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Abstract

This paper reports a case study where a distributed PLC-based railway traffic control
system was modelled and analysed.
Keywords: programmable logic controllers, railway traffic control, formal methods, bounded
model checking

1 Introduction

Programmable logic controllers (PLCs) are widely used throughout the world, applications covering
almost all areas of life. PLCs typically control things that traditionally have been controlled by
switching circuits such as relay networks and gate-logic networks. Unlike traditional switching
circuits, PLCs are configurable, and this configurability at least partially explains the success of
PLCs.

Many PLC systems are distributed, consisting of PLC programs that communicate by sending
messages. Since the use of distributed PLC systems in safety-critical tasks keeps increasing, there
is an unquestionable need for werification techniques and tools. By verification we mean ensur-
ing correctness on one hand and detection of errors on the other hand. A typical approach to
verification is testing. However, many distributed PLC systems are so complex that even coarse
errors may remain undetected, no matter how much effort is put into the design of the tests. In
order to extend the coverability of analysis, formal verification is needed. In formal verification,
a mathematical model of a system is constructed, and mathematically formulated properties are
shown to hold or not to hold in the model.

Reachability analysis is one of the basic techniques used in formal verification. In reachability
analysis, a given model of a system is expanded into a state space, the reachability graph of the
model. Model checking is a refined form of reachability analysis. In model checking, the property
of interest is typically formulated as a temporal logic formula, and the goal is then to check whether
the formula holds.

The major problem in reachability analysis, widely known as the state space explosion problem, is
that the reachability graph can be far too large to be fully and concretely constructed. Fortunately,
many verification tasks can be reliably carried out without the full concrete construction of the
reachability graph. Several approaches have been developed for this purpose, e.g. symbolic model
checking, compositional methods, partial order methods, and the use of symmetries.
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HUT-TCS (Helsinki University of Technology, Laboratory for Theoretical Computer Science, for-
mer Digital Systems Laboratory) has a long experience in formal verification, especially in reach-
ability analysis. The development of reachability analysis software has been particularly active.
The PRENA tool was developed in the 80’s and was successfully used e.g. for analysing a railway
PLC system [17].

At the end of the 90’s, the laboratory started to develop yet another reachability analysis tool,
called Maria. The development became a part in a project which had the name Maria too. The
Maria project had a few subprojects where case studies were carried out. One of these subprojects
was concentrated on modelling and analysis of a PLC-based railway traffic control system. This
distributed PLC system had been designed by Mipro Oy and was already in use in the railway
section between Haapamiki and Seindjoki. This paper reports experience obtained in modelling
and analysis of that system.

Several tools were tried for the analysis. Careful abstractions and automated slicing were applied,
but the model remained huge without containing impressive structural regularities. Nondeter-
minism was the the worst-of-all source of state space explosion problem. Due to lack of insight
on the determination of input signals in the system, the model remained highly nondeterministic
w.r.t. the changes in the input signals. Though a combination of overapproximation and abstrac-
tion refinement could in principle be used for aggressive circumvention of nondeterminism, the
practical problem in the project was that HUT-TCS alone had no expertise to do “reality checks”
on its own.

There was also “extreme determinism”, i.e. variables interesting for verification were “guarded”
up to an extent that random simulation was unlikely to find anything interesting within human
time limits. For these reasons, explicit state tools began to seem inappropriate. Instead, this
paper emphasizes one form of symbolic model checking, bounded model checking [38, 39], and uses
a combination of the translator Be2cnf [41] and the solver Limmat [40] as an example.

Unfortunately, the main result of the experiments is the not very impressive conjecture that too
many modelling mistakes have been made, i.e. there have been some false assumptions on the
semantics of the system, or some fatal typos have been involved. (HUT-TCS got the original
system description only in the form of printed pages, whereas automated scanning of those pages
was never seriously considered.)

2 The system which was modelled

The modelled system had been developed by using the ELOP I package of HIMA [35]. HIMA also
has the ELOP II package which is somewhat more compatible with the IEC standard [36] than
ELOP I. However, ELOP I itself is quite close to the IEC standard as can be concluded e.g. by
comparing the description in [34] to the corresponding description in [36]. In discussions with
Mipro Oy, it has also turned out that the concept of a function block in ELOP I is essentially the
same as in the IEC standard. On page 61 of [36], function blocks are described as follows.

