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Abstract. Combinatorial explosion which occurs in parallel composi-
tions of LTSs can be alleviated by letting the stubborn set method con-
struct on-the-fly a reduced LTS that is CFFD- or CSP-equivalent to the
actual parallel composition. This paper considers the problem of min-
imizing the number of successor states of a given state in the reduced
LTS. The problem can be solved by constructing an and/or-graph with
weighted vertices and by finding a set of vertices that satisfies a certain
constraint such that no set of vertices satisfying the constraint has a
smaller sum of weights. Without weights, the and/or-graph can be con-
structed in low-degree polynomial time w.r.t. the “length of the input of
the problem”. However, since actions can be nondeterministic and tran-
sitions can share target states, it is not known whether the weights are
generally computable in polynomial time. Consequently, it is an open
problem whether minimizing the number of successor states is as “easy”
as minimizing the number of successor transitions.

Keywords: LTSs, CFFD-equivalence, CSP-equivalence, stubborn sets,
and/or-graphs

1 Introduction

In process-algebraic approaches to formal verification, it is usual to describe
behaviors of actual systems by defining LTSs (labelled transition systems) and
operations which produce LTSs from LTSs. For example, there are several ways
to define a parallel composition of LTSs. If correspondence between actions and
atomic propositions is defined appropriately, CFFD-equivalence (chaos free fail-
ures divergences equivalence) guarantees preservation of system-level satisfiabil-
ity /unsatisfiability of any linear time temporal logic formula that does not con-
tain the next-time operator. Since CFFD-equivalence is also a congruence w.r.t.
certain typical parallel composition operations as well as certain other typical
LTS operations, it is particularly suitable for compositional verification. More
information about equivalences and preorders related to CFFD-equivalence can
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be found e.g. from [3,13]. The famous CSP-equivalence [2,13] is closely related
to CFFD-equivalence. CFFD-equivalence implies CSP-equivalence.

Combinatorial explosion tends to occur in parallel compositions, but the ex-
plosion can be alleviated by eliminating redundant interleavings. The stubborn
set method is able to do such elimination by constructing on-the-fly a reduced
LTS that is CFFD- or CSP-equivalent to the actual parallel composition [11,12].
(Ensuring CFFD-equivalence needs more constraints in the method than ensur-
ing CSP-equivalence.) The method has been classified as one of the partial order
methods [6] and has turned out [8, 12] successful also in the verification of branch-
ing time temporal properties which in turn are related to the CCS theory [4].
Persistent sets [1] and ample sets [5, 7] are strikingly similar to stubborn sets, at
least if we consider the actual construction algorithms that have been suggested
for stubborn, persistent and ample sets.

It is a system-independent and intuitively appealing heuristic to minimize
the number of successor states of each state in the reduced LTS though it is well
known that the resulting reduced LTS itself is not necessarily minimal w.r.t. the
number of states. On the other hand, it is possible to compromise the heuristic
in such a way that “nice” branching is obtained by means of “good” stubborn
sets.

And/or-graphs are used for various purposes e.g. in the research of artifi-
cial intelligence. The idea of using and/or-graphs in stubborn set optimization
problems was introduced in [10]. Many of the system-independent heuristics sug-
gested for the computation of stubborn sets in a sense work on the abstraction
level of and/or-graphs, regardless of whether such a graph is explicitly con-
structed.

The number of successor states of a given state can be minimized by con-
structing an and/or-graph with weighted vertices and by finding a set of vertices
that satisfies a certain constraint such that no set of vertices satisfying the con-
straint has a smaller sum of weights. Without weights, the and /or-graph can be
constructed in low-degree polynomial time w.r.t. the “length of the input of the
problem”. However, since actions can be nondeterministic and transitions can
share target states, it is not known whether the weights are generally computable
in polynomial time. Consequently, it is an open problem whether minimizing the
number of successor states is as “easy” as minimizing the number of successor
transitions.

The rest of the paper has been structured as follows. Section 2 presents
results concerning and/or-graphs and makes remarks on two tools that have
been used for solving some and/or-graph problems that are of interest in this
paper. Some basic LTS theory, including CFFD- and CSP-equivalence and one
form of a parallel composition, is presented in Section 3. Section 4 defines CSP-
and CFFD-oriented versions of stubbornness and then proceeds to the main
topic of the paper.

We shall use N to denote the set of non-negative integer numbers, 2% to
denote the set of subsets of the set X, X* (respectively, X*) to denote the set
of finite (respectively, infinite) words over the alphabet X, and & to denote the



empty word. For any word o, o(i) denotes the element in the (i + 1)th position
of o. For any sets A and B, for any R C A x B and for any =z € A, R(z) is the
set {y € B|(z,y) € R}. Foranya € N, Ne, ={i € N |i < a}.

