Towards Ambitious Approximation Algorithms in
Stubborn Set Optimization

Kimmo Varpaaniemi *
Helsinki University of Technology
Laboratory for Theoretical Computer Science

P.O. Box 9205, FIN-02015 HUT, Finland
kimmo.varpaaniemi@hut.fi

Abstract. This paper continues research on the stubborn set method that constructs
on-the-fly a reduced LTS that is CFFD-equivalent to the parallel composition of given
LTSs. In particular, minimization of the number of successor states of a given state is
reconsidered. The earlier suggested and/or-graph approach requires solving #P-complete
counting problems in order to get the weights for the vertices of the and/or-graph. The
“branch-and-bound” decision problem corresponding to the minimization of the sum of
the computed weights is “only” NP-complete. Unfortunately, #P-complete counting does
not seem easily avoidable in the general case because it is PP-complete to check whether a
given stubborn set produces at most as many successor states as another given stubborn
set. Instead of solving each of the subproblems, one could think of computing approximate
solutions in such a way that the total effect of the approximations is a useful approximation
itself. General approximation algorithms for propositional logic problems essentially suffice
for the purpose.

Keywords: LTSs, stubborn sets, and/or-graphs, approximability in optimization and
counting

1 Introduction

In process-algebraic approaches to formal verification, it is usual to describe behaviors of
actual systems by defining LTSs (labelled transition systems) and operations which produce
LTSs from LTSs. For example, there are several ways to define a parallel composition of
LTSs. If correspondence between actions and atomic propositions is defined appropriately,
CFFD-equivalence (chaos free failures divergences equivalence) guarantees preservation of
satisfiability /unsatisfiability of any linear time temporal logic formula that does not contain

*This work has been funded by the Academy of Finland (Project 47754).

the next-time operator. More information about equivalences and preorders related to
CFFD-equivalence can be found e.g. from [8, 19].

Combinatorial explosion tends to occur in parallel compositions, but the explosion can
be alleviated by eliminating redundant interleavings. The stubborn set method is able to do
such elimination by constructing on-the-fly a reduced LTS that is CFFD-equivalent to the
actual parallel composition [17, 18]. It is a system-independent and intuitively appealing
heuristic to minimize the number of successor states of each state in the reduced LTS
though it is well known that the resulting reduced LTS itself is not necessarily minimal
w.r.t. the number of states.

This paper continues the research done in [21]. The number of successor states of a
given state can be minimized by constructing an and/or-graph with weighted vertices and
by finding a set of vertices that satisfies a certain constraint such that no set of vertices
satisfying the constraint has a smaller sum of weights. The minimization can be done in a
branch-and-bound manner, by repeatedly solving instances of the corresponding decision
problem which is NP-complete for a given weighted and/or-graph. The number of the
instances is at most logarithmic w.r.t. the sum of weights of all vertices.

Without weights, the and/or-graph can be constructed in low-degree polynomial time.
However, since actions can be nondeterministic and transitions can share target states,
it is by no means obvious how long it takes to compute the weights. It turns out to be
#P-complete to compute a weight for a vertex in a nontrivial case. We also get to know
that it is PP-complete to check whether a given stubborn set produces at most as many
successor states as another given stubborn set. It thus seems unlikely that #P-complete
counting could generally be avoided by using some other approach.

All these complexity results motivate us to seek approximate rather than precise solu-
tions. An obvious approximation is to carry out the above mentioned branch-and-bound
search only up to a small extent, the extreme being: “If some stubborn set produces only
one successor state, find such a set. Otherwise choose the set of all actions or any other
known stubborn set.” Such compromises are successful in many applications, and it is
sometimes tempting to speculate how much of the practical value of the method is due
to those stubborn sets which do not cause branching. However, there should be room for
more ambitious approximation algorithms. Moreover, it should be possible to compute
approximate solutions to subproblems in such a way that the total effect of the approxima-
tions is a useful approximation itself. General approximation algorithms for propositional
logic problems essentially suffice for the purpose because each of the difficult subproblems
of our minimization problem is an instance of or very close to some generic propositional
logic problem.

