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Abstract. State space generation is often needed in the analysis of con-
current and distributed systems. The stubborn set method is one of the
techniques that try to alleviate the state space explosion encountered in state
space generation. An algorithm for finding a stubborn set having as few
enabled transitions as possible is presented. Practicality of the algorithm is
motivated with the aid of examples.
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1 Introduction

State space generation is often needed in the analysis of concurrent and distributed
systems such as telecommunication protocols. The stubborn set method [20, 21, 22, 23,
24, 25] is one of the methods that try to relieve the state space explosion problem that
occurs in state space generation. Somewhat similar techniques have been presented in
e.g. [3,5,6,7, 10, 12, 13, 14, 15, 16].

Using [21], it is easy to derive a non-brute-force algorithm that finds a stubborn
set that contains the least number of enabled transitions. The point of this paper is
that though the obtained minimization algorithm is not practical as such, an incomplete
version of the algorithm can be quite practical.

The rest of this paper has been organized as follows: Section 2 presents the formalism
to be used. Stubborn sets and algorithms are considered in Section 3. Section 4 is
devoted to examples. Conclusions are then drawn in Section 5.

2 Formalism

The algorithms we consider are applied to place/transition nets (with infinite capacities)
[19]. We shall use N to denote the set of non-negative integer numbers, 2% to denote
the set of subsets of the set X, X* to denote the set of finite words over the alphabet X,
and ¢ to denote the empty word. (We shall also use “iff” to denote “if and only if” and
“w.r.t.” to denote “with respect to”.)



Definition 2.1 A place/transition net is a quadruple (S, T, W, M) such that S is the
set of places, T is the set of transitions, SNT = (), SUT is finite, W is a function from
(SxT)U(T x S) to N, and My is the initial marking (initial state), My € M where
M is the set of markings (states), i.e. functions from S to N. If x € S U T, then the
set of input elements of x is *x = {y | W(y, z) > 0}, the set of output elements of x is
z* ={y | W(z,y) > 0}, and the set of adjacent elements of z is * U *z. A transition ¢
leads (can be fired) from a marking M to a marking M' (M[t)M' for short) iff

Vs e S M(s) > W(s, t) A M'(s) = M(s) — W(s,t) + W(t,s).

A transition ¢ is enabled at a marking M iff ¢t leads from M to some marking. A marking
M is terminal iff no transition is enabled at M. O

Transition sequences and reachability are introduced in Definition 2.2.

Definition 2.2 Let (S, T, W, M,) be a place/transition net. The set T* is called the
set of finite transition sequences of the net. Let f be a function from M to 27. A finite
transition sequence o f-leads (can be f-fired) from a marking M to a marking M’ iff
M{o);M', where

VM e M M[e);M, and

VM e MVYM' e MYseT*VteT
Moty M' < (AM" € M M[6)fM" Nt € f(M")ANM"[t)M").

A finite transition sequence o is f-enabled at a marking M (M|o); for short) iff o f-leads
from M to some marking. A marking M’ is f-reachable from a marking M iff some finite
transition sequence f-leads from M to M'. A marking M’ is an f-reachable marking iff
M' is f-reachable from M. The f-reachability graph of the net is the pair (V, A) such
that the set of vertices V is the set of f-reachable markings, and the set of edges A is
{M,t, M"Y | M e VAM € VAte f(M)NMI[t)M'}. Let then ¥ be the function from
M to 27T such that for each marking M, ¥ (M) = T. A finite transition sequence o leads
(can be fired) from a marking M to a marking M' (M[o)M' for short) iff M(o)yM'.
A finite transition sequence o is enabled at a marking M (M[o) for short) iff M[o)y.
A marking M’ is reachable from a marking M iff some finite transition sequence leads
from M to M’'. A marking M’ is a reachable marking iff M' is reachable from M. The
W-reachability graph of the net is called the full reachability graph of the net. a

When f is clear from the context or is implicitly assumed to exist and be of a kind
that is clear from the context, then the f-reachability graph of the net is called the
reduced reachability graph of the net.

