On Choosing a Scapegoat
in the Stubborn Set Method

Kimmo Varpaaniemi

Helsinki University of Technology
Digital Systems Laboratory
Otakaari 1, SF-02150, Finland
Kimmo.Varpaaniemi@hut.fi

Abstract. The incremental algorithm for computing stubborn sets for Petri
nets produces a stubborn set that may contain unnecessarily many enabled
transitions since the algorithm contains nondeterministic choices. These choi-
ces involve choosing the starting transition and the choice of a disabling place
(the scapegoat). The need for the first choice can be eliminated without af-
fecting the complexity of the algorithm by visiting all the enabled transitions,
but the latter choice remains. This paper compares different ways of choosing
the scapegoat.

1 Introduction

Reachability analysis is a powerful method to analyze concurrent and distributed
systems. Using it we can easily check whether certain properties hold or not. If
we are primarily interested in such properties as the existence of deadlocks, we
don’t necessarily have to generate the complete state space. Even though finding a
deadlock in a Petri net is a polynomial space hard problem [6], we can utilize special
properties of systems and have a deadlock detection algorithm that is efficient for a
large subclass of Petri nets.

Antti Valmari’s stubborn set method [2, 4, 5, 7, 8, 9, 10, 11] is a reductive
reachability graph generation method which eliminates redundant interleavings of
actions. This paper studies the stubborn set method on finite place/transition nets
with infinite capacities. A stubborn set consists of transitions. The stubborn set
method produces a reduced reachability graph by firing only transitions in a chosen
stubborn set. The method preserves all terminal states [4] and the existence of infinite
transition sequences [8]. This paper uses the definition of stubbornness in [4] because
it is one of the weakest definitions of stubbornness. The weaker the definition, the
smaller is the reduced reachability graph. In practice, deadlock detection is often
hard enough.

The transitions of the complement of a stubborn set cannot enable any disabled
transition of the stubborn set, and there is at least one enabled transition in the
stubborn set that cannot be disabled by the transitions of the complement [2]. Some
transitions may be ignored: there may be live transitions that are never fired. A
little stronger definition of stubbornness guarantees that no enabled transition in
the stubborn set can be disabled by the transitions of the complement. Then the
ignored transitions can be detected and the ignoring phenomenon can be eliminated
[9]. Valmari has also presented an algorithm that can be used to decide the truth
value of a linear temporal logic formula [10].

Valmari has presented three algorithms for finding a suitable stubborn set: can-
didate list algorithm [4], incremental algorithm [4, 7] (“algorithm using strongly
connected components” [2, 12]), and deletion algorithm [5]. Let’s assume that T is
the set of transitions, p is the maximum number of input places of a transition, v
is the maximum of the maximum number of input transitions of a place and the
maximum number of output transitions of a place, and p is the maximum number
of adjacent transitions of a place. The candidate list algorithm finds a stubborn set
in candidate list Ty, ..., Ty, T in time O(p Y. ;- |T}]). The incremental algorithm
produces a stubborn set in time O(uv|T|). The produced set is minimal only in a
very restricted sense [4]. The deletion algorithm finds a stubborn set which is mini-
mal in the sense that no proper subset of its enabled transitions can be the set of all
enabled transitions of any stubborn set. The stubborn set is found in time O(up|T'|?)
[5, 7). No one has presented any algorithm that would find a stubborn set having
a minimum number of enabled transitions in polynomial time with respect to the
number of places and transitions. Such set is not necessarily the best choice [7] but
it is difficult to define a better simple goal.

At its best, the stubborn set method reduces the reachability graph very much.
For the classical system of n dining philosophers, the size of the whole reachability
graph is exponential in n. The stubborn set method generates a graph the size of
which is quadratic in n [4].

This paper concentrates on the incremental algorithm. The algorithm contains
nondeterministic choices which affect the number of enabled transitions in the re-
sult set. These choices involve choosing the starting transition and the choice of a
disabling place (the scapegoat). The need for the first choice can be eliminated with-
out affecting the complexity of the algorithm by visiting all the enabled transitions,
but the latter choice remains. This paper compares different ways of choosing the
scapegoat.

