The Sleep Set Method Revisited

Kimmo Varpaaniemi

Helsinki University of Technology, Digital Systems Laboratory
Otakaari 1, FIN-02150 Espoo, Finland
Kimmo.Varpaaniemi@hut.fi

Abstract. State space generationis a powerful formal method for anal-
ysis of concurrent and distributed finite state systems. It suffers from
the state space explosion problem, however: the state space of a system
can be far too large to be completely generated. The sleep set method is
one way to try to avoid generating all of the state space when verifying
a given property. This paper is concentrated on the transition selection
function in the sleep set method applied to a labelled transition system
to verify a simple safety property or the existence of enabled infinite
transition sequences. The conditions found for the function can be used
for combining the sleep set method with other analysis techniques.
Topic: distributed systems

1 Introduction

State space generation is a powerful formal method for detecting errors in such
concurrent and distributed systems that have a finite state space. It suffers from
the so called state space explosion problem, however: the state space of the system
can be far too large with respect to the time and other resources needed to
inspect all states in the space. Fortunately, many properties can be verified
without inspecting all reachable states of the system.

Godefroid’s sleep set method [2, 3, 4, 5, 6, 7, 21] is a promising technique for
alleviating the state space explosion problem. This method utilizes the indepen-
dence of transitions to cut down on the number of states inspected during the
verification of a property.

Labelled transition systems give a general framework for several models of
concurrency. This paper is concentrated on the transition selection function in
the sleep set method applied to a labelled transition system to verify a simple
safety property or the existence of enabled infinite transition sequences. The
conditions found for the function can be used for combining the sleep set method
with other analysis techniques.

The rest of this paper has been organized as follows: in Section 2, we introduce
labelled transition systems and define concepts related to them. In Section 3, we
present the sleep set method and show some results concerning the method. We
conclude in Section 4 by summarizing the results obtained and briefly discussing
possible directions for future research.

2 Labelled Transition Systems

In this section we give definitions for labelled transition systems. As well-known,
several models of concurrency can be described by means of labelled transition
systems.

We shall use “iff” to denote “if and only if”. The power set (the set of subsets)
of a set A is denoted by 24. The set of (total) functions from a set A to a set B
is denoted by (A — B). The set of natural numbers, including 0, is denoted by
N. When we define finite sequences, we use ¢ to denote the empty sequence.

Definition1. A labelled transition system (an LTS for short) is a quadruple
(S, X, A, sg) such that S and X are sets, A C S x X x S, and sg € S. We call S
the set of states, T the set of actions, A the set of transitions, and sq the initial
state. The set X U A 1s called the set of events of the LTS. The function « from
A to X is defined by

VseSVs' € SVae X ((s,a,8') € A= a((s,a,s')) = a).

For any transition z, the action a(z) is called the action of the transition z. An
action a is firable from a state s to a state s’ (s[a)s’ for short) iff (s,a,s’) € A.
A transition x is firable from a state s to a state s' (s[z)s’ for short) iff z =
(s,a(x),s"). An event x is enabled at a state s iff x is firable from s to some
state. A state s is terminal iff no transition is enabled at s. a

Definition 2. Let (S, X, A so) be an LTS. For any I' C Y U A,
o ={e},
(Yne N It = {wz |we I Az € T}), and
I'={w|3Ine Nwelm}.
The set A* is called the set of finite transition sequences of the LTS, and the

set (XU A)* is called the set of finite event sequences of the LTS. A finite event
sequence w is firable from a state s to a state s' iff sjw)s’ where

Vs € S sle)s, and
VseSVs'eSYwe(ZUuA)yVae ZUA
s[va)s’ < (3s" € S s[v)s” A s''[z)s).