“For the purposes of programmable controller programming languages, a function block is a pro-
gram organization unit which, when executed, yields one or more values. Multiple, named instances
(copies) of a function block can be created. Each instance shall have an associated identifier (the
instance name), and a data structure containing its output and internal variables, and, depending
on the implementation, values of or references to its input parameters. All the values of the output
variables and the necessary internal variables of this data structure shall persist from one execution
of the function block to the next; therefore, invocation of the same function block with the same
arguments (input parameters) need not always yield the same output values. Only the input and
output parameters shall be accessible outside of an instance of a function block, i.e. the function
block’s internal variables shall be hidden from the user of the function block.”

In order to demonstrate the mechanism of how a PLC program calls function blocks, we consider a
sample page in a program listing of one of the PLC programs of the Haapamaki — Seindjoki system.
The main motivation of why we consider exactly this page is that a single block is called twice



TR_YPKO1 LKO
ASETIHI4 —]LKO AS_SUM |—— ASRY1 14 AS1 & I ASET1
ASI_14 —{As1 ASET1 |—— ASETUSI4 ESTO
Al 14 —] Al LK1 —— /* invisible*/
ASL 10 —lax ASET2 |— AsETUSIO LKO & LK1
A1_10 —1A2 LK2 | —— ASET1R14 Al — |
HIGH —] AS3 ASET3 |—— /*invisible*/ AS2 & I ASET?2
/* implicit 0%/ —— A3 LK3  |—— M invisible*/ ESTO o
HIGH —{ A ASET4  |—— /invisible*/
* implicit 0%/ —— A4 LK4  |—— Finvisible*/ LK1 & LK2
HIGH —{Ass ASET5  |—— /*invisible*/ A2 — | |
* implicit 0%/ —— A5 LK5  |—— /*invisible*/
HIGH —]Ass ASET6 |—— /*invisible*/ | | AS3 & I ASET3
* implicit 0%/ —— A6 LK6  |—— /*invisible*/ ESTO O
HIGH —{As7 ASET7 |—— /invisible*/
/* implicit 0%/ —— A7 LK7 —— /* invisible*/ kgz & | LK3
/* implicit 0*/ ——— ESTO
ASA & JL ASET4
ESTO Ol
ASRY1 14 —
D AHT & AS11 14 LK3 & LK4
- ] A4 —_— |
ASET1 14 — | AS5 & I ASET5
t ASETIH14 ESTO Ol
ASETIH14 —] 3%? 0
>1 LK4 & LK5
ASETIR14 - A5 |
AS6 & JL ASET6
ESTO
TR_YPKO1 O
ASET2H14 —]LKO AS SUM |—— ASRY2 14 LK5 & LK6
ASI_14 —{Ast ASET1 |—— ASETUSI4 A6 — |
Al_14 —{a1 LK1 |—— M invisible*/ AST & n ASET7
ASI_10 — A ASET2 | —— ASETUSIO ESTO
AL 10 — a2 LK2 b minvisble*/ O
AS1_06 —{As3 ASET3 | —— ASETUS06 LK6
AL 06 — a3 Lks | rinvisble*/ || a7 & LK7
ASL_04 —{Ass ASET4 | —— /*invisible*/
A1_04 —{As4 LK4  |—— M invisible*/ ASL
ASI1_02 —{Ass ASET5  |—— /* invisible*/ —
A1_02 —as LK5  |—— ASET2R14 AS2 ——
HIGH —{AS6 ASET6 f—— /* invisible*/ AS3  ——
/*implicit 0*/ —— A6 LK6 —— /* invisible*/ AS4 & AS_SUM
HIGH —{As7 ASET7 |—— /invisible*/ AS5  — |
 implicit 0%/ —— A7 LK7  |—— /i invisible*/ AS6  —
* implicito*/ —— EsTO AS7?  —

Figure 1: On the left: a sample page in a PLC program listing (essentially a copy of page 16 of
Mipro’s SK2-KL01.98, version E014). On the right: the logic of the TR_-YPKO01 block (essentially
a copy of page 2 of Mipro’s TR-YPKO01.10, version 574E).

on the page. The page is related to how the system reacts to certain keyboard commands issued
by people at the involved railway stations. The variables occuring on the page indirectly affect
the traffic light variables mentioned in Section 4, but so do many other variables on the hundreds
of pages that were modelled. Attempts to describe the roles of the variables of the chosen page
would not essentially improve understanding of even the program that contains the page. (The
project described in the present paper never learnt the semantics of the system up to an extent
that would have properly explained the connection between the requirements of the system and
the implementation.)