The incremental algorithm is presented in Section 2. Section 3 shows an example
in which a net has both extremely bad and many optimal or almost optimal strategies
for choosing a scapegoat. Some general strategies for choosing a scapegoat and two
ways to estimate the goodness of a given strategy are presented in Section 4.

2 The incremental algorithm

This section presents the incremental algorithm of [4] for finite place/transition nets
with infinite capacities. The algorithm does not use all parts of the definition of
stubbornness. In fact, it produces so strongly stubborn sets that ignoring elimination
[9] could be added to the reachability graph generation algorithm. This paper does
not study ignoring elimination because deadlock detection is often hard enough.

Let’s give some preliminary definitions first. The power set (the set of subsets)
of set A is denoted by 24. The set of partial functions from set A to set B is
{RC Ax B |VzVyVz ({z,y) € RA{z,z) € R) = y = z}. The set of functions
from set A to set B, denoted by (A — B), is
{RCAXB| (VzVy Vz ({z,y) € RA{z,z) € R) =y =2)A

(Vz e A3dy € B{(z,y) € R)}.

So there is always an empty function from an empty set to any set but there is no
function from a nonempty set to an empty set. The set of natural numbers, including

0, is denoted by N. w is a formal infinite number. N,, denotes N U {w}. Relation
< is extended by defining w < w and Vn € N n < w. Addition and subtraction are
extended by defining Vne€ N w+n=w,andVn € N w —n = w.

Definition 1. A place/transition net is a sextuple (S, T, F, K, W, M) so that S and
T aresets, SNT =0, FC(SxT)U(TxS),K € (S— N,),W € (F— (N\{0})),
My € (S - N,), and Vs € S My(s) < K(s). S is the set of places, T is the
set of transitions, F' is the set of arcs, K is the capacity function, W is the arc
weight function, and Mj is the initial marking. If x € S U T, then the set of input
elements of z is *xz = {y | (y,z) € F}, and the set of output elements of z is
z* ={y | (z,y) € F}. W is extended to (((S x T) U (T x S)) = N) by defining
W(z,y) =0 when {(z,y) € F. {M € (S - N,) |Vs € S M(s) < K(s)} is the set of
markings of the net. The net is finite if and only if S U T is finite. Place s has an
infinite capacity if and only if K(s) = w. The net is a net with infinite capacities if
and only if each place has an infinite capacity.

If s is a place of a net and M is a marking of the net, then M (s) is called the
number of tokens in s at M. If each place has an infinite capacity, then the set of
markings of the net is simply (S — N,,).

Definition 2. Let (S, T, F, K, W, My) be a place/transition net. Transition ¢ is en-
abled at marking M (M][t) for short) if and only if Vs € *t M(s) > W (s,t) and

Vs € t* M(s) < K(s) — W(t,s). Transition ¢ can be fired from marking M to
marking M’ (M[t)M' for short) if and only if M[t) and Vs € S M'(s) = M(s) —
W(s,t) + W (t,s). Transition ¢ is disabled at marking M if and only if ¢ is not en-
abled at M. Place s is a disabling place of transition ¢ at marking M if and only if
M(s) < W(s,t) or M(s) > K(s)—W(t, s). A partial function f from (S — N,) xT
to S is a scapegoat generator of the net if and only if for each marking M and each
disabled transition ¢t at M, f(M,t) is a disabling place of ¢t at M.

If each place has an infinite capacity, then the output places of a transition do
not affect the enabledness of the transition. Definition 2 does not define a scapegoat
generator to be a function because S can be empty.

Definition 3. Let (S, T, F, K, W, My) be a place/transition net. Let M be the set
of markings of the net. Relation [) = {{(M,M') €e M x M | 3t € T M[t)M'}.
The reflexive-transitive closure of [) is denoted by [)*. Marking M’ is reachable
from marking M if and only if M[)*M'. The reachability graph of the net is a
pair {V, E) so that the set of vertices V. = {M | My[)* M}, and the set of edges
E={{M,t,MYeV xTxV|M[tM'}.