The rest of the paper has been structured as follows. Some “complete” propositional
logic problems are mentioned in Section 2. And/or-graphs are considered in Section 3,
LTSs in Section 4, and stubborn sets in Section 5. We shall use N to denote the set of
nonnegative integer numbers. For any a € N, N, = {i € N | i < a}.

2 Reference problems from propositional logic

This paper assumes that introduction to complexity theory and approximability theory is
available, e.g. from [1, 13]. On the other hand, it is built in the concept of completeness that
each of the below “complete” problems in a sense characterizes the associated complexity
class. Each of the below problems is mentioned in some of the later sections.

SAT: “Given a propositional formula in a conjunctive normal form, check whether the
formula is satisfiable.” SAT is NP-complete [2].

WSAT: “Given a propositional formula in a conjunctive normal form and nonnegative
integer weights for the variables, find a total assignment that satisfies the formula
(when satisfiable) and minimizes the sum of weights over variables having the value
true.” WSAT is NPO-complete [12].

W2SAT: the special case of WSAT where no conjunct contains more than two literals.
W2SAT is MAX-SNP-complete [6].

DNFCOUNT: “Given a propositional formula in a disjunctive normal form, compute
the number of total assignments that satisfy the formula.” DNFCOUNT is #P-
complete [16].

CNFENOUGH: “Given an integer number k£ and a propositional formula in a conjunc-
tive normal form, check whether at least £ total assignments satisfy the formula.”
CNFENOUGH is PP-complete [15].

3 And/or-graphs

Definition 3.1 An and/or-graph is a 4-tuple (Vg, Vg, k, F') such that Vi is the set of
and-vertices, Vg is the set of or-vertices, Vg NVgy =0, Vg U Vg is finite, k € Vg U Vg,
F C (Vg UVg) x (Vg UVg) is the set of edges, and Vy € Vg : F(y) # 0.

A set L C Vg UV is legal iff

(ke L)YAVxeVgNL: Fla) CL)ANy€eVaNL: F(y)NL#0). For any subsets L,
H and P of Vua U Vg, L is a H-solidity witness of P iff L is legal and P = HN L. For
any H C Vg U Vg, aset P C Vg UV is H-solid iff some subset of Vg U Vg is a H-solidity
witness of H. |

The contents of Definition 3.1 and the below two problem formulations are from [21].

SOLIDWEIGHT: “Given n € N, an and/or-graph, a subset H of its vertices and a func-
tion w from H to N, is there an H-solid set P such that }_,cpw(p) < n?”

SOLIDOPTW: “Given an and/or-graph, a subset H of its vertices and a function
w from H to N, find an H-solid set A such that for each H-solid set P,

ZaEA w(a’) S ZpEP UJ(p).”

Clearly, SOLIDWEIGHT is the “branch-and-bound” decision problem corresponding
to SOLIDOPTW. NP-completeness of SOLIDWEIGHT is essentially shown in [14] though
also “confirmed” by [20, 21]. SOLIDOPTW is a special case of WSAT. By looking at the
definition of legal sets, it is easy to write such a formula for SOLIDOPTW in a conjunctive
normal form in such a way that no variable occurs negated in more than one conjunct, no
conjunct contains more than one negative literal, and each conjunct contains at least one
positive literal. (If the signs of the literals were reversed, every conjunct would be a Horn
clause.)

So, approximation algorithms for WSAT are applicable to SOLIDOPTW. Unfortunately,
NPO-completeness of WSAT [12] and the related unapproximability results [1, 7, 9] indicate
that every polynomial time approximation algorithm produces relatively poor approxima-
tions for at least some instances of WSAT. What comes to the possibility to reduce WSAT
to SOLIDOPTW, it seems that a polynomial time reduction can be obtained by revising the
the reduction from SAT to SOLIDWEIGHT (essentially presented in [14]) w.r.t. weights, but
the obtained reduction does not support approximation by taking preimages. (There are
solid sets that do not have satisfying total assignments as preimages w.r.t. the reduction.)
So, the complexity and approximability of SOLIDOPTW are unclear to some extent.