The left-hand side of Figure 1 shows the sample page and contains two instances of the function
block which we call TR_-YPKO01, a description of the block being displayed on the right-hand side
of Figure 1. To be precise, the real name of the block is TR-YPKO01. For the sake of simplicity,
some other transliterations of non-alphanumeric substrings have been made, too. Moreover, the
original page uses distinct long names for the formal parameters of the block, whereas we just use
the short names that appear in the description of the block itself.

In the middle of the left-hand side of Figure 1, there are two and-gates, one delay-on-timer (the
delay being 30 seconds as expressed), one or-gate, one monoflop (which generates an impulse with
a pulse length of one cycle of the PLC when its input changes from 0 to 1) and one SR-flip-
flop (such that RESET, i.e. the lower input line, is dominant against SET). A PLC program is
executed “statement by statement” just like an ordinary program, the only difference being that a
“statement” in a PLC program typically has a quite visual layout. In the case of the left-hand side



of Figure 1, the upper instance of TR_-YPKO1 is executed first. (This execution means executing
several statements as we shall soon see.) The first statement after that execution is the evaluation
of the upper and-gate (including the assignment to AS11_14). Then we have a statement which
evaluates the rest of the displayed gates in the same order as they were mentioned in the above
sentence. (The assignment to ASET1H14 is included in that statement.) After that, the lower
instance of TR_-YPKO1 is executed.

Let us then look closer at TR_YPKO1 and its instances. The right-hand side of Figure 1 shows
the description of the block. Each execution of the block consists of 15 statements. This block
is simple in the sense that it has no actual internal variables unless the necessary memory bits of
the monoflops are counted. The instances on the left-hand side of Figure 1 have three striking
labels: HIGH, /* implicit 0 */ and /* invisible */. HIGH is a variable which has the value 1
throughout the life of the PLC program. (To be precise, the variable gets the value 1 in a few
microseconds after the booting of the program.) The comment /* implicit 0 */ does not belong
to the original syntax but refers to the fact that omitting an actual input parameter has the same
effect as having a variable with the value 0 as the parameter. The comment /* invisible */ does
not belong to the original syntax either but refers to the fact that (at least for this block), an
omitted actual output parameter has the same effect as having an internal variable in the place of
the corresponding formal parameter. When modelling the execution of the instances of the block,
it is clearly justified to abstract out any statements which have no effect on the history of the
“caller”.

We have not yet considered how the PLC programs communicate with each other. The protocols
for the purpose in the Haapaméki — Seindjoki system are MODBUS [33, 35, 37] and HIBUS [35],
the latter being used in connections where high speed is strongly preferable and the distance is
very short.

3 An intermediate modelling language

In order to have a clear connection between analysis tool input and original system description, an
intermediate modelling language was designed. The intermediate language is strictly line-oriented.
For each type of a gate in the original description, the intermediate language has a corresponding
operator. One line typically represents the evaluation of a single gate. There are also operators for
presenting the communication between the programs, even though the PLC program listings do
not include the actual data transfers. (MODBUS and HIBUS take care of the actual transfers.)

The intermediate language presentation is written into several files in such a way that one file
typically corresponds to either a single page in the original description or to a part of such a page.
The name of the file identifies (at least) the program, the page and the part of the page. Commu-
nication operations are integrated with the original description either by inserting communication
lines in “ordinary” files or by creating separate files with appropriately chosen page numbers and
subscripts. The names of the files and the order of the lines in the files thus define a flow of control
for each of the programs.

Block instances can be handled separately, but this is not optimal w.r.t. the maintenance of the
files. Therefore, there is a simple metanotation for describing a block without fixing the instance.
Representations of the instances can then be obtained by writing simple filters which produce files
for the instances. The metalanguage file for the TR_YPKO01 block looks as follows.

27 <& 1kO* asl* !estox
asetlx <@ 27

1ki1x <& 1kO0* al*

37 <& 1lk1* as2x lestox
aset2x <@ 37

1k2x <& 1k1* a2%*

47 <& 1k2* as3* !estox



aset3x <Q 47

1k3* <& 1k2* a3*

57 <& 1k3* as4* lestox
asetdx <@ 57

1k4* <& 1k3* adx*

67 <& 1k4* asbx lestox
asetbx <@ 67

1kbx <& 1k4* ab*

77 <& 1kb* as6* l!estox
aset6x <Q 77

1k6* <& 1kb* abx*

87 <& 1k6* as7* !estox*
aset7* <@ 87

1k7* <& 1k6* a7*
as_sum* <& asl* as2* as3* as4* asb* as6x as7x*

The asterisks and the question marks are the only metanotation. The file for the upper instance
of TR_YPKO1 on the left-hand side of Figure 1 looks as follows. The reduction in the number of
lines is due to the fact that many of the formal output parameters are redundant in this case.