3 Stubborn sets

When one wants to show results concerning the theoretical properties of the stubborn
set method, it is often best to use a dynamic definition of stubbornness. The below
principles D1 and D2 are the principles 1* and 2* of [18], respectively.



Definition 3.1 Let (S, T, W, M) be a place/transition net. Let M be a marking of the
net. A set Ty C T fulfils the first principle of dynamic stubbornness (D1 for short) at M
iff Vo € (T'\ Ts)* Vt € Ts Moty = M][to). A transition ¢ is a dynamic key transition of
asetTy, CT at M iff t € Ts and Vo € (T'\ T)* M[o) = Mlot). A set Ts C T fulfils the
second principle of dynamic stubbornness (D2 for short) at M iff T; has a dynamic key
transition at M. A set T, C T is dynamically stubborn at M iff T, fulfils D1 and D2 at
M. A function f from M to 27 is a dynamically stubborn function iff for each marking
M, either f(M) is dynamically stubborn at M or no transition is enabled at M. O

Theorem 3.2 Let (S, T, W, My) be a place/transition net. Let f be a dynamically stub-
born function from M to 2T. Then the f-reachability graph of the net contains all reach-
able terminal markings.

Proof. The result is an immediate consequence of Theorem 12 of [27]. O

The definition of dynamically stubborn sets does not suggest any algorithm for com-
puting such sets. Therefore, we need a static definition for stubbornness. We shall use
the following which is almost the same as in [20].

Definition 3.3 Let (S, T, W, M,) be a place/transition net. The function E; from M X
S to 27, the functions E, and E5 from M x T x S to 27, and the function E, from S to
2T are defined as follows: Let M € M, t € T, and s € S. Then

Ei(M,s) = {t'e®s|M(s) >W(s,t') A\W(t,s) >W(s,t)},
Ey(M,t,s) = Eu(s)U{t' €s*| W(s,t) > W(t s)A
W(s,t") > M(s) — W(s,t) + W(t,s)},
Es(M,t,s) = Ey(M,s)U{t' €°s|M(s)>W(s,t') A\W(t,s)>W(ts)}, and
Ey(s) = {t'es® | W(s,t')>W(t,s)}.

A transition t is a key transition of a set Ty, C T at a marking M iff t € T}, t is enabled
at M, and Vs € °t E,(s) C Ts. A set Ty C T is stubborn at a marking M iff some
transition is a key transition of 7 at M and each transition ¢ in 7T satisfies

(s et M(s) < W(s,t) N E1(M,s) CT,)V
(M[t) AN (Vs €t W(s,t) < W(t,s)V Ey(M,t,s) CTsV E3(M,t,s) CTy)). O

Intuitively, E;(M,s) is the set of transitions that could increase the contents of s
and are not disabled by s at M. Correspondingly, E5(M,t,s) is the set of transitions
that could decrease the contents of s or get disabled because of the firing of ¢t at M.
Respectively, F3(M,t,s) is the set of transitions that are not disabled by s at M and
could increase the contents of s or have a greater output weight to s than ¢ has. Finally,
E4(s) is the set of transitions that could decrease the contents of s.

Theorem 3.4 If a transition is a key transition of a set at a marking, then the transition
15 a dynamic key transition of the set at the marking. If a set is stubborn at a marking,
then the set is dynamically stubborn at the marking.

Proof. The first claim follows easily from the definitions. Our stubborn sets thus
fulfil D2. The proof of Theorem 2.2 of [20] shows that our stubborn sets also fulfil D1.
O

On the other hand, it is easy to find examples where a dynamic key transition is not
a key transition or where a dynamically stubborn set is not stubborn.



We now turn to the so called deletion algorithm [21, 22] that computes stubborn sets
that are inclusion minimal w.r.t. enabled transitions. Our deletion algorithm can be
derived from the algorithm given in [21].

