Stable Models for Stubborn Sets

Kimmo Varpaaniemi
Helsinki University of Technology
Laboratory for Theoretical Computer Science
P.O. Bozx 9700, FIN-02015 HUT, Finland

(kimmo.varpaaniemi@hut.fi)

Abstract. The stubborn set method is one of the methods that try
to relieve the state space explosion problem that occurs in state space
generation. Spending some time in looking for “good” stubborn sets can
pay off in the total time spent in generating a reduced state space. This
paper shows how the method can exploit tools that solve certain problems
of logic programs. The restriction of a definition of stubbornness to a given
state can be translated into a variable-free logic program. When a stubborn
set satisfying additional constraints is wanted, the additional constraints
should be translated, too. It is easy to make the translation in such a way
that each acceptable stubborn set of the state is represented by at least one
stable model of the program, each stable model of the program represents
at least one acceptable stubborn set of the state, and for each pair in the
representation relation, the number of certain atoms in the stable model
is equal to the number of enabled transitions of the represented stubborn
set. So, in order to find a stubborn set which is good w.r.t. the number of
enabled transitions, it suffices to find a stable model which is good w.r.t.
the number of certain atoms.

Keywords: reachability analysis, reduced state space generation, stubborn
sets, variable-free logic programs, stable models

1. Introduction

Reachability analysis, also known as ezhaustive simulation or state space
generation, is a powerful formal method for detecting errors in con-
current and distributed finite state systems. Strictly speaking, infinite
state systems can be analyzed, too, but reachability analysis methods
are typically such that they cannot process more than a finite set of
states. Nevertheless, we can quite well try to find errors even in cases
where we do not know whether or not the complete state space of the
system is finite.

Anyway, reachability analysis suffers from the so called state space
explosion problem, i.e. the complete state space of a system can be far
too large w.r.t. the resources needed to inspect all states in the state
space. Fortunately, in a variety of cases we do not have to inspect all
reachable states of the system in order to get to know whether or not
errors of a specified kind exist.

The stubborn set method [12, 13, 14, 15, 10], and the sleep set method
[2] are state search techniques that are based on the idea that when two
executions of action sequences are sufficiently similar to each other, it
is not necessary to investigate both of the executions. Persistent sets
[2] and ample sets [1, 7] are strikingly similar to stubborn sets, at
least if we consider the actual construction algorithms that have been
suggested for stubborn, persistent and ample sets. This similarity is
made explicit in [4] where a set is said to be a stamper set whenever
the set is stubborn or ample or persistent in some way. This paper is
concentrated on the construction of stubborn sets.

Place/transition nets [8] are the formalism to which the stubborn
set method is applied in this presentation. Due to similarities between
logical structures of definitions of stubbornness, the approach can easily
be extended to cover all conventional formalisms where the stubborn
set method is applicable.

A reduced state space for a net can be constructed by starting from
the initial state of the net and by taking into account some but not
necessarily all possible transitions at those states that become encoun-
tered. Assuming that we want a mechanically computed answer to the
question if terminal states exist in the complete state space, we can let
the stubborn set method construct a reduced state space graph. The
obtained space actually contains all the terminal states of the complete
state space [12, 15].

Given any useful definition of stubbornness, it is likely if not prov-
ably at least NP-hard [7] to find a cardinality minimal reduced state
space among the the alternatives induced by the definition. No algo-
rithm for finding such a minimum “within a reasonable time” has been
presented either. Minimization of branching at each encountered state
does not guarantee anything about the cardinality of the reduced state
space [14, 15], but ways of doing it are known and some of the ways are
of practical interest while there are not very many arguments against
minimal branching itself.

In the stubborn set method, minimization of branching at a state
means finding a stubborn set which is cardinality minimal w.r.t. en-
abled transitions. Even this cardinality minimization may be at least
NP-hard, but incomplete cardinality minimization can still be quite
practical. Though the “incomplete minimization algorithm” in [15]
can be taken seriously as such, it has much room for optimizations.
Much has been done in solving similar problems in the domain of logic
programs, so we now suggest an approach on the basis of such solutions.