A finite event sequence w is enabled at a state s (s[w) for short) iff w is firable
from s to some state. A state s’ is reachable from a state s by a finite event
sequence w I w is firable from s to s’. A state s’ is reachable from a state s iff
some finite transition sequence is firable from s to s’. A state s’ is a reachable
state iff s’ is reachable from sg. Let f be a function from S to 24. A finite
transition sequence w is f-firable from a state s to a state s’ iff sfw)ss’, where

Vs € S s[e)ss, and
VseSVs'eSVveA* Ve e A
slva)ps’ < (s € S s[v)s” A € f(s) As''[z)s").

A finite transition sequence w is f-enabled at a state s (s[w); for short) iff w is
f-firable from s to some state. a

Definition 3. Let (S, X, A, sq) be an LTS. The set (N — A) is called the set
of infinite transition sequences of the LTS. The function ¢ from (N — A) x N
to A* is defined by

(Vw e (N — A) ¢(w,0)=¢), and
(Vw e (N —=A)V¥Yne N ¢(w,n+ 1) =¢(w,n)w(n)).

If w is an infinite transition sequence and n € N, ¢(w,n) is called the prefiz of
length n of w. An infinite transition sequence w is enabled at a state s (s[w) for
short) iff for each n € N, the prefix of length n of w is enabled at s. The function
2 from S to 20N =4) ig defined by requiring that for each state s, £2(s) is the set
of those infinite transition sequences that are enabled at s. Let f be a function
from S to 22, An infinite transition sequence w is f-enabled at a state s (s[w);
for short) iff for each n € N, the prefix of length n of w is f-enabled at s. We
say that f is tough-lived iff for each reachable state s,

2(s) # 0 = (Fw € 2(s) slw)y). O

Definition4. Let (S, X, A, sg) be an LTS. A transition sequence v is an alter-
native sequence of a finite transition sequence w from a state s to a state s’ iff
v is a finite transition sequence, s[w)s’, and s[v)s’. A transition sequence v is a
length-secure alternative sequence of a finite transition sequence w from a state
s to a state s’ iff v is an alternative sequence of w from s to s’ and not longer
than w. The function ¥ from A* x S x S to 2(47) is defined by requiring that for
each finite transition sequence w, and for each state s and s’, 9(w, s, s’) is the set
of length-secure alternative sequences of w from s to s'. Let 1 be a truth-valued
function on S. A state s is a y-state iff 1(s) is true. Let f be a function from S
to 24. We say that f represents all sets of allernative sequences to tp-states iff
for each reachable state s and for each 1-state s,

Yw € A* s[w)s’ = (v € A* s[v);s').

Correspondingly, f represents all sets of length-secure alternative sequences to
-states iff for each reachable state s and for each 1)-state s/,

Vw € A* s[w)s’ = (v € I(w, s,s") s[v)). O

Clearly, a function representing all sets of length-secure alternative sequences
to iy-states represents all sets of alternative sequences to i-states. We say that
a function f from S to 22 represents all sets of (length-secure) alternative se-
quences to terminal states iff f represents all sets of (length-secure) alternative
sequences to i-states in the case where 1 is the characteristic function of the
set of terminal states.

3 Sleep Set Method

In this section we present the sleep set method. We concentrate on a general-
ized version of Wolper’s and Godefroid’s terminal state detection algorithm [21].
The generalized version is in Figure 1. The intuitive idea of the algorithm is to
eliminate such redundant transition sequences that are not eliminated by the
transition selection function f. The LTS (S, X, A, sq) is assumed to be such that
S U X is finite. The algorithm computes an LTS (S, X, V, s¢) such that V C A.
From the finiteness of SU X and from the fact that the set Act constructed dur-
ing one visit to a state does not intersect with the sets Act constructed during
the other visits to the state it follows that the execution of the algorithm takes
a finite time only.

The function ¥ can be any truth-valued function on S. To be practical, we
can think that ¥(s) is true iff a given simple safety property holds. By “simple”
we mean that ¢(s) can be computed without inspecting any other state than s.
The construction of V can be omitted if only the detection of reachable -states
is of interest.