Definition 4. Let (S,T, F, K,W, My) be a place/transition net. Let M be the set
of markings of the net, and T} a function from M to 27. Relation

D, = {{M,M') € M x M |3t € Ty(M) M[t)M'}. The reflexive-transitive closure
of [)7, is denoted by [)7. . The T-reachability graph of the net is a pair (V, E) so
that the set of vertices V = {M | Mo[)7;, M}, and the set of edges
E={(Mt,MYeV xTxV |teT,(M)AMtM?}.

From now on, only finite place/transition nets with infinite capacities will be
considered.

Definition 5. Let (S, T, F, K, W, M) be a finite place/transition net with infinite
capacities. Functions E;, Es, E3 and Ey from (S — N,) x T x S to 27 are defined
as follows: Let M € (S = N,),t€T,and s € S.
E (M, t,s) ={t' € s | M(s) > W(s,t') \W(t',s) > W(s,1')},
Ey(M,t,s) ={t' € s*| W(s,t') >W(t,s)V

(W(s,t) > W(t,s) A\W(s,t') > M(s) — W(s,t) + W(t,s))},
Es(M,t,s) ={t' € *s| M(s) > W(s,t') AN(W(t',s) > W(s,t')V

W(t',s) >W(t,s))}, and

Ey(M,t,s) ={t' € s* | W(s,t') > W(,s)}.

Definition 6. Let (S, T, F, K, W, M) be a finite place/transition net with infinite
capacities. A set Ts C T is stubborn at marking M if and only if
VteTs (3s € *t M(s) < W(s,t) N Ey(M,t,s) CTs)V
(M[ty A (Vs € *t Eo(M,t,s) CTsV E3(M,t,s) CTy))
and 37 € Ty M[r) A (Vs € *T E4(M,T,s) CT).

Definition 7. Let (S, T, F, K, W, My) be a finite place/transition net with infinite
capacities. Let G be the set of scapegoat generators of the net. Function E;5 from

G x (S = N,) x T to 27 is defined by
Ey(M,t, f(M,t)) if “M][t),
M€ (S = N,) Vi €T Eis(f, M,t) = :
VfieGVM e (S —) € 12(f) {UsE'tE2(M7t=S) if MIt).

Function R;» from G x (S = N,,) to 27*7T is defined by

VfeGVYM € (S = N,) Rio(f, M) ={{t,t') € T x T | t' € Er2(f, M,t)}.

For each scapegoat generator f and marking M, (Ri2(f, M))* denotes the reflexive-
transitive closure of Rys(f, M). Function E}, from G'x (S — N,) x T to 27 is defined
by Vf € GVM € (S — N,) Vt € T E},(f,M,t) = {t' | (t,t') € (R12(f, M))*}. For
each scapegoat generator f and marking M, the f-dependency graph at M is a pair
(V, E) so that the set of vertices V = T, and the set of edges E = Ri2(f, M).

Tt directly follows from Definitions 2, 5, and 6 that if (S, T, F, K, W, My) is a finite
place transition nets with infinite capacities, f is a scapegoat generator of the net,
M is a marking of the net, and transition ¢ € T is enabled at M, then Ef,(f, M,t)
is stubborn at M. Moreover, no enabled transition ¢’ in Ef,(f, M,t) can be disabled
by the transitions of T'\ Ef,(f, M,t) because no transition in T'\ Efy(f, M,t) can
decrease the number of tokens in any input place of t'.

The incremental algorithm in [4] can be described as follows:

Let f be a scapegoat generator. Let M be a marking so that there exists an en-
abled transition at M. The algorithm [4] produces a set T so that for some enabled
transition 7 at M, Ty = Efo(f, M, 1), and Vt € Ty, M[t) = 7 € E},(f, M,t). The en-
abled transitions of T are in one strongly connected component of the f-dependency
graph at M. The enabled transitions of T are found by traversing the f-dependency
graph in depth-first order, starting from an enabled transition, applying Tarjan’s al-
gorithm for computing strongly connected components [3], and stopping when the
first strongly connected component having an enabled transition is found.