The restriction of a definition of stubbornness to a given state can
be translated into a variable-free logic program. When a stubborn set
satisfying additional constraints is wanted, the additional constraints

should be translated, too. It is easy to make the translation in such a
way that each acceptable stubborn set of the state is represented by
at least one stable model [5, 6, 11] of the program, each stable model
of the program represents at least one acceptable stubborn set of the
state, and for each pair in the representation relation, the number of
certain atomic formulas in the stable model is equal to the number of
enabled transitions of the represented stubborn set. So, in order to find
a stubborn set which is good w.r.t. the number of enabled transitions,
it suffices to find a stable model which is good w.r.t. the number of
certain atomic formulas.

The rest of this paper has been organized as follows. And/or-graphs,
an intermediate formalism in the above mentioned translation, are
described in Section 2, and a principally known complexity result is
presented for them. Section 3 defines the concepts for logic programs
and shows how an and/or-graph optimization problem can be tran-
sormed into a stable model optimization problem. Section 4 defines
place/transition nets and stubbornness and fills in the gap in the trans-
lation. (Stubbornness is actually defined in terms of and/or-graphs.)
Conclusions are then drawn in Section 5.

We shall use NV to denote the set of non-negative integer numbers,
2X to denote the set of subsets of the set X, X* (respectively, X*) to
denote the set of finite (respectively, infinite) words over the alphabet
X, and € to denote the empty word. For any nonempty finite word =z,
z“ is the infinite word zzx (As usual, exponentation has a higher
precedence than concatenation in the presentation of words.) For any
alphabet X and for any p € X%, p is thought of as a function from N
to X in such a way that p = p(0)p(1)p(2).... When R C A x B and
z € A, R(z) is the set {y € B | (z,y) € R}.

2. And/or-graphs

And/or-graphs are used for various purposes e.g. in the research of
artificial intelligence. We consider them up to an extent that is needed
from the point of view of the stubborn set method. The notion of
legality defined below is essentially the same as in [13]. The notion of
H-solidity is defined in order to support compact describing of things.

Definition 2.1 An and/or-graph is a quadruple (Vg, Vg, s, F) such
that Vi is the set of and-vertices, Vg is the set of or-vertices, Vg NVg =
@, V@ U V@ is ﬁnite, K € V® U V@, F C (V@ U V@) X (V@ U V@) is the
set of edges, and Yy € Vg F(y) # 0. A set L C Vig U Vg is legal iff (i)
k€L, (ii)Vr € VgNL F(z) CL,and (iii) Vy € Vo N L F(y) N L # 0.

For any H C Vg U Vg, a set B C Vig U Vg is H-solid iff there exists a
legal set L C Vg U Vg such that B = H N L. O

For any H and B, it can be checked in time O(|Vg| + |Vg| + |F|)
whether or not B is H-solid. The algorithm in Figure 1 makes such a
check.

The pseudo-code is a mixture of mathematical expressions, English
expressions and the C programming language [3]. Words belonging to
the control structure of C are written in boldface. A construct of the
form “for (each z in A such that ¢ (z))”, where A is a set and ¥(z)
a truth-valued expression on x, is apparently against the syntax of the
C language but corresponds to a valid “for-construct” where a cursor
moves through a data structure and skips “uninteresting” elements.
The type AO_vertex, implementing each vertex of the and/or-graph,
is assumed to have been defined appropriately. Each vertex has links to
the immediate predecessor vertices. (Links to successor vertices are not
needed.) Also, each vertex is coloured with a single colour, and each
or-vertex has a counter. The and/or-graph data structure is assumed
to have a global scope.

The function SolidCheck returns 1 if B is H-solid. Otherwise 0 is
returned. We first check that B C H and « ¢ H \ B. Then we initialize
the colours and counters. When we come to the line 31, each or-vertex
has the number of outgoing edges in the counter, the value being non-
zero due to Definition 2.1. Whenever we come to the line 33, the set
of non-grey vertices is legal. All this can be proven quite mechanically,
as well as the overall correctness of the algorithm and the above claim
concerning the time taken by the algorithm.

