quick Inclusion-Exclusion. Furthermore,
MTV is a one-phase algorithm; rather than picking itemsets from a pre-materialized
user-provided candidate set, it calculates on-the-fly the supports for only those item-
sets that stand a chance of being included in the summary.

Experiments show that we discover succinct summaries, which correctly identify
important patterns in the data. The resulting models attain high log-likelihoods using
only few itemsets, are easy to interpret, contain significant itemsets with low p-values,
and for a wide range of datasets are shown to give highly intuitive results.
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APPENDIX
A. PROOF OF COROLLARY 4.3

COROLLARY 4.3. The log-likelihood of the maximum entropy distribution p∗〈C,Φ〉 for
a collection of itemsets and frequencies 〈C,Φ〉 is equal to

log p∗〈C,Φ〉(D) = |D|
(

log u0 +
∑

(Xi,fi)∈〈C,Φ〉

fi log uXi

)
.
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PROOF. From Theorem 4.2, we have that p∗〈C,Φ〉(A = t) = u0

∏
X∈C u

SX(t)
X . Hence

log p∗〈C,Φ〉(D) =
∑
t∈D

log p∗〈C,Φ〉(A = t)

=
∑
t∈D

(
log u0 +

∑
Xi∈C

SXi
(t) log uXi

)

= |D|
(

log u0 +
∑

(Xi,fi)∈〈C,Φ〉

fi log uXi

)
= −|D|H

(
p∗〈C,Φ〉

)
.

The transition from the second to the third line follows from the fact that∑
t∈D SXi

(t) = supp(X).

B. PROOF OF THEOREM 4.5
THEOREM 4.5. Assume a collection of itemsets C = {X1, . . . , Xk} and let p∗C be the

maximum entropy model, computed from a given dataset D. Assume also an alter-
native model r(A = t | f1, . . . , fk), where fi = fr(Xi | D), that is, a statistical model
parametrized by the frequencies of C. Assume that for any two datasets D1 and D2,
where fr(X | D1) = fr(X | D2) for any X ∈ C, it holds that

1/|D1| log r(D1 | f1, . . . , fk) = 1/|D2| log r(D2 | f1, . . . , fk) .

Then p∗C(D) ≥ r(D) for any dataset D.

PROOF. There exists a sequence of finite datasets Dj such that fr(Xi | Dj) = fi
and qDj

→ p∗C . To see this, first note that fi are rational numbers so that the set of
distributions PC is a polytope with faces defined by rational equations. In other words,
there is a sequence of distributions pj with only rational entries reaching p∗. Since a
distribution with rational entries can be represented by a finite dataset, we can have
a sequence Dj such that qDj = pj .

Now as j goes to infinity, we have
1

|D|
log r(D) =

1

|Dj |
log r(Dj) =

∑
t∈T

qDj
(A = t) log r(A = t)→

∑
t∈T

p∗C(A = t) log r(A = t) .

Since the left side does not depend on j we actually have a constant sequence. Hence,

0 ≤ KL(p∗C ‖ r) = H(p∗C)−
∑
t∈T

p∗C(A = t) log r(A = t) = 1/|D|(log p∗C(D)− log r(D)) ,

which proves the theorem.

C. PROOF OF THEOREM 4.18
First, we state two lemmas, which are then used in the proof of the subsequent theo-
rem.

LEMMA C.1. Let G and H be itemset collections such that G ⊆ H ⊆ closure(G), then
closure(H) = closure(G).

PROOF. Write F = closure(G) and let U =
⋃

X∈G X, V =
⋃

X∈HX, and W =⋃
X∈F X. By definition we have U ⊆ V which implies that closure(G) ⊆ closure(H).

Also since V ⊆ W , we have closure(H) ⊆ closure(F) = closure(G), where the second
equality follows from the idempotency of closure.
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LEMMA C.2. Let G be an itemset collection and let Y /∈ G be an itemset. Assume that
there is a t ∈ T such that SX(t) for every X ∈ G and SY (t) = 0. Then Y /∈ closure(G).