We use actions much in the same way as Wolper and Godefroid use program
transitions in their terminal state detection algorithm in [21]. One might think
that our approach is thus more coarse than the approach used in [21]. However,
if we have a global LTS of the form defined in [21], we can relabel each global
transition [21] by the program transition of the global transition, and apply our
algorithm to the resulting L'TS. In practice, a global transition can be relabelled
when used for the first time, whereas the unused global transitions need no
relabelling.

Theorem 5. Let (S, X, A, so) be an LTS such that S U X is finite. Let i) be
a truth-valued function on S. Let f be a function from S to 2 such that f
represents all sets of length-secure alternative sequences to -states. Then the
algorithm in Figure 1 finds all reachable)-states.

Proof. Let sz be a reachable i-state.

(i) We first prove that if X C X, a finite transition sequence w is firable
from a state s to sq, and for each v in 9(w, s, s4), the first action of v is not in
X, then, if (s, X) is pushed onto the stack, some element having s4 as the first
component will be or has already been popped from the stack. By ¥ we mean
the ¥ of the LTS (S, X, A, s0). By the first action of a transition sequence we
mean the action of the first transition of the sequence.

The proof proceeds by induction on the length of w. For w = ¢, the result is
immediate. Now, assume the proposition holds for finite transition sequences of
length less than or equal to n, where n > 0, and let us prove that it holds for a
finite transition sequence w of length n+ 1. Let X be a subset of X w be firable
from a a state s to sq, and (s, X) have been pushed onto the stack. Let it also
be the case that for each v in 9(w, s, sq), the first action of v is not in X. Let us
consider the steps immediately following the popping of (s, X) from the stack.
If s = 54, the element (sq, X) has then been popped from the stack. From now
on, we assume that s £ sq.

make Stack empty; make H empty; V = 0;
push (so, @) onto Stack;
while Stack is not empty do {
pop (s, Sleep) from Stack;
if s1is not in H then {
Trans = {z € f(s) | s[z) A a(z) € T\ Sleep };
Act={a € X' | 3z € Trans a(z) = a};
Succ= {{a,S") | a € Act AS"' = {s' € S| (s,a,s’) € Trans }};
if ¥(s) is true then print “y-state!”;
enter (s,a copy of Sleep) in H;
}

else {
let hSleep be the set associated with s in H;
Act =hSleep \ Sleep;
Succ= {{a,5") | a € Act AS" = {s' € S| s[a)s'}};
Sleep = hSleep N Sleep;
substitute a copy of Sleep for the set associated with s in H;

newSleep = 0;
for each a in Act do {
let S’ be the set for which (a, S") € Succ;
for each s’ in S’ do {
xSleep = {a’ €Sleep | s'[a’) A (Vs" € S s'[a")s" = s[a’a)s")}U
{a> €newSleep | 35> (a2, S2) € Succ As'[az)A
(Vs" € S s'[az)s” = (Fs2 € S2 s2[a)s”))};
push (s’,a copy of xSleep) onto Stack;
V = {{s,a,s')} UV,

newSleep = {a}UnewSleep;

}

Fig.1. An LTS reduction and a #-state detection algorithm.

We first consider the case where s is not already in H. Since s[w)sq, s # sq,
and f represents all sets of length-secure alternative sequences to i-states, at
least one transition in f(s) is the first transition of some sequence in 9(w, s, s4).
Moreover, the action of such transition is in X'\ X, so every such transition is
fired at s. Let 21 be the first of such transitions in the firing order. Then there
exists a finite transition sequence w' such that zyw’ is in 9(w, s, s4). From the
definition of ¥ it follows that s[z;w’)sq and 21w’ is not longer than w. The length
of w' is thus less than or equal to n. Let z; be firable from s to a state s’. Then
s'[w'ysq. Let (s’, X'} be pushed onto the stack when firing 21 from s to s’. We
show that for each v in ¥(w', s, s4), the first action of v is not in X”.