Anyway, it should be kept in mind that complexity and approximability results are
worst-case results and often do not tell much about the situation in some special case.
For example, W2SAT has polynomial time algorithms guaranteeing the sum of weights in
the approximate solution to be at most twice the minimum value when the formula is
satisfiable [1, 4, 5, 6]. MAX-SNP-completeness of W2SAT [6] may or may not explain why
no better algorithm is known. It would be interesting to know what kind of instances of
SOLIDOPTW have an approximation supporting polynomial time reduction to W2SAT. At
present, we do not exclude the possibility that all instances would have such a reduction.
Nevertheless, there should be more such instances than those that are trivially seen from
the above specified formula for SOLIDOPTW. Namely, if that formula has at most two
literals in each conjunct, then every or-vertex (if any) in the and/or-graph has only one
outgoing edge, and a unique solution to SOLIDOPTW is trivially determined by the set of
vertices accessible from k.

4 LTSs

Definition 4.1 A labelled transition system (an LTS) is a 5-tuple L = (S, U, 3, A, 1) such
that S is the set of states, U is the set of wisible actions, & is the set of invisible actions,
ONS=0=SN(0USY), ACSx (BUS) x S is the set of transitions, and ¢ € S is the
initial state. For each transition (x,a,y), a is the label of the transition and y is the target
state of the transition. A transition (z,a,y) is a successor transition of a state z iff z = z.
A state y is a successor state of a state x iff there is some action a such that (z,a,y) is a
transition. L is a finite LTS iff SU U US is finite. An action a is enabled at a state x iff
there is a state y such that (z,a,y) € A. The set of actions enabled at a state z is denoted

by n(zx). O

Definition 4.2 Let n € N\ {0,1}. For each i € N, let L; = (S;, U;, 3y, Ay, 1;) be an
LTS. The n-tuple (Ly,..., L, 1) is action-consistent iff for all different i and r in N,
U;NS, =0 and (So x...x S,_1)N(G;US;) =0. If (Lg,...,L,_1) is action-consistent,
the parallel composition of (L, ..., L,_1) is the LTS L = (S,0, S, A,) such that

S = S() X ... X Sn—l; 0= U?;OIUZ', I = U?;OI%Z', L= <L0, ceey Ln_1>, for any a € Ou %, for
any r = (Zg,...,Tp—1) € S and for any y = (yo,...,Yn—1) € S, (z,a,y) € A iff
Vie Ny, : ((CL € ;U %z) A (<$Z’,CL, yz> € Az)) V ((CL ¢ o; U %z) Nx; = yz) O

The contents of Definitions 4.1 and 4.2 are from [21]. The parallel composition operation
can be thought to carry out hiding after fine-grained alphabet-based synchronization.

Proposition 4.3 It is #P-complete to compute the number of successor states of a given
state in the parallel composition of a given action-consistent tuple of finite LTSs.

Proof. Inclusion in #P is obvious because it is easy to design a nondeterministic Turing
machine which is able to produce any syntactically possible candidate successor state and
then check in polynomial time whether the produced candidate is really a successor state.
#P-hardness follows by the following polynomial time reduction from DNFCOUNT.

Let m and n be in N \ {0,1}. Let {yo,---,yn_1} be the set of variables and
D=CyV...VCy,_1 the formula in disjunctive formal form. For each i € N, and for
each j € N, we define the set A;; as follows. If both y; and its negation occurs in Cj,
then A, ; is empty. If y; occurs only positively in C;, then A;; = {1}. If y; occurs only
negatively in C;, then A; ; = {0}. If y; does not occur in any form in C}, then A4, ; = {0, 1}.

For each i € Ny, let L; = (S;, U;, Sy, A4, 1;) be an LTS such that S; = {0, 1,2}, ¢; = {2},
Ui = @, %z = N<m, and Az = U;n:_ol{Q} X {]} X Ai,j-

Now (Ly, ..., L,_1) is action-consistent. For the initial state in the parallel composition
of (Ly,...,L,_1), for each j € N_,,, the number of successor transitions labelled by j is
equal to the number of total assignments satisfying C;. Consequently, the number of
successor states of the initial state is equal to the number of total assignments satisfying
D. O

In [21], every vertex weight in the and/or-graphs for the “minimize the number of
successor states” problems is actually the number of successor states of a certain state
in the parallel composition of a tuple of certain LTSs. Proposition 4.3 indicates that we
should (again) seek approximate rather than precise solutions. Due to the very direct
reduction in the above proof, the Monte-Carlo approximation approach presented by [10,
11] for DNFCOUNT can easily be revised to approximate the number of successor states.
What is really important is that by taking only “tolerably” many samples in the Monte-
Carlo method, almost as good approximate solutions as wanted can be obtained, at least
statistically. So, it is possible to constrain the precision of not only the approximate
solutions but also their sums.