2 <& aset1lhl4 asl_14
asetusl14 <@ 2

1k1_1000 <& aset1lhl4 al_14
3 <& 1k1_1000 as1_10
asetusl10 <@ 3

asetlrl4 <& 1k1_1000 al_10
asryl_14 <& as1_14 as1_10

The file for the lower instance of TR_YPKO1 on the left-hand side of Figure 1 looks as follows.

2 <& aset2hl4 asi_14
asetusl4 <@ 2

1k1_1010 <& aset2hl4 al_14
3 <& 1k1_1010 as1_10
asetus10 <@ 3

1k2_1010 <& 1k1_1010 al1_10
4 <& 1k2_1010 as1_06
asetus06 <@ 4

1k3_1010 <& 1k2_1010 al_06
1k4_1010 <& 1k3_1010 al_04
aset2rl4 <& 1k4_1010 al1_02
asry2_14 <& asl1_14 as1_10 as1_06 as1_04 as1_02

The file representing the behaviour in the middle of the left-hand side of Figure 1 is written
“directly by hand” and looks as follows.

asl11_14 <& asryl_14 d_aht
2 <& asl11_14 asetl1_14

3 </ 30s aset1lhil4

4 <| 3 asetiri4d

5 <@ 4

asetlhld <# 2 5

In general, a line of the intermediate language is of the form “variable <operator operands”. The
operands themselves do not include operators, with the exception that negation is allowed in



an operand. The delays of timers are presented by using the same time unit as in the original
description. A variable can have the form of an integer. In such a case, the variable represents
an output of a gate such that the output has no name in the PLC program listing. (In order to
avoid confusion about the meaning of the integers, neither 0 nor 1 is accepted for presenting a
variable.) The idea is that these numbers are written onto the printed pages of the program (by
using a pencil for the purpose) and then used consistently in the files. Though ELOP I supports
full integer arithmetics, non-binary integer constant input lines are very rare in the Haapamaki —
Seindjoki system, and these rare cases become nicely handled by using a specific escape notation.

The intermediate language has specific “pseudo-semaphore operators” for modelling of commu-
nication. Depending on the way in which these operators are used, the communication varies
between “minimally asynchronous” (by means of storage variables which together form a single
message in a buffer of capacity 1) and “effectively synchronous” (due to the fact that programs
can be “forced to wait”). This way of modelling the communication has practically nothing to do
with the protocols MODBUS and HIBUS which in principle should be modelled. However, the
state space explosion problem forces us to make coarse or even virtually absurd compromises in
the modelling of communication. Our way of modelling only limits the view of the observer. In
other words, the analysis is concentrated on behaviours where the PLC programs just happen to
proceed in the modelled way.

The intermediate modelling language has also operators for nondeterministic choices. As said
in the Introduction, nondeterminism was the worst-of-all source of state space explosion in the
project.

4 Using a combination of Bc2cnf and Limmat

The input to Bc2enf is a Boolean circuit. Be2enf transforms the circuit satisfiability problem into
a classical propositional formula satisfiability problem, i.e. the formula produced by Bc2cnf (in
conjunctive normal, DIMACS CNF format) is satisfiable if and only if the circuit is satisfiable
under the constraint included in the input of Bc2cnf. The advantage of using Bc2cenf is that the
transformation from PLC “statements” to Boolean gates is more straightforward than to CNF,
whereas Bc2cenf uses algorithms that sometimes considerably reduce the circuit so that the final
SAT solver is not disturbed by excessive redundancy. In the bounded model checking context
below, if some assignment would satisfy a formula produced by Bc2cnf, the assignment would form
a counterexample to the conjectured property.

Since the potential side effects of asynchronous communication were more or less out of the scope of
the project, the translation into the input language of Bc2cenf assumes effective synchronisation of
the PLC programs, i.e. no program can start a new cycle before the other programs have completed
their cycles. Moreover, the project conformed to the style of [27] by assuming that any delay in
any timer is a constant multiple of a PLC cycle. More precisely, it was assumed that a total cycle
formed by each program executing its own cycle once takes 0.1 seconds.