PROOF. SY (t) = 0 implies that there is ai ∈ Y such that ti = 0. Note that ai /∈ X
for any X ∈ G, otherwise SX(t) = 0. This implies that Y *

⋃
X∈G X which proves the

lemma.

With the lemmas above, we can now prove the main theorem.

THEOREM 4.18. Given a collection of itemsets C = {X1, . . . , Xk}, let TC be the cor-
responding partition with respect to C. The algorithm QIEBLOCKSIZES correctly com-
putes the block sizes e(T ) for T ∈ TC .

PROOF. Let us denote e0(T ) = c(T ) for the initialized value, and let ei(T ) be the
value of e(T ) after the execution of the ith iteration of QIEBLOCKSIZES for i = 1, . . . , k.

Let us write

Si(G) = {t ∈ T | SX(t) = 1 for X ∈ G and SX(t) = 0 for X ∈ Ci \ G} .

The following properties hold for Si:

(1) Si(G) ⊆ Si−1(G) for any G and i > 0.
(2) If Xi /∈ G, then Si−1(G) = Si(G) ∪ Si−1(G ∪ {Xi}), and Si−1(G ∪ {Xi}) ∩ Si(G) = ∅.
(3) Si(G) = Si(closure(G, i)) for any G.
(4) If Xi ∈ G, then Si(G) = Si−1(G).

Note that
∣∣Sk(sets(T ; C))

∣∣ = e(T ), hence to prove the theorem we will show by induc-
tion that ei(T ) =

∣∣Si(sets(T ; C))
∣∣ for i = 0, . . . , k and for T ∈ TC .

For i = 0 the statement clearly holds. Let i > 0 and make an induction assump-
tion that ei−1(T ) =

∣∣Si−1(sets(T ; C))
∣∣. If Xi ∈ G, then by definition ei(T ) = ei−1(T ).

Property 4 now implies that Si(G) = Si−1(G), proving the induction step.
Assume that Xi /∈ G. Let us define F = G ∪ {Xi} and let G′ = closure(F , i− 1) and

H = closure(G′). Since it holds that F ⊆ G′ ⊆ closure(F), Lemma C.1 implies that
H = closure(F).

Assume that T ′ = block(G′) = ∅. Then we have ei(T ) = ei−1(T ), hence we need to
show that Si(G) = Si−1(G). Assume otherwise. We will now show that G′ = H and
apply Lemma 4.16 to conclude that block(G′) 6= ∅, which contradicts our assumption.

First note that if there would exist an X ∈ H \ G′, then X ∈ Ci−1, since

H \ G′ = H \ (F ∪ (closure(F) \ Ci−1))

= H \ (F ∪ (H \ Ci−1))

⊆ H \ (H \ Ci−1)

⊆ Ci−1 .

Since Si(G) ⊆ Si−1(G), we can choose by our assumption t ∈ Si−1(G) \ Si(G). Since
t ∈ Si−1(G), we have SX(t) = 1 for every X ∈ G. Also SXi

(t) = 1, otherwise t ∈ Si(G).
Lemma C.2 now implies that for every X ∈ Ci−1 \ F , it holds that X /∈ closure(F) = H.
This proves that H = G′, and Lemma 4.16 now provides the needed contradiction.
Consequently, Si−1(G) = Si(G).

Assume now that T ′ = block(G′) 6= ∅, i.e., there exists a T ′ ∈ TC such that G′ =
sets(T ′, C). The induction assumption now guarantees that ei−1(G′) =

∣∣Si−1(G′)
∣∣.
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We have ∣∣Si(G)
∣∣ =

∣∣Si−1(G)
∣∣− ∣∣Si−1(F)

∣∣ Property 2

=
∣∣Si−1(G)

∣∣− ∣∣Si−1(G′)
∣∣ Property 3

= ei−1(G)− ei−1(G′) , induction assumption

which proves the theorem.
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