It is easy to modify the algorithm of Figure 1 in such a way that we
get an algorithm for checking of whether or not B has a H-solid subset
(possibly but not necessarily B itself). It suffices to make the line 24
blank and erase the part “and all the vertices of B” of the line 31. Such
an operation clearly does not change the time complexity, whereas the
correctness of the obtained algorithm can be proven in the same way
as the correctness of the original algorithm.

By modifying the algorithm of Figure 1 in another way, an algorithm
for computing an inclusion minimal H-solid set can be obtained. Such
an algorithm is easy to guess by looking at the work done in [13, 14, 15].
The time taken by the obtained algorithm is O((|Vig|+|Vg|+|F|)- | H|)-
However, instead of being satisfied by mere inclusion minimality, we
like to deal with the following problem: “Given an and/or-graph and a
subset H of its vertices, compute a cardinality minimal H-solid set.”
This problem can be solved in time O((|Vg| + |V |+ | F|) - 2/#1) since it
suffices to execute the algorithm in Figure 1 for each subset of H in turn.

/*1*/ void Initialize (AO_vertex z) {

/*2%/ mark z white;

[*4%/ for (each immediate predecessor vertex y of z) {
/*5%/ if (y is a black and-vertex) Initialize(y) ;
/*6*/ else if (y is an or-vertex) {

/*¥7*/ add 1 to the counter of y;

/*8%/ if (v is black) Initialize(y); } } }

/¥9*%/ int Removal (AO_vertex z) {

/*10%/ if (z is black) return 0;

J*¥11%/ mark z grey ;

/*12%/ for (each non-grey immediate predecessor vertex
/*13*/ yofz){

/*¥14%/ if (y is an and-vertex) {

/*15%/ if (Removal(y) is equal to 0) return 0;
/*16%/ } else /* y is an or-vertex. */ {

J*17*/ subtract 1 from the counter of y;

/*18%/ if (the counter of y is equal to 0) {
/*19%/ if (Removal(y) is equal to 0) return 0;
/*20%/ } } } return 15 }

/*21*/ int SolidCheck (AO_vertex_set H, AO_vertex_set B) {
/*22%/ mark all vertices black ;

/*23%/ mark all vertices of H white;

/*24%/ if (B contains at least one black vertex) return 0;
/*25%/ if (s is white but not in B) return 0;

/*26%*/ mark all vertices black ;

/*27%/ set the counters of all or-vertices to 0;

/*28%/ while (at least one black vertex exists) {

/*29%/ let v be some black vertex ; Initialize(v) ;
/*30%/ }

/*31%/ mark x and all the vertices of B black ;

/*32%/ while (H contains at least one white vertex) {
/*33%/ let v be some white vertex of H ;

/*34%/ if (Removal(v) is equal to 0) return 0;
/*35%/ } return 1; }

Figure 1. Checking of whether or not B is H-solid.

Though some more intelligent solutions certainly exist, there is not
much hope for dramatic reduction in the worst-case time complexity.

The above problem has the subproblem: “Given an and/or-graph, a
subset H of its vertices and a non-negative integer number n, compute
a H-solid set of cardinality less than or equal to n, or show that such a
H-solid set does not exist.” This problem is NP-complete since (i) we
can check the correctness of any positive answer by using the algorithm
in Figure 1, and (ii) the famous NP-complete problem SAT can be
reduced to this problem in polynomial time, by constructing the same
and/or-graph as is constructed in [9], x being the unique root vertex
and H the set of terminal vertices of the acyclic graph in question.

Knowing all this, we are relieved by the fact that the context where
we look for small H-solid sets does not force us to find cardinality
minimal H-solid sets.