The time complexity of the incremental algorithm is O(uv|T|), where p is the
maximum number of input places of a transition and v is the maximum of the
maximum number of input transitions of a place and the maximum number of output
transitions of a place. u can be |S|, v can be |T'|, and |S| can be far greater than |T'|.

Without change in complexity, the incremental algorithm can be optimized: T}
is chosen to be such Ef,(f, M,7) that contains the least number of enabled transi-
tions. (As above, 7 has to be enabled at M.) All what is needed is to complete the
depth-first search and application of Tarjan’s algorithm so that all enabled and only
enabled transitions are checked in the outermost loop of the search. If the optimized
incremental algorithm is used, the scapegoat generator f is the only nondeterministic
factor that affects the number of enabled transitions in T5.

The reachability graph generation algorithm using the incremental algorithm
produces a T-reachability graph of the net so that for each marking M in the
graph, T, (M) is the T, at M if there is an enabled transition at M. (If no transition
is enabled at M, then any subset of T' is valid for T, (M).)

It follows from [9] and the remark immediately after Definition 7 that the incre-
mental algorithm produces so strongly stubborn sets that ignoring elimination could
be added to the reachability graph generation algorithm.

As a preliminary for the following sections, the meaning of a pseudo-random
scapegoat generator is described. An explicit description of a pseudo-random scape-
goat generator would be far too complicated to be presented here. Therefore, only an
implicit description is given. Let r1,72,73,... be an infinite pseudo-random number
sequence [3]. Let f be the scapegoat generator to be defined. For each marking M and
transition ¢, f(M,t) is not defined earlier than necessary. If (M, t) is the ith pair for
which f(M,t) has to be defined, then f(M,t) is defined to be the ((r; mod k) + 1)th
disabling place of ¢t at M, where the list of disabling places of ¢ at M is of length &
and determined by some fixed list of the input places of ¢.

3 An example: data base system

Figure 1 presents a data base system of n > 2 data base managers. The predi-
cate/transition net in the figure is equivalent to the coloured Petri net in [1]. Re-
source allocation and a great amount of concurrency makes the system inherently
very suitable for the stubborn set method. Let’s assume the most obvious unfolding
into a place/transition net with infinite capacities. The image of a transition instance
of the predicate/transition net is a transition of the place/transition net, the image
of a place-tuple pair of the predicate/transition net is a place of the place/transition
net, etc. The reachability graph of the place/transition net has n-3"~1 + 1 vertices
and 2n(1 + (n — 1) - 3" 2) edges [7, 9]. The stubborn set method as such is capable
of producing a reduced reachability graph having 2n% —n + 1 vertices and 2n? edges
[7, 9]. In the reduced reachability graph in question (unique up to isomorphism),
the vertex corresponding to the initial marking has n immediate successors. Every
other vertex has one and only one immediate successor. From now on, this reduced
reachability graph will be called the A-graph.

The rest of this section shows how the scapegoat generator affects the size of
the stubborn set found and the size of the reduced reachability graph when the
incremental algorithm is used. Four scapegoat generators, called «, 3, 7, and § are
presented. « is a pathological scapegoat generator not leading to any reduction. 3, v,
and ¢ look much like o but v and § lead to the A-graph, and 3 leads close to the size
of the A-graph. In addition, pseudo-random scapegoat generators are considered.
They tend to be almost as bad as a.

received

receive send
message acknow-
<y> <y> ledgement

performing

<X, y> <x, y>
acknowledged
J(X) J(X)
J(x) J(X)

update receive

and send acknow-
messages = <> ledgements

<X> <X>

(JX)=3(x, 1) +...+I(X,n-1))
(I, 1) = <X, ((X'—1+i) mod n)+1>)

Fig. 1. A data base system.

Scapegoat generator a is defined as follows: a(mk’,#') is defined if and only if
transition #' is disabled at marking mk’. Let transition ¢ be disabled at marking mk.
Let ¢(mk,t,p1,...,p;) denote the first element in a place list p1,...,p; that is a
disabling place of ¢ at mk.