2 And/or-graphs

Definition 2.1. An and/or-graph is a quadruple (V, Vg, K, F') such that Vi
is the set of and-vertices, Vg is the set of or-vertices, Vo NVg =0, Vg U Vg is
finite, k € Vg U Vg, F C (Vg U Vg) x (Vg U V) is the set of edges, and
VyeVg: F(y) #0. A set L C Vg UVg is legal iff

(ke L)NAVzeVgNL: Flx) CL)ANNyeVgnNL: F(ly)nL#0).

For any H C Vg U Vg, a set P C Vg U Vg is H-solid iff there exists a legal set
L C Vg UVg such that P = HN L. |

Let SOLIDOPTW be the following optimization problem: “Given an and/or-
graph, a subset H of its vertices and a function w from H to N, find an H-
solid set A such that for each H-solid set P, > . 4 w(a) < 3, cpw(p).” Every
instance of SOLIDOPTW has a solution. In the worst case, H itself is a solution.
Note also that in our considerations concerning optimization problems, there is
no need to know whether an obtained solution is unique.

Lemma 2.1. Let (Vig, Vg, &, F') be an and/or-graph and H C Vg U Vg,

Let ¥ = [log,(|Vg| + [V | + 1)]. Within O(|Vg| + |Ve| + |F|9) elementary time
units, it is possible to check whether a given subset P of vertices is H-solid. Any
instance of SOLIDOPTW concerning this and/or-graph and this H can be solved
within O((|V| + |V |)x + |F|9)2'21) elementary time units where

x = [logy(1 + X pe w(h)].

Proof. The first claim is just a combination of the results of Lemmas 2.1 and 2.2
of [15]. The claim concerning SOLIDOPTW follows from the observation that
any instance of SOLIDOPTW concerning this and/or-graph and this H can be
solved by going through the subsets of H in such a way that for each subset P
of I, if P is H-solid, a so-far-minimum variable is compared to } . p w(p) and
updated if needed. m|

IMA, i.e. the so called incomplete minimization algorithm, solves some in-
stances of SOLIDOPTW whereas for any of the other instances, IMA computes
an H-solid set that has the least ), .5 w(h) among the H-solid sets recognized
when trying to find a solution to the instance. IMA uses the brute force idea
expressed in the proof of Lemma 2.1, but instead of doing an H-solidity check
for a candidate P, IMA computes an H-solid set “inspired by P” by using a
variant of the so called deletion algorithm [10]. For any candidate P, IMA com-
putes such a set within O(((|Ve| + |Va|)x + |F|9)|H|) elementary time units.
The implementation of IMA for the needs of the stubborn set method of the
high-level Petri net reachability analysis tool PROD [16], concerning the case
Vhe H: wh)=1,is described in [14]. In that implementation, the candidates



P C H are processed in the order of increasing cardinality, and a solution to
the instance of SOLIDOPTW in question is guaranteed whenever a solution
of cardinality <1 exists or |H| < 5. The experiments reported in [14] and the
experience obtained so far indicate the following.

— In some reachability analysis tasks, using IMA for the tasks reduces the total
analysis times significantly when compared to any of the tried alternatives
that are available in PROD for the same tasks.

— Though IMA has been used for several industry project reachability analysis
tasks, in such tasks IMA has never significantly slowed down the analysis
when compared to the alternative where each needed H-solid set is computed
by running the deletion algorithm only once. The same holds for all those
“examples from the literature” that have been fed into PROD.

For complete minimization, PROD has an option which makes PROD call
the logic program analysis tool Smodels [9,17] whenever an H-solid set is to
be computed. The translation presented in [15] from and/or-graphs to logic
programs is as such applicable for expressing any instance of SOLIDOPTW in
such a way that Smodels is able to compute a solution. The experience obtained
so far indicates the following.

— The most typical instances of SOLIDOPTW arising in the context of PROD
are so easy that PROD’s own heuristics find solutions to them, much quicker
than Smodels.

— Smodels tends to process the candidates P C H in the order of decreas-

ing cardinality and therefore sometimes “gets stuck” in the middle of the

cardinalities even if a solution of cardinality < 1 exists.

There is no fundamental reason why Smodels could not be made to process

the candidates in the order of increasing cardinality.

Smodels has algorithms for goals less demanding than minimization, and it

is apparently recommendable to try to reach some of such goals before trying

minimization.

Let SOLIDCARD be the following decision problem: “Given an and/or-
graph, a subset H of its vertices and a number n € N, is there an H-solid set
P such that |P| < n?” Respectively, let SOLIDWEIGHT be the following deci-
sion problem: “Given n € N, an and/or-graph, a subset H of its vertices and a
function w from H to N, is there an H-solid set P such that 3° pw(p) < n?”