5 Stubborn sets

Repeating the style of [21], we assume the following.

e n e N\{0,1}, and for each i € N,,, L; = (S;, U;, Sy, Ay, ¢;) is a finite LTS, and 7; is
the “n of L;” w.r.t. Definition 4.1.

e (Ly,...,L, 1) is action-consistent, L = (S, U, 3, A, ¢) is the parallel composition of
(Lo,...,Ln—1), and ng is the “n of L” w.r.t. Definition 4.1.

® s=(Sp,--.,8,-1) € S, and at least one invisible action is enabled at s.

Definition 5.1 Let ACUUS and X C S. A is CFFD-stubborn at (s, X) the following
conditions hold.

e SNn.(s)NA#D. In other words, A contains at least one invisible action that is
enabled at s.

e UNny(s)NA=0or U C A. In other words, if A contains some visible action that
is enabled at s, then A contains all visible actions.

e For each a € ANn(s) and for each i € Ny, (a & U; US;) V (mi(s;) C A).

e For each a € A\ ni(s), there is some i € N, such that a € (0; US;) \ ni(s;) and

o ({s} x(SNA) Xx (XU{s}H))NA=0or UC A. In other words, if some successor
transition of s leads to some state of X U {s} and the label of the transition is an
invisible action of A, then A contains all visible actions. O

Definition 5.2 Let ACUOUS, Q COUS, and X C S. Q is a CFFD-eligibility witness
of A at (s, X) iff Q is CFFD-stubborn at (s, X) and A = Q Nnr(s). A is CFFD-eligible at
(s, X) iff some subset of U U S is a CFFD-eligibility witness of A at (s, X). O

The contents of Definitions 5.1 and 5.2 are from [21] where the definition of CFFD-
equivalence and the connection between CFFD-stubbornness and CFFD-equivalence is
given. We now recall one of the optimization problems of [21] and give a “naive sub-
problem” for it.

CFFDELIGSTOPT: “Given X C S, find a CFFD-eligible set A at (s, X) such that the
number of successor states of s via transitions labelled by actions of A is the least
possible.”

CFFD2ELIG: “Given X C S and CFFD-eligible sets @ and R at (s, X), is the number of
successor states of s via transitions labelled by actions of) less than or equal to the
number of successor states of s via transitions labelled by actions of R?”

Conforming to [21], we assume the following.

e In the below expressions, p is the cardinality of the alphabet for encoding the input,
a; = [log, (1 +|S:))], and 8 = [log, (1 + 13, U Si)].

e The length of the input of CFFDELIGSTOPT is at least
?:_01 (ai -+ |X\az + ‘({SZ} X (Uz U %z) X Sz) M .AZ|CYZ + |Uz U C\Y\Z‘ﬁz)

e The length of the input of CFFD2ELIG is at least (|Q| + |R|) [logp(l + |0 U %|)-‘ plus
the length of the input of CFFDELIGSTOPT.

Lemma 5.3 CFFD2ELIG is PP-hard.

Proof. We get a polynomial time reduction from CNFENOUGH. Let k£ be an inte-
ger number and m and n in N\ {0,1}. Let {yo,...,yn—1} be the set of variables and
E=FyN...NAF,_1 the formula in conjunctive normal form. If k¥ < 1, it suffices to con-
struct any positive-answer instance of CFFD2ELIG. If k£ > 2", it suffices to construct any
negative-answer instance of CFFD2ELIG. Let thus 1 <k <2". Let D=CyV...VCy_1
be the negation of F' converted in a disjunctive normal form by using De Morgan’s law.