Indeed, assume the opposite, i.e., there exists some transition z’ such that

a(z’) is in X', and for some finite transition sequence v', ’v’ is in J(w', ', s4).
Clearly, then z1z'v' is in Y(w, s, s4). If a(z’) is in Sleep during the execution of
the outermost “for-loop”, then every state reachable from s’ by a(z') is reachable
from s by a(z")a(x1), so there exist transitions z, and 2’ such that a(zg) =
a(z"), a(z") = a(z1), and zo2"v' is in ¥(w, s, s4). From the condition satisfied
by X it then follows that «(x3) is not in X, a contradiction with the assumption
that a(z’) = a(xs) is in Sleep = X. The action «(z’) thus cannot be in Sleep
during the execution of the outermost “for-loop”. This means that a(z’) has been
inserted into newSleep in the outermost “for-loop” before firing z1. Moreover,
every state reachable from s’ by a(2’) is reachable from some s2 € S3 by a(z1)
where Sy is the set associated with a(2’) in Succ. Consequently, there exist
transitions 22 and 2’ such that a(z2) = a(2’), a(z") = a(z1), z22"V' is in
Y(w, s,84), and zy is either z; itself or fired after ;. The action a(z’') = a(zq)
is thus not in newSleep at the time when z is fired. This is a contradiction. The
inductive hypothesis can thus be used to establish that some element having sy
as the first component will be or has already been popped from the stack.

We now consider the case where s already appears in H. Let Y C X be such
that (s,Y) is in H. All those transitions that are enabled at s and have their
actions in Y \ X are fired. There are two situations: either some action in Y is
the first action of some sequence in ¥(w, s, s4), or no such action exists. In the
first situation, we can choose a transition analogous to the above z1 and proceed
as above.

Let us now turn to the second situation in which no action in Y is the first
action of any sequence in J(w,s,sq). This can be the case either because no
action in Yy is the first action of any sequence in J(w, s, sq) where Yy is the sleep
set entered in H with s when s was inserted into H, or because there are some
Y’ and Z such that (s, Z) was popped from the stack before popping (s, X)
from the stack, (s,Y’) was in H at the time of the popping of (s, Z) from the
stack, some action in Y is the first action of some sequence in ¥(w, s, s4), and
no action in YN 7 is the first action of any sequence in ¥(w, s, s4). In the former
case, we can proceed as above with Yy in the place of X. In the latter case, we
can proceed as above with Z in the place of X, taking into account the fact that
Sleep = Y’ N 7 during the execution of the outermost “for-loop”.

(i) The algorithm in Figure 1 starts by pushing (sq,#) onto an empty stack.
From the result shown in part (i) it thus follows that some element having s4 as
the first component will be popped from the stack. a

If we choose ¥ to be the characteristic function of the set of terminal states
and f to be a function preserving all sets of length-secure alternative sequences
to terminal states, Theorem 5 states that the algorithm in Figure 1 finds all
reachable terminal states. For example, we can choose f to be any stubborn
set generator [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] since every stubborn set
generator preserves all sets of length-secure alternative sequences to terminal
states. This is the case for every definition of stubbornness we have seen, and
also for dynamic stubbornness [11, 16, 19, 20] and conditional stubbornness [5]
which are generalizations of stubbornness. The sleep set method can thus be

combined with the stubborn set method in the detection of reachable terminal
states without any assumption on the stubborn sets used.

Godefroid, Pirottin, and Wolper [5, 21] have shown the compatibility of the
sleep set method and the stubborn set method in the detection of reachable
terminal states in the case where the effective parts of the stubborn sets used
are persistent. They have utilized the property that persistent set generators
“represent all conditional traces [5, 8] to terminal states”. As shown in [20], it
is easy to define quite practical stubborn set generators which do not have that
property.