Definition 3.5 Let (S,T, W, M,) be a place/transition net and M a marking of the net.
The and/or-graph at M is a triple (Vg, Vi, A) such that the set of and-vertices Vg is

{s|FteTsetAM(s)<W(s,t)}U{teT| Mt}
{(t,5,i) |t e TAM[t) As € tAW (s,8) > W(ts)Ai€ {23},

the set of or-vertices Vg is
{teT |-MHu{{t,s)|te T ANM[t) Ns €t ANW (s, t)>W(ts)},
and the set of edges A is

{{s,tY | Tt eT st ANM(s) <W(s,t)At' € E1(M,s)}U
{(t,(t,s)) |t € TANM[ty Ns € tANW(s,t) > W(t,s)}U
{{{t,s,i),t") | t€T ANM[ty ANs €t ANW(s,t) >W(t,s)A
i€{2,3} At € E;(M,t,s)}U
{{t,s) |[teT ANse*tANM(s) < W(s,t)}U
{{{t, s), (t,s,0)) [t e TANM[t) Ns €t AW (s, t) >W(t,s)Ni € {2,3}}.

A set Vi C Vg U Vg is legal iff

(Ve e VsNVg Vy € Vg UV (x,y) € A=y e V),
Ve e V,nVg y eV, (z,y) € A), and

some transition is a key transition of V, N'T at M. O

The idea in defining the and/or-graph and legality is nothing else but to rephrase
the definition of stubbornness. Consequently, the set of transitions of any legal set
is stubborn. Also, for each stubborn set, there exists a legal set such that the set of
transitions of the legal set is the stubborn set. Moreover, the set of vertices of the
and/or-graph is legal iff the marking is nonterminal.

The deletion algorithm is presented in Figure 1. The procedure DelAlg computes
the stubborn set. The and/or-graph is initialized in such a way that each vertex has
links to the immediate predecessor vertices and each or-vertex has a counter initialized
to the number of the immediate successor vertices. (From Definition 3.5 it follows that
the number is not 0.) Also, each vertex has an associated colour that is initially white,
and each transition has a root flag that is initially zero as well as a protection flag that
has an arbitrary initial value.

The computed stubborn set is the remaining set of white transitions and is inclusion
minimal w.r.t. enabled transitions. In other words, no proper subset of its enabled
transitions can be the set of enabled transitions of any stubborn set. This can be shown
by showing that the set of white vertices is legal each time when the while-condition in
Cnstr is checked.

The time taken by an execution of the deletion algorithm is at most proportional
to pvp|T|, where p is the maximum number of input places of a transition, v is the
maximum number of adjacent transitions of a place, and p is the maximum number of
enabled transitions at a marking. The amount of space required is at most proportional
to uv|T.



procedure Speculate(z) {
mark z grey ;
for each white immediate predecessor vertex y of x do
if y is an and-vertex then Speculate(y) ;
else {
subtract 1 from the counter of y;
if the counter of y is at 0 then Speculate(y); } }
procedure Rehabilitate(z) {
mark x white ;
for each non-black immediate predecessor vertex y of x do {
if y is an or-vertex then add 1 to the counter of y;
if y is grey then Rehabilitate(y); } }
procedure Cnstr {
for each protected enabled transition ¢ do
set the root flag of ¢ equal to 1;
while (there are at least two enabled white transitions and at least one
enabled white transition has a zero root flag) do {
let ¢ be some enabled white transition having a zero root flag;
set the root flag of ¢ equal to 1; Speculate(t) ;
if (the set of white transitions contains all protected transitions
and has a key transition) then mark all grey vertices black ;
else Rehabilitate(t) ; } }
procedure DelAlg {
initialize the and/or-graph ; make all transitions unprotected ; Cnstr; }

Figure 1: The deletion algorithm.



Let’s then consider the problem that we have some subset T, of enabled transitions
and we want to know if there exists a stubborn set that contains all transitions of 7, but
no other enabled transitions. We can solve this problem simply by running the deletion
algorithm with the constraint that members of 7, are not allowed to be removed. If a
stubborn set of the desired kind exists, we get such. Otherwise we get a stubborn set
that contains all transitions of T, and at least one additional enabled transition.