As shown in [3], it is possible to construct in low-degree polynomial time for n vari-
ables a formula G in disjunctive normal form (allowing contradictions) with at least two
disjuncts such that the number of total assignments satisfying G is 2" — k. Let thus
G=CnpV...VCpir_1 besuch a formula for new variables {y,, ..., yon_1}-

For each i € N9, and for each j € Nepyy, let A; ; be as in the proof of Proposition 4.3.
For each i € Ny, let K; = (S;, Uy, 3y, Ay, ;) be an LTS such that S; = {0, 1,2, 3}, ¢; = {2},
and U; = (). For each i € N_,, let &; = N, U {—1} and
Ay = (U2} x {7} x A; ;) U{(2,—1,3)}. For each i € (Ncay) \ (Nep), let
S = (Namer) \ (Nem)) U{=2} and A, = (U742} x {5} x Aiy) U{(2,-2,3)}.

Now (Ky,..., Ko,—1) is action-consistent. For the initial state in the parallel compo-
sition of (Ky,...,Ks, 1), for each j € N, the number of successor transitions labelled
by j is equal to the number of total assignments of {yo,...,y,_1} satisfying C;, whereas
for each j € (Neyar) \ (Nem), the number of successor transitions labelled by j is equal
to the number of total assignments of {yn, ..., yon—1} satisfying C;. The rest follows from
the fact that N, U{—1} and ((Nemar) \ (Nem)) U {—2} are CFFD-stubborn at the pair
of the initial state and the empty set. O

Lemma 5.3 solves the main open problem of [21] by implying that as far as the com-
plexity class P is not equal to NP, it is more difficult to minimize the number of successor
states than the number of successor transitions. Lemma 5.3 also motivates the approach
presented in [21] by indicating that it is very difficult or perhaps even impossible to avoid
#P-complete counting in the general case.

Proposition 5.4 CFFD2ELIG s PP-complete.

Proof. Due to Lemma 5.3, it suffices to show that CFFD2ELIG is in PP. Let s, Q and R be
as in the formulation of CFFD2ELIG. Let Y be the set of those successor states of s that

are produced by @) but not by R. Respectively, let Z be the set of those successor states
of s that are produced by R but not by). However, if the assumptions of CFFD2ELIG
are not satisfied, we force Y = {s} and Z = (). The assumptions of CFFD2ELIG can be
checked in polynomial time, whereas for any state, membership checks w.r.t. Y and Z can
be done in polynomial time.

We obtain a polynomial time probabilistic Turing machine that works as follows and is
deterministic in every respect except coin tossing. We assume an encoding that is uniquely
decodable in polynomial time and able to encode any state of the parallel composition
into a bit vector of ¢ bits where ¢ depends on the input but is fixed for any fixed input.
Moreover, we require that 2¢ is greater than the number of the states. Vectors that are not
images of states w.r.t. the encoding are images of appropriately defined “non-states”. The
machine starts by tossing a coin 2¢ + 2 times. After that, the machine interprets the first
t coin tosses as a vector of ¢ bits and decodes the vector w.r.t. the encoding. If the result
of the decoding is not in Y U Z, the machine halts in such a way that an outcome “tails”
of the last coin toss causes acceptance, an outcome “all heads” of the last ¢ + 2 coin tosses
causes acceptance, and anything else causes rejection. If the result of the decoding is in Y,
the machine halts in such a way that an outcome “all heads” of the last ¢ + 2 coin tosses
causes acceptance and anything else causes rejection. If the result of the decoding is in Z,
the machine halts with acceptance.

It follows that for any input, the number of accepting computations is
p= 2" +1)(2" - |Y|—|Z]) + |Y| + 22| Z|, whereas the number of other, i.e. rejecting,
computations, is v = 2%+2 — ;= (21 — 1)(2' — |Y| - |Z]) + (212 - 1)|Y].

Now p—v =2(20 —|Z]) + 2172(|Z| — |Y]). If |Y| < |Z|, then p — v > 2(2! — |Z]) > 0.
If Y| > |Z], then p —v < 2(28 — 21 — | Z]) = —2(2" + | Z]) < 0. O

6 Conclusions

Due to the general nature of Proposition 4.3, it may be that some very close result has been
published before. However, the author of the present paper has never encountered such a
publication. Lemma 5.3 can be thought of as a “moral corollary” of Proposition 4.3, but
the claim is certainly less than obvious and actually relies on the possibility to synchronize
invisible actions. (Synchronization of invisible actions was allowed already in [18] and
further motivated in [21].)

