On-the-Fly Verification with PROD

Kimmo Varpaaniemi

Helsinki University of Technology, Digital Systems Laboratory
Otakaari 1, FIN-02150 Espoo, Finland
Kimmo.Varpaaniemi@hut.fi

1 Introduction

On-the-fly verification of a property means that the property is verified during
state space generation, in contrary to the traditional approach where proper-
ties are verified after state space generation. As soon as it is known whether
the property holds, the generation of the state space can be stopped. Since an
erroneous system can have a much larger state space than the intended correct
system, it is important to find errors as soon as possible. On the other hand, even
in the case that all states become generated, the overhead caused by on-the-fly
verification, compared to non-on-the-fly verification, is often negligible.

It has turned out that many of the methods that have originally been designed
to avoid the generation of all states in non-on-the fly verification can be applied
to on-the-fly verification as well. Valmari’s stubborn set method [3] is one such
method.

In this paper we describe how the Pr/T-net reachability analysis tool PROD
[1] verifies properties on-the-fly.

2 Verification

The on-the-fly verification algorithm in PROD is based on the algorithm of
Valmari [3]. PROD can thus verify a property on-the-fly if the negation of the
property can be expressed by means of a tester of the form defined in [3].

In [3], Valmari considers the computation of a parallel composition of labelled
transition systems. However, it is very easy to transfer the theory to concern the
generation of the reachability graph of a Pr/T-net.

A tester in a Pr/T-net is a unique place together with the arcs connected to
the place. At any reachable marking, the tester place contains exactly one tuple,
and such tuple is unary. The value inside the tuple is the state of the tester.
An action is a transition instance, i.e. a transition with a single combination of
values of the variables of the transition. An action is wisible if and only if the
action is connected to the tester place, i.e. there is at least one arc between the
tester place and the transition of the action in such a way that the expression
on the arc has a nonempty value. (In an arc expression of PROD, a tuple can
be multiplied by a non-constant expression.)

We can now associate special meanings with the states of the tester and
proceed as in [3]. The algorithm in [3] is directly applicable to the generation

of the reachability graph of the net since a reachable marking of the net can
imagined to be a pair of the state of the tester and the state of the actual
system. If stubborn sets are wanted, they are computed by a Petri net oriented
algorithm which satisfies the conditions mentioned in [3].

An example is given in the appendix. There we have the classical dining
philosopher example with 1994 philosophers and demonstrate the usage of a so
called livelock monitor state. The stubborn set method is used in the example.

3 Discussion

It would be tempting to say that any linear time temporal property can be
expressed by means of a tester. This is true in the sense that a Biichi automaton is
a special case of a tester. However, if we actually construct a tester corresponding
to a given formula by using any of the known algorithms, the alphabet of the
resulting tester consists of atomic propositions or sets of atomic propositions.
Consequently, a linear time temporal formula can be expressed by means of a
tester of the form used in PROD if the atomic propositions in the formula are
actions, whereas nothing can be guaranteed if some atomic proposition in the
formula is not an action.

This is a practical problem since it is often more intuitive to describe a prop-
erty of a Petri net in terms of places than in terms of transitions. In private
discussions with Valmari it turned out that the theory in [3] can be extended
to handle state-oriented information. On the other hand, implementing such ex-
tension in PROD seems to require more description power to the net description
language and extending the reachability graph generation algorithms to cover
the increased description power.

Peled [2] has presented an on-the-fly verification algorithm which is slightly
similar to Valmari’s algorithm but works with any atomic propositions. Some of
the ideas in [2] could perhaps be utilized in the development of PROD.

Acknowledgements

This work has been funded by the Technology Development Centre of Finland.

References

1. Gronberg, P., Tiusanen, M., and Varpaaniemi, K.: PROD A Pr/T-Net Reacha-
bility Analysis Tool. Helsinki University of Technology, Digital Systems Laboratory
Report B 11, Espoo 1993, 44 p.

2. Peled, D.: Combining Partial Order Reductions with On-the-Fly Model-Checking.
Dill, D. (Ed.), Proceedings of CAV ’94, Stanford CA, June 1994. LNCS 818,
Springer-Verlag, Berlin 1994.

3. Valmari, A.: On-the-Fly Verification with Stubborn Sets. Courcoubetis, C. (Ed.),
Proceedings of CAV ’93, Elounda, Greece, June/July 1993. LNCS 697, Springer-
Verlag, Berlin 1993, pp. 397 408.

Appendix

putRight | 5|

b
Qb
<> 62y
X
24
&
<>

putLeft | —

<>

<X>
| takeLeft

<« |takeRight

(x==n)<1>

Oj <X>

(x == n)<0>

To find a loop where philosopher n holds his left—-hand fork, we
search for an invisible loop where tester is marked by <1>.
The only visible actions are takeLeft(x == n) and takeRight(x == n).

ws4) cat dining.net
#define n 1994
#define LEFT(x) (x)
#define RIGHT(x) (1 +

.>)

% n))
hi(<.n.

.>)

hi(<.n.
hi(<.n.
hi(<.n.

hi(<.1.

>) mk(<.1..n.>)
>)
>)

>)

>) mk(<.0.>)

in { forks: <.RIGHT(x).>; withLeft: <.x.>;
tester: (x == n)<.1.>; }

out { eating: <.x.>; tester: (x

#place thinking lo(<.
#place forks mk (<.
#place withLeft lo(<.
#place eating lo(<.
#place withRight lo(<.
#tester tester

#place tester lo(<.
#monitor 1 livelock
#trans takeRight
#endtr

#trans takeLeft

== n)<.0.>; }

in { thinking: <.x.>; forks: <.LEFT(x).>;
tester: (x == n)<.0.>; }

out { withLeft: <.x.>; tester: (x == n)<.1.>;}
#endtr
#trans putlLeft
in { eating: <.x.>; }
out { withRight: <.x.>; forks: <.LEFT(x).>; }
#endtr
#trans putRight
in { withRight: <.x.>; }
out { thinking: <.x.>; forks: <.RIGHT(x).>; }
#endtr
ws4), prod dining.net
Compiling...
Generating reachability graph
Livelock reached
Loop 1994 [1> 1996 [0> 1997 [0> 1999 [0> 1994
For more information, start "probe dining" and look at the set %2
ws4), probe dining
O#goto 1994
1994#calc withLeft
<.1994.>
1994#succ arrow 1
Arrow 1: transition takeLeft, precedence class 0
x =1
to node 1996
1994#next 1
1996#succ arrow 0
Arrow 0: transition takeRight, precedence class 0
x =1
to node 1997
1996#next 0
1997#succ arrow O
Arrow 0: transition putLeft, precedence class 0O
x =1
to node 1999
1997#next 0
1999#succ arrow 0
Arrow 0: transition putRight, precedence class 0
x =1
to node 1994