3. Logic programs and stable models

Definition 3.1 A logic program is a pair (Q, R) where @ is the set
of atomic formulas and R is the set of rules such that @) is finite and
R C Qx(29) x (29). The interpretation of the program is the function ¢
from R x 2% to 2% such that for any (a, B, C) € R and for any Q, C Q,
t({a, B,C),Qs) is (i) {a} UQ; if (B C Qs) A(CNQs=0), and (ii) Qs
in the other case. The inference graph of the program is such that the
set of vertices in the graph is 2 and the set of edges is

{(Q1, Q) € (29)x(29) | @2 # QiAZr € R Qs = u(r, Q1) }. Tet @, C Q.
The reduct of the program w.r.t. Qs is the logic program (Q, R') such
that R' = {({a, B,0) | 3C € 29 ({a,B,C) € R) A (CNQ; = 0)}. O

When B = {b1,...,b,} and C = {ci,...,c,}, a conventional way
to write the rule (a,B,C) is “a + by,...,by,n0t c1,...,n0t ¢;,”. The
inference graph is easily seen to be acyclic. When all rules are of the
form (a, B,0), then for each vertex Qs, only one terminal vertex is
accessible from) via the paths of the graph, and we then say that the
terminal vertex accessible from the empty set is the deductive closure
of the program.

We define the notion of a stable model as follows: a set Qs C Q is a
stable model of a logic program (@, R) iff the deductive closure of the
reduct of the program w.r.t. Qs is Q) itself.

Let us then build a connection between and/or-graphs and logic
programs. Let (Vg, Vg, K, F) be an and/or-graph and H C Vg U V.
Let (Q, R) be a logic program such that (i) @ = H U J U {«, 8}, (ii)
o # B, (i) (Vo UV UJ) N {a, B} = 0, (v) (Va U V)N J =0, (v)
there is a bijection v from Vg U Vg to J, and

(vi) R = {{o, {B},{a}), (B:{7(x)},0)}U

{(v(z),{7(2)},0) |z € Vg Az € E(x)}U

{(v(®),{7(u) |u e E(y)},0) |y € VU

{(y(h),0,{n}) | h e HY U{(h,0,{~(h)}) | h € H}.

By strictly following the definitions, it is relatively easy to show that
a set B C Vg U Vg is H-solid if and only if the above program has a
stable model (s such that B = H N Q. The bijection v simulates
negation. The atomic formulas o and g have the effect that no stable
model contains (k). This is perhaps the most difficult part to prove, so
we prove it now. Every reduct of the program has the rule (8, {vy(k)}, 0).
So, if y(k) is in a stable model, 3 is in the model as well. If both a and
[are in a stable model, the reduct w.r.t. the model does not contain
any rule that refers to «, and consequently, the deductive closure of the
reduct does not contain «, which is a contradiction with the stability
of the model. If 8 is in a stable model without «, the reduct w.r.t.
the model contains the rule (o, {3}, #), and consequently, the deductive
closure of the reduct contains « or does not contain 3, both alternatives
being in contradiction with the stability of the model. We thus conclude
that (k) cannot be in any stable model. (The rules referring to « and
(B actually implement an integrity constraint in the way recommended
by [6].)

Due to the above translation, small H-solid sets can be obtained
by looking for stable models that are small w.r.t. the intersection with
H. A big effort has been made to get good algorithms for the latter
purpose. The Smodels tool [11, 17] implements some of such algorithms,
even an algorithm which is able to compute a cardinality minimal stable
model w.r.t. H. The bound mentioned in Section 2.1 does not become
essentially reduced in this way, but the algorithm is well prepared
against typical sources of unnecessary combinatorial explosion.

4. Place/transition nets and stubborn sets

Definition 4.1 A place/transition net is a quadruple (S,T, W, M)
such that S is the set of places, T' is the set of transitions, SNT =, W
is a function from (S xT)U(T x S) to N, and M, is the initial marking
(initial state), My € M where M is the set of markings (states), i.e.
functions from S to N. The net is finite iff SUT is finite. f z € SUT,
then the set of input elements of z is *z = {y | W(y,z) > 0}, the
set of output elements of = is z* = {y | W(z,y) > 0}, and the set of
adjacent elements of x is *U®*x. A transition t leads (can be fired) from
a marking M to a marking M' (M[t)M' for short) iff

Vs €S M(s) > W(s,t) AM'(s) = M(s) — W(s,t) + W(t,s).