As suggested by the word “towards” in the title of this paper, we are really taking initial
steps. The state-of-art in the known implementations of partial order reduction methods is
that heuristics concentrate on optimizing the behaviour in “typical” cases. Proceeding into
that direction leads to more and more application specific implementations. Proceeding
into the “generic and ambitious” direction should improve tools that are to be used for “as
many purposes as possible”.

Acknowledgements

Many parts in this paper have benefited from ideas and references provided by Pekka Or-
ponen. Proposition 4.3 resulted from observations made by Pekka Orponen, Antti Huima
and the author.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]
[10]

[11]

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, Springer-Verlag, Berlin, 1999. Related information
is available via http://www.nada.kth.se/theory/compendium/wwwcompendium.html.

Cook, S. A.: The Complexity of Theorem-Proving Procedures, in: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, ACM, New York NY, USA,
1971, 151-158.

Gill, J.: Computational Complexity of Probabilistic Turing Machines, SIAM Journal
on Computing, 6(4), 1977, 675-695.

Gusfield, D., Pitt, L.: A Bounded Approximation for the Minimum Cost 2-Sat Prob-
lem, Algorithmica, 8, 1992, 103-117.

Hochbaum, D. S., Megiddo, N., Naor, J., Tamir, A.: Tight Bounds and 2-
Approximation Algorithms for Integer Programs with Two Variables Per Inequality,
Mathematical Programming, 62, 1993, 69-83.

Hochbaum, D. S., Ed.: Approximation Algorithms for NP-Hard Problems, PWS Pub-
lishing Company, Boston MA, USA, 1997.

Jonsson, P.: Tight Lower Bounds on the Approximability of Some NPOPB-Complete
Problems, Linkdping Electronic Articles in Computer and Information Science, 2(4),
1997, http://www.ep.liu.se/ea/cis/1997/004/.

Kaivola, R.: Equivalences, Preorders and Compositional Verification for Linear Time
Temporal Logic and Concurrent Systems, Doctoral Thesis, University of Helsinki, De-
partment of Computer Science, Report A-1996-1, March 1996.

Kann, V.: Polynomially Bounded Minimization Problems that are Hard to Approxi-
mate, Nordic Journal of Computing, 1, 1994, 317-331.

Karp, R. M., Luby, M., Madras, N.: Monte-Carlo Approximation Algorithms for
Enumeration Problems, Journal of Algorithms, 10(3), 1989, 429-448.

Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Orponen, P., Mannila, H.: On Approxzimation Preserving Reductions: Complete Prob-
lems and Robust Measures, University of Helsinki, Department of Computer Science,

Report C-1987-28, 1987. There is also a revised version (May 1990):
http://www.tcs.hut.fi/%7eorponen/papers/approx.ps.

Papadimitriou, C. H.: Complexity Theory, Addison-Wesley, Reading MA, USA, 1994.

Sahni, S.: Computationally Related Problems, SIAM Journal on Computing, 3(4),
1974, 262-279.

Simon, J.: On Some Central Problems in Computational Complexity, PhD Thesis,
Cornell University, Department of Computer Science, Technical Report TR 75-224,
Ithaca NY, USA, January 1975.

Valiant, L. G.: The Complexity of Enumeration and Reliability Problems, STAM
Journal on Computing, 8(3), 1979, 410-421.

Valmari, A.: Alleviating State Ezplosion during Verification of Behavioural Equiv-
alence, University of Helsinki, Department of Computer Science, Report A-1992-4,
August 1992.

Valmari, A.: Stubborn Set Methods for Process Algebras, in: Partial Order Methods
in Verification (D. A. Peled, V. R. Pratt, G. J. Holzmann, Eds.), DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 29, American Mathe-
matical Society, Providence RI, USA, 1997, 213-231.

Valmari, A., Tienari, M.: Compositional Failure-Based Semantic Models for Basic
LOTOS, Formal Aspects of Computing, 7(4), 1995, 440-468.

Varpaaniemi, K.: Stable Models for Stubborn Sets, Fundamenta Informaticae, 43(1—
4), 2000, 355—-375.

Varpaaniemi, K.: Minimizing the Number of Successor States in the Stubborn Set
Method, Fundamenta Informaticae, 51(1-2), 2002, 215-234.

10