Theorem 5 has the consequence that if for each encountered state, the transi-
tion selection function chooses all enabled transitions, then the algorithm in Fig-
ure 1 visits all reachable states. Koutny and Pietkiewicz-Koutny [9] have shown
that the sleep set algorithm presented by Godefroid, Holzmann, and Pirottin in
[3] does not have this property though claimed so in [3]. Moreover, the examples
in [9] suggest that it is hard to find any interesting class of problems that could
be completely solved using the sleep set algorithm in [3]. We thus obtain the
following heuristic: a good sleep set algorithm visits all reachable states if the
transition selection function selects all enabled transitions.

The report [20] contains an example which shows that the statement obtained
from Theorem 5 by removing the word “length-secure” is not valid. The example
utilized the fact that if the initial sleep set of a state is empty, further visits to
the state have no effect. Infinite transition sequences can thus be fatal if we
use the algorithm in Figure 1 without care. A more positive feature related to
infinite transition sequences is stated in Theorem 6.

Theorem 6. Let (S, X, A sq) be an LTS such that SU X is finite. Let f be a
tough-lived function from S to 22. If no infinite transition sequence is enabled at
sg in the LTS (S, X,V ,so) at the end of the execution of the algorithm in Figure
1, then no infinite transition sequence is enabled at sq in the LTS (S, X, A, s0).

Proof. (i) We first prove that if X C X, s € S, §2(s) # 0, for each v in £2(s),
a(v(0)) is not in X, and (s, X) is pushed onto the stack, then there is a transition
z,a set X’ C ¥ and a state s’ such that z will be or has already been fired from
s to s', (s', X') will be or has already been pushed onto the stack, £2(s') £ 0,
and for each v in £2(s"), a(v(0)) is not in X’. By £2 we mean the §2 of the LTS
<S, E, A, So).

Let X be a subset of X, s be a state such that £2(s) £ 0, and (s, X) have been
pushed onto the stack. Let it also be the case that for each v in £2(s), a(v(0)) is
not in X. Let us consider the steps immediately following the popping of (s, X)
from the stack.

We first consider the case where s is not already in H. Since £2(s) # 0 and
[is tough-lived, at least one transition in f(s) is the first transition of some
sequence in §2(s). Moreover, the action of such transition is in '\ X, so every
such transition is fired at s. Let 1 be the first of such transitions in the firing
order. Let z; be firable from s to a state s'. Clearly, then £2(s') # 0. Let (s', X')
be pushed onto the stack when firing 21 from s to s’. We show that for each v

in £2(s"), a(v(0)) is not in X'.

Indeed, assume the opposite, i.e., there exists some v/ € §2(s') such that
a(v’(0)) is in X'. If a(v'(0)) is in Sleep during the execution of the outermost
“for-loop”, then every state reachable from s’ by a(v'(0)) is reachable from s
by a(v'(0))a(z1), so there exists an infinite transition sequence w such that
w is in £2(s), and a(w(0)) = «(v'(0)). From the condition satisfied by X it
then follows that a(w(0)) is not in X, a contradiction with the assumption
that a(v'(0)) = a(w(0)) is in Sleep = X. The action «(v'(0)) thus cannot be
in Sleep during the execution of the outermost “for-loop”. This means that
a(v'(0)) has been inserted into newSleep in the outermost “for-loop” before
firing 1. Moreover, every state reachable from s’ by a(v'(0)) is reachable from
some s3 € Sz by a(z1) where Sz is the set associated with «(v/(0)) in Succ.
Consequently, there exists an infinite transition sequence w such that w is in
2(s), a(w(0)) = «(v'(0)), and w(0) is either z; itself or fired after z;. The
action a(v'(0)) = a(w(0)) is thus not in newSleep at the time when 2 is fired.
This is a contradiction.

The case where s already appears in H can be handled by repeating the cor-
responding part of the proof of Theorem 5 with the exception that the expression
“£2(s)” is in the place of the expression “¥(w, s, s4)”.