A transition ¢ is enabled at a marking M iff ¢t leads from M to some
marking. A marking M is terminal iff no transition is enabled at M. O

In our figures, places are circles, transitions are rectangles, and the
initial marking is shown by the distribution of tokens, black dots, onto
places. A directed arc, i.e. an arrow, is drawn from an element z to
an element y iff z is an input element of y. Then W (z,y) is called the
weight of the arc. As usual, the weight is shown iff it is not equal to 1.

Definition 4.2 Let (S,T,W, Mj) be a place/transition net. The set
T* (respectively, T%) is called the set of finite (respectively, infinite)
transition sequences of the net. Let f be a function from M to 27. A
finite transition sequence o f-leads (can be f-fired) from a marking M
to a marking M' iff M[c);M', where VM € M Mle)sM, and

VM e MYM'e MY € T*VteT

M6ty ;M & (AM" e M M[8)fM" Nt € f(M") NM"[t)M').

A finite transition sequence o is f-enabled at a marking M (M[o) for
short) iff o f-leads from M to some marking. An infinite transition
sequence o is f-enabled at a marking M (M /o) for short) iff all finite
prefixes of o are f-enabled at M. A marking M’ is f-reachable from a
marking M iff some finite transition sequence f-leads from M to M'. A
marking M’ is an f-reachable marking iff M' is f-reachable from Mj.
The f-reachability graph of the net is the pair (V, A) such that the set
of vertices V is the set of f-reachable markings, and the set of edges A
is {{M,t, M) MeVAM eV Ate f(M)ANM[t)M'}. O

Let ¥ be the function from M to 27 such that for each marking
M, (M) =T. From now on in this paper, we use a plain “)” instead
of “)¢”, and as far as the notions of Definition 4.2 are concerned, we
replace “U-xxx” by “xxx” (where xxx is any word), with the exception
that the W-reachability graph of the net is called the full reachability
graph of the net. When f is clear from the context or is implicitly
assumed to exist and be of a kind that is clear from the context, then
the f-reachability graph of the net is called the reduced reachability
graph of the net.

Definition 4.3 defines functions needed in the definition of stubborn-
ness. Intuitively, Eq (M, s) is the set of transitions that could increase
the contents of s and are not disabled by s at M. Correspondingly,
Ey(M,t,s) is the set of transitions that could decrease the contents
of s or get disabled because of the firing of ¢ at M. Respectively,
E5(M,t,s) is the set of transitions that are not disabled by s at M
and could increase the contents of s or have a greater output flow to s
than ¢ has. Finally, E4(s) is the set of transitions that could decrease
the contents of s.

Definition 4.3 Let (S, T, W, Mj) be a finite place/transition net. The
function E; from M x S to 27, the functions E» and E3 from M xT x S
to 27, and the function E; from S to 27 are defined as follows. Let
MeM,teT,and s € S. Then

Ei(M,s) = {t' €®s| M(s) >W(s,t') AW(t,s) > W(s,t)},
Ex(M,t,s) = E4(s) U{t' € s*| W(s,t) > W(t,s)A
W(s,t') > M(s) —W(s,t) + W(t,s)},
E3(M,t,s) = Ei(M,s)U{t' €°s| M(s) > W(s,t)

AW (t',s) > W (t,s)}, and
Es(s) = {t' € s | W(s,t') > W(t,s)}. 0

We define stubbornness in terms of and/or-graphs, instead of taking
the extra pain of a translation. Definition 4.4 has the same effect as
Definition 4.21 of [15] which in turn is close to (but not equivalent to)
Definition 2.3 of [12].