é(mk; t, <3)inactive; <)exclusion; (M(s, 1))unused7 ey (M(S; n— 1))unused)
ift= <5)update and send messages)

L(mk,t, (M(s, 1))ackn0w1edged: ey (M(s,m — 1))acknow1edgeda <5>waiting)
if ¢ = (S)receive acknowledgements

e(mk7 t, <3)inactive7 (57 T)sent) if t = (57 'r)receive messages

E(mk,t, <3)performing7 (57T>received) if t = (37T)send acknowledgement -

It is straightforward to show that for each marking mk that is reachable from
the initial marking and for each transition ¢ that is enabled at mk, E},(a,mk,t)
contains all transitions that are enabled at mk. This means that the incremental
algorithm (optimized or not) has no reductive effect. The rotation from s to the next
possible manager in the definition of a(mk, (s)receive acknowledgements) 1S the actual
pathological property of «.. This kind of stepping from a manager to another manager
occurs very often when a pseudo-random scapegoat generator is used. As a result,
pseudo-random generators tend to be almost as bad as a.

The pathological property of a can be eliminated by using a fixed manager when
possible. Let H(s,7) be (s,4) if s > ¢, and (s,i + 1) if s < 4. Scapegoat generator [
is defined as a with the following exception:
5(mk; t) = e(mk; t, (H(S, 1))ackn0wledged7 ceey (H(S; n— 1))acknowledged; <3)waiting)
if £ = (S)receive acknowledgements and t is disabled at mk.

When the incremental algorithm (optimized or not) and § are used, the reduced
reachability graph has 4(n—2) vertices and 8(n—2) edges more than the A-graph. On
the branches where manager 1 or 2 is waiting for acknowledgements, each vertex has
exactly one immediate successor. On each of the other n — 2 branches, the number
of vertices having exactly two immediate successors is four, and every other vertex
on the branch has exactly one immediate successor. (It is rather straightforward to
prove these results.)

Each manager can be considered to be a process. Then those places of the net
that represent the states of the managers are the process control places of the net.
In scapegoat generator 7y, such places have the highest priority. v is defined as «
with the following exception:
7v(mk, t) = £(mk, t, <3)waitinga (M(s, 1))acknow1edgeda ey (M(s,n — 1))ackn0w1edged)
if £ = (8)receive acknowledgements and t is disabled at mk.

Scapegoat generator & has been got by considering that if a transition has a
unique characteristic input place, then that place should have the highest priority.
4 is not pure in that sense but shows the sufficient interchange to transform « into
an optimal scapegoat generator. § is defined as a with the following exception:
d(mk,) = £(mk, t, (s, T)received; {8) performing)
if £ = (5,7)send acknowledgement and t is disabled at mk.

It is straightforward to show that for each non-initial marking mk that is reach-
able from the initial marking and for each transition ¢ that is enabled at mk, the set
of enabled transitions in Ey, (v, mk,t) is {t}, and the set of enabled transitions in
E}, (8, mk,t) is {t}. As a consequence, the incremental algorithm (optimized or not)
produces the A-graph.

a(mk,t) =

4 Strategies for choosing a scapegoat

Section 3 suggests three strategies for choosing a scapegoat generator. Scape goat
generator 3 suggests absolute ordering with respect to identity numbers, v suggests

giving a process control place the highest priority, and § suggests giving a unique
characteristic input place the highest priority. All these strategies are fixed order
strategies in the sense that always the first possible alternative in a fixed list is
chosen.

Some strategies work without knowledge of the modelled system. One of such
strategies minimizes the number of such enabled immediate successors of a vertex
that are not in any strongly connected component already found in the dependency
graph. On the second priority level, it minimizes the number of all immediate succes-
sors of the vertex that are not in any strongly connected component already found.
On the third priority level, it minimizes the number of those immediate successors
of the vertex that have not been visited yet.

A pseudo-random scapegoat generator is probably far from optimal if the in-
cremental algorithm is as instable as in Section 3. On the other hand, it is often
useful to compare a given strategy to a pseudo-random strategy to see how good the
strategy is.