(i) The algorithm in Figure 1 starts by pushing (so,) onto an empty stack.
If 2(sq) # 0, using the result shown in part (i) we can construct an infinite
transition sequence which is enabled at sq in the LTS (S, X, V, sg) at the end of
the execution of the algorithm. a

From Theorem 6 it follows that we can detect the existence of enabled infinite
transition sequences from the reduced LTS. Alternatively, one can add on-the-fly
loop detection to the algorithm in Figure 1 in such a way that the first loop of
states found terminates the execution of the algorithm. Then there is no need
to construct V since the construction of V affects neither the set of visited
states nor the order of visiting. Since every stubborn set generator is tough-
lived [12, 13, 14, 16, 17, 20], the stubborn set method and the sleep set method
can be combined in the detection of the existence of enabled infinite transition
sequences without any assumption on the stubborn sets used.

Let’s consider the complexity of the algorithm in Figure 1. The cumulative
time per state spent in the outermost “for-loop” is at most proportional to u*p?,
where p is the maximum number of states reachable from a state by an action,
p is the maximum number of enabled actions of a state, and all visits to the
state are counted. This is based on the fact that each sleep set associated with a
state contains only actions that are enabled at the state. The time per visit to a
state spent in the operations related to H is the time of the search for the state
plus a time that is at most proportional to p. The searches in H are something
that cannot be avoided easily whether or not we use sleep sets at all. Clearly,
the time taken by the computation of f(s) and ¥(s) can be anything depending
on f and . If ¥ is the characteristic function of the set of terminal states, then
the expression “if (s) is true” in the algorithm in Figure 1 can be replaced by
the expression “if Act and Sleep are both empty”. It depends much on the LTS
how many times a state is visited and how many simultaneous occurrences of a

state there are in the stack. One stack element requires space for the state and
at most p actions. It is not necessary to store copies of states and actions since
pointers suffice.

4 Conclusions

We have presented weak but sufficient conditions for the transition selection
function used in the sleep set method applied to a labelled transition system.
We have shown that a function representing all sets of length-secure alternative
sequences to 1-states is sufficient in the detection of reachable i-states, and a
tough-lived function suffices in the detection of the existence of enabled infi-
nite transition sequences. These results can be used for combining the sleep set
method with other analysis techniques. For example, the sleep set method can
be combined with the stubborn set method in the detection of reachable termi-
nal states and the existence of enabled infinite transition sequences without any
assumption on the stubborn sets used.

The sleep set method is applicable to many purposes in addition to those
considered in this paper. The conditions for the transition selection functions
in the different versions of the sleep set method should be studied. One goal
is to combine the sleep set method with the stubborn set method in on-the-fly
verification of linear time temporal logic formulae. 1t is well-known that both
methods alone can be used for that purpose [10, 18, 21].

Acknowledgements

This work has been funded by the Technology Development Centre of Finland
(TEKES). The results in this paper have been obtained by extending the results
presented in the research report [20].

References

1. Courcoubetis, C. (Ed.): Proceedings of the 5th International Conference on
Computer-Aided Verification, Elounda, Greece, June/July 1993. Lecture Notes in
Computer Science 697, Springer-Verlag, Berlin 1993, 504 p.

2. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
Clarke, E.M., and Kurshan, R.P. (Eds.), Proceedings of the 2nd International
Workshop on Computer-Aided Verification, New Brunswick NJ, June 1990. Lec-
ture Notes in Computer Science 531, Springer-Verlag, Berlin 1991, pp. 176 185.

3. Godefroid, P., Holzmann, G.J., and Pirottin, D.: State Space Caching Revisited.
von Bochmann, G., and Probst, D.K. (Eds.), Proceedings of the 4th International
Workshop on Computer-Aided Verification, Montreal, June 1992. Lecture Notes in
Computer Science 663, Springer-Verlag, Berlin 1993, pp. 178-191.