By solving the above T -problem for each subset of enabled transitions in turn, we
find a stubborn set that has the least number of enabled transitions. Such minimization
is somewhat impractical since we cannot assume that the number of enabled transitions
would always be sufficiently small. However, we can use an incomplete form that can be
considered practical.

The incomplete minimization algorithm is presented in Figure 2. The presented form
is not the most general possible but here we have decided not to introduce parameters that
do not vary in the applications in Section 4. The set returned by the function IncmplMin
is the set of enabled transitions in the chosen stubborn set. Complete minimization is
performed if at most 5 transitions are enabled. Otherwise 7, varies only over sets of size
1, and in the case of “failure”, one of the so far found stubborn sets is chosen in such a
way that none of the so far found sets contains less enabled transitions.

function IncmplMin {
DelAlg /* see Figure 1 */;
if (the set of enabled white transitions contains all enabled
transitions or does not contain more than one enabled
transition) then return the set of enabled white transitions;
make a backup set from the set of enabled white transitions;
initialize a variable L to the size of the backup set ;
if more than 5 transitions are enabled then set L equal to 2;
initialize a variable ¢ to 1;
while i < L do {
for each subset T, of enabled transitions of size i do {
initialize the and/or-graph ;
protect the transitions in 7, and make others unprotected ;
Cnstr /* see Figure 1 */;
if all enabled white transitions are protected then
{ discard the existing backup set ; return 7, ; }
if L > the number of enabled white transitions then {
discard the existing backup set ;
make a backup set from the set of enabled white transitions;
set L equal to the size of the backup set ;
}}add 1tois}

return the existing backup set ; }

Figure 2: The incomplete minimization algorithm.

The incomplete minimization algorithm has the same worst-case space complexity as
the deletion algorithm. The time taken by an execution of the incomplete minimization
is at most proportional to the time taken by an execution of the deletion algorithm
multiplied by max(p, 32) where p is the maximum number of enabled transitions at a
marking.



4 Examples

The algorithms of Section 3 have been implemented in a tool called PROD [28, 29]. In
this section we consider two cases that have been studied with the aid of PROD. The
first case is PFTP, a file transfer protocol [8]. The second case is YXA, a telephone
protocol designed for educational purposes in Nokia Telecommunications Oy. PROD
can be obtained by ftp from /pub/prod in saturn.hut.fi, Internet address 192.26.133.104.
The below statistics were obtained by running PROD in Linux on a Pentium with 64
Megabytes of RAM. The reduced reachability graphs that were under construction were
kept in files.

algorithm | vertices | edges | user time | system time | elapsed time
IMA 5655 | 6418 962 s 8s 985 s
DAA 5758 | 6615 964 s 9s 1000 s
IA1 14148 | 19545 6895 s 33 s 7212 s
1A2 18928 | 27307 7770 s 14's 7799 s
Figure 3: The statistics of PF'TP.
k | algorithm | vertices edges | user time | system time | elapsed time
9 | IMA 27271 28961 282 s 11s 314 s
9 | DAA 125346 | 135735 1282 s 74 s 1525 s
9 | IA1 638316 | 735463 1485 s 587 s 8000 s
9 | IA2 497877 | 629506 1022 s 399 s 3602 s
10 | IMA 35114 37085 379 s 15s 424 s
10 | DAA 168547 | 181260 1778 s 114 s 2129 s
10 | TA1 897495 | 1015580 2294 s 1172 s 25661 s
10 | TA2 671636 | 833660 1427 s 708 s 11065 s
11 | IMA 44517 46798 533 s 21s 600 s
11 | DAA 221935 | 237284 2510 s 170 s 3034 s
11 | TA1 1231401 | 1372943 2985 s 2383 s 67478 s
11 | IA2 884726 | 1081029 2078 s 1407 s 31243 s

Figure 4: The statistics of YXA.