The deletion algorithm can be used to estimate how good the incremental al-
gorithm could be even though the deletion algorithm may sometimes produce a
stubborn set containing more enabled transitions than a stubborn set produced by
the incremental algorithm. The choice of an enabled transition to be deleted is a non-
deterministic factor [5, 7]. In the case of the net of Section 3, the nondeterminism
does not affect the number of enabled transitions in the produced stubborn set.

5 Conclusion

The incremental algorithm for computing stubborn sets for finite place/transition
nets with infinite capacities may produce stubborn sets that contain unnecessarily
many enabled transitions because the algorithm contains nondeterministic choices.
The need for choosing the starting transition can be eliminated without affecting the
complexity of the algorithm by visiting all the enabled transitions. Then the choice
of a disabling place (the scapegoat) is the only nondeterministic factor that affects
the number of enabled transition in the result set of the algorithm.

The considered example suggests three fixed order strategies for choosing a scape-
goat: absolute ordering with respect to identity numbers, giving a process control
place the highest priority, and giving a unique characteristic input place the highest
priority. It is also easy to develop simple strategies that work without knowledge of
the modelled system. To see how good a given strategy is, one can compare the strat-
egy to a pseudo-random strategy. The deletion algorithm can be used to estimate
how good the incremental algorithm could be even though the deletion algorithm
may sometimes produce a stubborn set containing more enabled transitions than a
stubborn set produced by the incremental algorithm.

References

1. Jensen, K.: Coloured Petri Nets and the Invariant Method. Theoretical Computer Sci-
ence 14 (1981), pp. 317-336.

2. Rauhamaa, M.: A Comparative Study of Methods for Efficient Reachability Analysis.
Helsinki University of Technology, Digital Systems Laboratory Report A 14, Espoo
1990, 61 p.

©w

10.

11.

12.

Sedgewick, R.: Algorithms. Addison-Wesley, Reading MA 1983, 551 p.

Valmari, A.: Error Detection by Reduced Reachability graph generation. Proceedings of
the Ninth European Workshop on Application and Theory of Petri Nets, Venice 1988,
pp. 95-112.

Valmari, A.: Heuristics for Lazy State Space Generation Speeds up Analysis of Concur-
rent Systems. Makeld, M., Linnainmaa, S., and Ukkonen, E. (ed.), Proceedings of the
Finnish Artificial Intelligence Symposium (Suomen tekodlytutkimuksen paivat), Vol.
2, Helsinki 1988, pp. 640-650.

Valmari, A.: Some Polynomial Space Complete Concurrency Problems. Tampere Uni-
versity of Technology, Software Systems Laboratory Report 4, Tampere 1988, 34 p.
Valmari, A.: State Space Generation: Efficiency and Practicality. Doctoral thesis, Tam-
pere University of Technology Publications 55, Tampere 1988, 170 p.

Valmari, A.: Eliminating Redundant Interleavings during Concurrent Program Verifi-
cation. Proceedings of Parallel Architectures and Languages Europe ’89 Vol. 2, Lecture
Notes in Computer Science 366, Springer-Verlag, Berlin 1989, pp. 89-103.

Valmari, A.: Stubborn Sets for Reduced State Space Generation. Proceedings of the
10th International Conference on Application and Theory of Petri Nets, Vol. 2, Bonn
1989, pp. 1-22.

Valmari, A.: A Stubborn Attack on State Ezplosion. Proceedings of the Workshop on
Computer-Aided Verification, Rutgers University, Vol. 1, DIMACS Technical Report
90-31, New Brunswick NJ 1990, 15 p.

Valmari, A.: Stubborn Sets of Coloured Petri Nets. Proceedings of the 12th International
Conference on Application and Theory of Petri Nets, Gjern, Denmark 1991, pp. 102-
121.

Varpaaniemi, K., and Rauhamaa, M.: The Stubborn Set Method in Practice. Jensen,
K. (Ed.), Proceedings of the 13th International Conference on Application and Theory
of Petri Nets, Sheffield 1992. Lecture Notes in Computer Science 616, Springer-Verlag,
Berlin 1992, pp. 389-393.