In this section, we consider a “verification sanity check”. There is a safety-critical mutual exclusion
property that essentially says that traffic lights close to each other in opposite directions are never
simultaneously green. It took long before it was observed that the model may be vacously safe in
the sense that there is never any green light. So, the mutual exclusion specification was replaced
by a conjecture that no light is ever green. At the time of writing this, no counterexample to
this conjecture has been found though both random simulation and bounded model checking have
been tried. However, the several timers with relatively long delays in the system may well cause
delay in the functioning of lights as well. Thus it was decided to shorten the delays of delay-on
and delay-off timers.

The alternatives considered here are as follows, where the time is in seconds, and non-integer results
are assumed to be cut after the first decimal: (i) keep the original delays, (ii) replace a delay z by
min(z, 5.0)+ ((z—min(z, 5.0))/10.0), (iii) replace a delay = by min(z, 2.0)+ ((z —min(z, 2.0))/20.0),
(iv) replace a delay = by 0 (i.e. ignore it).



The number of cycles executed by each program is now the depth k of bounded model checking.
The number of non-input gate definitions in the input file of Bc2cenf is 7969 - k in case (i), 7651 - k
in case (ii), 7381 - k in case (iii), and 5821 - k in case (iv). In all cases, the number of input gates
is 362 - k. The variation in the number of non-input gates is caused by that a counter having a
narrow range can be represented with fewer bits than a counter having a wide range.

The machine for the experiments had a 1668.736 MHz CPU and 1 GB of RAM. We chose k = 70
because depths slightly greater than that had already caused segmentation faults in Limmat. (Note
that the number of variables in the input formula of Limmat is of the same magnitude as the number
of gates in the input of Bc2cenf. Limmat was actually chosen because of its good robustness when
compared to some other famous SAT solvers.) The lower and upper bounds below refer to the
elapsed time taken by an experiment in a setting where each experiment was repeated 20 times,
whereas the actual processor time consumed by an experiment was always more than 90 percent of
the elapsed time, thus confirming that there was no high competition on resources. (The concept
of actual processor time is slightly academic since a program of interest can well be a primary
contributor to “swapping delays” that are typically not included in the actual processor time.)

The production of the Boolean circuit took between 99 and 101 seconds in case (i), between 93
and 95 seconds in case (ii), between 88 and 90 seconds in case (iii), and between 60 and 62 secons
in case (iv). The run of Be2cnf took between 72 and 93 seconds in case (i), between 68 and 88
seconds in case (ii), between 64 and 77 seconds in case (iii), and between 25 and 35 seconds in
case (iv). The run of Limmat took between 2183 and 2205 seconds in case (i), between 665 and
679 seconds in case (ii), between 2533 and 2635 seconds in case (iii), and between 2602 and 2622
seconds in case (iv). In all cases, Limmat concluded its input formula to be unsatisfiable, thus
reporting a failed attack on the conjecture above.

Somewhat greater depths were covered by checking one traffic light at a time. This was not due to
slicing: all the traffic light variables were interdependent. Instead, it turned out that some lights
were much slower to handle than others. The constraint referring to all the lights could not have
been handled faster than a slow-to-handle light alone.

5 Conclusions and related research

Applying formal methods to railway systems or programmapble logic controllers is by no means any
new topic. However, the publications listed in the bibliography below almost uniformly assume
that at least one of the following holds: (i) analysis is integrated with the design of the system,
or (ii) experts on the design of the system are deeply involved in the analysis project. Neither of
these conditions was fulfilled in the project considered in this paper. The question remains whether
“insightless model checking” will ever be realistic.

Most though not all publications in the first subsection in the bibliography below are included
in the survey [2]. For simplicity, we comment only two papers (and do the same for the second
subsection). In [9], bounded model checking is considered to be more appropriate for error detection
than OBDDs. The author of the present paper came to a similar conclusion when trying analysis
with several tools. On the other hand, the claim “we do not have any modeling activity” in [9]
is surprising if not oversimplifying. The remarks on benefits and limitations of slicing in [20] are
easy to agree with. The estimate 10199000 in [20] on the number of states in a system about which
relevant analysis results have been obtained is impressive, especially together with the comments
that indicate that the case study has been done without maximal knowledge about the system.

The publications in the PLC-specific subsection below pay much attention to the precise execution
model, i.e. how exactly the programs synchronise or communicate. Unfortunately, whatever the
precise execution model of the Haapamiki — Sein&joki system might be, HUT-TCS did not have
the “energy” to find it out. Looking at [28, 32], it is refreshing to observe that confusion about
ambiguities in descriptions is not always due to lack of expertise.
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