The statistics include the number of vertices and edges in the reduced reachability
graph, as well as the so called user time, system time and elapsed time of the generation
of the graph when generated with different stubborn set computation algorithms: the
above described incomplete minimization algorithm (IMA for short), the above described
deletion algorithm alone (DAA for short), and two versions of the so called incremental
algorithm [20, 22, 24, 29] (IA1 and IA2 for short). The incremental algorithm performs
a search in a nondeterministically chosen transition dependency graph. IA1 performs a
full search in order to avoid unnecessarily many enabled transitions, whereas IA2 accepts
the first stubborn set found. The worst-case time complexity of both IA1 and TA2 is
the worst-case time complexity of DAA divided by the maximum number of enabled
transitions at a marking. The worst-case space complexity of both TA1 and TA2 is the
same as the worst-case space complexity of DAA.

Note that while the so called elapsed time measures the “real world” time, it is then
also affected by the other programs run in the Linux system. However, the experiments



considered in this section were arranged in such a way that the elapsed times were not
considerably affected by the other programs, except those performing the associated hard
disk operations.

A detailed description of PFTP is given in Section 14.5 of [8]. Here we assume that
messages are neither lost nor duplicated. The window size is 2, and a message queue
can have at most two messages at a time. The stubborn set method then produces a
reduced reachability graph that has no terminal marking. From this it follows that under
the above assumptions, the protocol is free of deadlocks. Figure 3 shows the statistics of
the PFTP case.

As far as the PFTP case is concerned, the algorithms in PROD may seem less efficient
than the algorithms in the SPIN tool [8, 9]. A partial explanation is that SPIN uses a
different modelling formalism and a different definition of stubbornness that can utilize
the special properties of some frequently needed operations [6, 15]. Another partial
explanation is that SPIN stores states more compactly than PROD.

YXA is a simple telephone protocol which nevertheless includes most of the relevant
aspects, such as charging, needed in any real world telephone protocol. In abstract terms,
we again have processes that communicate by sending messages. A message queue can
have at most k messages at a time. Because of the more or less inevitable state space
explosion, we keep the number of processes at its least possible value. The stubborn
set method then produces a reduced reachability graph that has no terminal marking.
The protocol (actually a corrected version of the original YXA) is thus free of deadlocks.
Figure 4 shows the statistics of the YXA case with different values of k.

5 Conclusions

The contribution of this paper is the incomplete minimization algorithm. The algorithm
is worth of consideration whenever one wants to get proper advantage of the stubborn
set method. Unfortunately, trying to minimize branching is no superior strategy for
getting as small reduced reachability graphs as possible. Though the example given in
[22] would suffice, let’s consider a pathological case, a place/transition net (S, T, W, M)
such that S = {S}, T = {to,tl,tQ}, W(to,s) = W(S,t1) = W(S,tQ) = 1, W(S,to) =
W(t1,s) = Wi(ts,s) = 0, and My(s) = 0. Then the only way to obtain a finite reduced
reachability graph is to choose {t;,ts} for the stubborn set at some non-initial marking
though {t,} would contain less enabled transitions.

Actually, there is hardly no superior strategy [14, 22]. Nevertheless, if the set of
enabled transitions of a stubborn set is a proper subset of enabled transitions of another
stubborn set, it is clearly preferable to choose the former stubborn set [22]. On the other
hand, it is difficult to imagine a general heuristic that would try to minimize the size of
the redeuced reachability graph without trying to minimize branching.

When the storing of states is a critical problem, state space caching [5] can be used
to relieve the situation. Such caching typically does not affect the way in which stubborn
sets are computed.

Though we have presented the incomplete minimization algorithm for place/trans-
ition nets, a similar algorithm can actually be presented for any formalism where the
stubborn set method is applicable. This is so because the idea in defining the and/or-
graph and legality is nothing else but to rephrase the definition of stubbornness.

The algorithms in this paper can also be extended to on-the-fly verification of linear



time temporal formulas that do not contain the next-state operator. The verification
can follow the lines given in [25] or utilize Biichi automata [2, 4] and the preservation of
CFFD-semantics [11, 24, 26]. Taking advantage of fairness assumptions should also be
possible as suggested by the so called ample set approach in [14, 15].
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