Definition 4.4 Let (S, T, W, Mj) be a finite place/transition net and
M a nonterminal marking of the net. The basic and/or-graph at M is
the and/or-graph (Vg, Vg, K, F') such that the set of and-vertices Vg, is

{s|HET st AM(s) < W(s,t)} U{t € T | M[t)}U
{(t,5,9) [t€TAMIt) As €t AW (s,t) > W(t,s) i € {2,3} U
{(k,t) | t €T A M},

the set of or-vertices Vg is
{t eT | ~-M[t)}U{(t,s) |t € TAM[t)\s € *tAW (s,t) > W(t,s)}U{K},

k is not expressible in terms of the elements of the net, and the set of
edges F' is

(t,s) |[teT ANsetANM(s) < Wi(s,t)}U

(s,t") | H €T st ANM(s) < W(s,t) ANt € E1(M,s)}U

((t,8),(t,s,3)) | tET AM[t) Ns €t AW (s, t) > W(t,s)A
i€{2,3}}U

i€{2,3} ANt € E;(M,t,s)}U
(K, (kyt)) |t €T ANMIt)}J
((k,t), Y |teTAM[EYAN({' =tVIset t' € Eys))}.

A set T, C T is stubborn at M iff T, is a T-solid set of vertices.
A function f from M to 2T is a stubborn set generator iff for each
nonterminal marking M’, f(M') is stubborn at M. m

The stubborn set method constructs an f-reachability graph for
some stubborn set generator f. If T, = {t € T' | M[t)}, we can simply
say that we actually want a Te-solid set which is as small as possible.

When stubborn sets satisfying some additional constraints are want-
ed, the additional constraints should be included in some way in the
and/or-graphs. The attribute “basic” in Definition 4.4 indicates that
no additional constraint is included. Many typical constraints, even
non-local conditions such as the search stack condition in [1], can be
included in the and/or-graphs. (The stack condition can be transformed
into a local condition by “marking” the enabled transitions which lead
from the current state to the states in the stack.) If for some reason,
some constraint is not included, the and/or-graph abstraction remains
unaware of the constraint, but it is of course possible to develop algo-
rithms that use the abstraction in some subproblems only, as is done
in [15].

a b c

Figure 2. The stubborn sets at Mo are {a, b}, {b,c} and {a,b,c}.

Let us consider the net in Figure 2, the initial marking My being
displaued. The basic and/or-graph at M, is presented in Figure 3. From
the basic and/or-graph it follows that the stubborn sets at Mj are
{aa b}7 {b7 C} and {aa ba C}'

If the outgoing edges of the immediate successor vertices of k in the
definition of the basic and/or-graph did not exist, T-solidity would be
semistubborrness [12]. The definition of stubbornness in [10] actually
considers semisstubborn sets as stubborn sets. Since the empty set is
semistubborn, some constraint is needed to prevent the empty set from
being chosen too easily, but such constraints are defined in all of the
analysis problems considered in [10].

5. Conclusions

The transformation of a stubborn set computation problem into a sta-
ble model computation problem can be made on a tool level. Since
August 1999, the reachability analysis tool PROD [15, 16] has had
an option which makes a reachability graph generator program call
Smodels whenever a stubborn set is to be computed. However, it is

immediate successors

immediate successors vertex ‘ kind

| | | |
‘ K ‘ or ‘ (Kk,a), (K,b), (K,C) ‘ ‘ ‘ and ‘ a, b ‘
‘ (k,b) ‘ and ‘ a, b, c ‘ ‘ ‘ an ‘ b, c ‘
‘ a ‘ and ‘ (a,p) ‘ ‘ b ‘ and ‘ (b,p), (b,q) ‘

¢ Jand | (o0 | | @n o | @p2) o |
| 60y Jor | w2 003 | [wa) [or | (ha2) () |
‘ (e,q) ‘ or ‘ (¢,9,2), {c,q,3) ‘ ‘ a,p,2) ‘ and ‘ a, b ‘
‘ (b,p,2) ‘ and ‘ a, b ‘ ‘ (b,q,2) ‘ and ‘ b, c ‘
‘ (¢,q,2) ‘ and ‘ b, c ‘ ‘ a,p,3 ‘ and ‘ none ‘
‘ (b,p,3) ‘ and ‘ none ‘ ‘ (b,¢,3) ‘ and ‘ none ‘
‘ (c,q,3) ‘ and ‘ none ‘ ‘ ‘ ‘ ‘

Figure 8. The basic and/or-graph of the net of Figure 2 at Mp.

equally fruitful to take algorithms from the “stable model side” and
implement them in any tool. One interesting research problem is how
to handle a case where a net has enormously many transitions, possibly
enormously many of them being enabled simultaneously.