4. Godefroid, P., and Kabanza, F.: An Efficient Reactive Planner for Synthesizing
Reactive Plans. Proceedings of AAAI-91, Anaheim CA; July 1991, Vol. 2, pp. 640—
645.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Godefroid, P., and Pirottin, D.: Refining Dependencies Improves Partial-Order
Verification Methods. In [1], pp. 438 449.

Godefroid, P., and Wolper, P.: Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties. Formal Methods in System Design 2
(1993) 2, pp. 149-164.

. Holzmann, G.J., Godefroid, P., and Pirottin, D.: Coverage Preserving Reduction

Strategies for Reachability Analysis. Linn, R.J., Jr., and Uyar, M.U. (Eds.), Pro-
ceedings of the 12th International TFIP WG 6.1 Symposium on Protocol Specifica-
tion, Testing, and Verification, Lake Buena Vista FL, June 1992. IFIP Transactions
C-8, North-Holland, Amsterdam 1992, pp. 349-363.

. Katz, S., and Peled, D.: Defining Conditional Independence Using Collapses. The-

oretical Computer Science 101 (1992) 2, pp. 337-359.

Koutny, M., and Pietkiewicz-Koutny, M.: On the Sleep Sets Method for Partial
Order Verification of Concurrent Systems. Manuscript, January 1993, 14 p.
Peled, D.: All from One, One for All: on Model Checking Using Representatives.
In [1], pp. 409 423.

Rauhamaa, M.: A Comparative Study of Methods for Efficient Reachability Anal-
ysis. Helsinki University of Technology, Digital Systems Laboratory Report A 14,
Espoo, September 1990, 61 p.

Valmari, A.: State Space Generation: Efficiency and Practicality. Doctoral thesis,
Tampere University of Technology Publications 55, Tampere 1988, 170 p.
Valmari, A.: Fliminating Redundant Interleavings during Concurrent Program Ver-
ification. Proceedings of Parallel Architectures and Languages Europe 89, Vol. 2.
Lecture Notes in Computer Science 366, Springer-Verlag, Berlin 1989, pp. 89 103.
Valmari, A.: Stubborn Sets for Reduced State Space Generation. Rozenberg, G.
(Ed.), Advances in Petri Nets 1990. Lecture Notes in Computer Science 483,
Springer-Verlag, Berlin 1991, pp. 491-515.

Valmari, A.: A Stubborn Attack on State Fzxplosion. Formal Methods in System
Design 1 (1992) 4, pp. 297-322.

Valmari, A.: Stubborn Sets of Coloured Petri Nets. Proceedings of the 12th Inter-
national Conference on Application and Theory of Petri Nets, Gjern, Denmark,
June 1991, pp. 102 121.

Valmari, A.: Alleviating State Explosion during Verification of Behavioural Equiv-
alence. University of Helsinki, Department of Computer Science, Report A-1992-4,
Helsinki 1992, 57 p.

Valmari, A.: On-the-Fly Verification with Stubborn Sets. In [1], pp. 397-408.
Valmari, A., and Clegg, M.: Reduced Labelled Transition Systems Save Verification
Effort. Baeten, J.C.M., and Groote, J.F. (Eds.), Proceedings of the 2nd Inter-
national Conference on Concurrency Theory, Amsterdam, August 1991. Lecture
Notes in Computer Science 527, Springer-Verlag, Berlin 1991, pp. 526-540.
Varpaaniemi, K.: Ffficient Detection of Deadlocks in Petri Nets. Helsinki Univer-
sity of Technology, Digital Systems Laboratory Report A 26, Espoo, October 1993,
56 p.

Wolper, P., and Godefroid, P.: Partial-Order Methods for Temporal Verifica-
tion. Best, E. (Ed.), Proceedings of the 4th International Conference on Concur-
rency Theory, Hildesheim, August 1993. Lecture Notes in Computer Science 715,
Springer-Verlag, Berlin 1993, pp. 233 246.

10