Acknowledgements

The translation from and/or-graphs to logic programs was assisted by
M.Sc.(Eng.) Keijo Heljanko, Docent Dr.Tech. Ilkka Niemel4, Lic.Tech.
Patrik Simons, and Stud.Tech. Tommi Syrjanen (each being from
HUT/TCS, i.e. from the same laboratory as the author). A reference
to [9] was found by M.Sc.(Eng.) Tommi Junttila (from HUT/TCS).
The work has been supported by The Technology Development
Centre of Finland, Nokia Research Center, Nokia Telecommunications,
Helsinki Telephone Corporation, and Finnish Rail Administration.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek, “A Partial Order Approach
to Branching Time Logic Model Checking,” Information and Computation,
Vol. 150, No. 2, pp. 132-152, May 1999.

P. Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems — An Approach to the State-Explosion Problem, LNCS 1032, Springer-
Verlag, 1996, 143 p.

B.W. Kernighan and D.M. Ritchie, The C Programming Language, 2nd edi-
tion, Prentice-Hall, 1988, 272 p.

I. Kokkarinen, D. Peled, and A. Valmari, “Relaxed Visibility Enhances Par-
tial Order Reduction,” in O. Grumberg (Ed.), Computer Aided Verification
(CAV ’97), LNCS 1254, Springer-Verlag, 1997, pp. 328-339.

I. Niemeld, “Logic Programs with Stable Model Semantics as a Constraint
Programming Framework,” in Proceedings of the Workshop on Computational
Aspects of Nonmonotonic Reasoning, Trento, Italy, 1998, pp. 72-79.

I. Niemeld, Logic Programs with Stable Model Semantics as a Constraint
Programming Paradigm, manuscript (an extended version of [5]).

D. Peled, “All from One, One for All: on Model Checking Using Represen-
tatives,” in C. Courcoubetis (Ed.), Computer Aided Verification (CAV ’98),
LNCS 697, Springer-Verlag, 1993, pp. 409-423.

W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical
Computer Science, Vol. 4, Springer-Verlag, 1985, 161 p.

S. Sahni, “Computationally Related Problems,” SIAM Journal on Computing,
Vol. 3, No. 4, pp. 262279, December 1974.

K. Schmidt, “Stubborn Sets for Standard Properties,” in S. Donatelli and
J. Kleijn (Eds.), Application and Theory of Petri Nets 1999, LNCS 1639,
Springer-Verlag, 1999, pp. 46-65.

P. Simons, Towards Constraint Satisfaction Through Logic Programs and the
Stable Model Semantics, Helsinki University of Technology, Digital Systems
Laboratory Report A 47, 1997, 49 p.

A. Valmari, “Error Detection by Reduced Reachability Graph Generation,” in
Proceedings of the IX European Workshop on Applications and Theory of Petri
Nets, Venice, Italy, 1988, pp. 95-112.

A. Valmari, “Heuristics for Lazy State Space Generation Speeds up Analysis of
Concurrent Systems,” in M. Makeld, S. Linnainmaa, and E. Ukkonen (Eds.),
STeP-88 (Proceedings of the Finnish Artificial Intelligence Symposium), Vol. 2,
Helsinki, 1988, pp. 640—-650.

A. Valmari, State Space Generation: Efficiency and Practicality, Doctoral
thesis, Tampere University of Technology, Publications 55, 1988, 170 p.

K. Varpaaniemi, On the Stubborn Set Method in Reduced State Space Gener-
ation, Doctoral thesis, Helsinki University of Technology, Digital Systems
Laboratory Report A 51, 1998, 105 p.

Worldwide web, page http://saturn.tcs.hut.fi/pub/prod/index.html.
Worldwide web, page http://saturn.tcs.hut.fi/pub/smodels/index.html.