Clearly, any instance of SOLIDCARD can be solved by solving an instance
of SOLIDWEIGHT, whereas any instance of SOLIDWEIGHT can be solved
by solving an instance of SOLIDOPTW. On the other hand, any instance of
SOLIDOPTW can be solved by solving at most [log,(1+ >,z w(h))] in-
stances of SOLIDWEIGHT, by carrying out a binary search where n varies
between 0 and ), . w(h).

Theorem 2.1. SOLIDCARD and SOLIDWEIGHT are NP-complete.



Proof. NP-completeness of SOLIDCARD is the precise result of Theorem 5.2 in
[15]. Lemma 2.1 essentially implies that SOLIDWEIGHT is in NP. NP-hardness
of SOLIDWEIGHT is a direct consequence of the NP-hardness of SOLIDCARD.
O

3 LTSs, CFFD-equivalence, CSP-equivalence, and the
parallel composition

Definition 3.1. A labelled transition system (an LTS) is a quintuple

L =(S,U,S, A,) such that S is the set of states, U is the set of visible actions, S
is the set of invisible actions, UNI=0=5SN({UUSF),ACSx(UBUSI) xSis
the set of transitions. and ¢ € S is the initial state. For each transition (z,a,y), a
is the label of the transition and y is the target state of the transition. A transition
{z,a,y) is a successor transition of a state z' iff z' = x. A state y is a successor
state of a state x iff there is some action a such that (z,a,y) is a transition. L
is a finite LTS iff SU U U S is finite. An action a is enabled at a state x iff there
is a state y such that (z,a,y) € A. The set of actions enabled at a state x is
denoted by n(z). A state x is terminal iff n(z) = 0. An action a is deterministic
iffVveeS: VyeS: VzeS: (((z,a,y) € A)A({z,a,2) € A)) =y = 2.

L is a deterministic LTS iff all actions are deterministic. O

Definition 3.2. Let L = (5,0, S, A, 1) be an LTS. For any p € (SUUTUS)*, p
is a finite path-like sequence of L iff |p| is an odd number, for each even number
i € N¢jp|, p(i) € S, and for each odd number i € N.|,|, p(i) € UUS. Respec-
tively, for any p € (S U U U Q)¥, pis an infinite path-like sequence of L iff for each
even number i € N, p(i) € S, and for each odd number i € N, p(i) e GUS. A
finite path-like sequence p is a finite path of L iff for each odd number i € N,
(p(i — 1), p(i), p(i + 1)) € A. (The definition of finite path-like sequences guaran-
tees that i + 1 < |p|.) Respectively, an infinite path-like sequence p is an infinite
path of L iff for each odd number i € N, {p(i — 1), p(¢), p(i + 1)) € A. A state
y is reachable from a state z iff L has a finite path p such that p(0) = z and
p(lp| = 1) = y. For any finite path-like sequence p, the label of p is the word

€ (DU Q)* such that 2|o| 4+ 1 = |p| and for each i € N¢|,|, o(i) = p(2i + 1).
Respectively, for any infinite path-like sequence p, the label of p is the word

€ (U U)¥ such that for each i € N, g(i) = p(2i + 1). For any finite or infi-
nite path-like sequence p, ((p) denotes the label of p. O

Definition 3.3. Let L = (S,0,S, A,:) be an LTS. For L, the function v, also
called the wisible projection, from (U U )* U (O U )% to U* UUY is defined as
follows.

— v(e) = €, whereas for any a € U, v(a) = a, and for any b € S, v(b) = e.

— For any a € UU S and for any o € (U U S)*, v(ao) = v(a)v(o).

— For any o € (D US)¥, v(o) = v(o(0))v(o(1))v(c(2)).... (From this it fol-
lows that v(o) is not necessanly in U¥.) O



Definition 3.4. Let L = (5,0U,S, A,.) be an LTS. A state z is a stable state
iff no invisible action is enabled at z. L is a stable LTS iff the initial state is
stable. The stability indicator of L is an integer number such that the indicator
is 1 if L is stable and 0 if L is not stable. A finite word o of visible actions is
a finite trace of L iff L has a finite path p such that p(0) = ¢ and v({(p)) = 0.
Respectively, an infinite word o of visible actions is an infinite trace of L iff L
has an infinite path p such that p(0) = and v({(p)) = . A finite word o of
visible actions is a divergence trace of L iff L has an infinite path p such that
p(0) = ¢ and v({(p)) = 0. A finite word o of visible actions is a CSP-divergence
trace of L iff some divergence trace of L is a (proper or improper) prefix of . For
any o € U* and for any A C U, the pair (o, A) is a stable failure of L iff L has a
finite path p such that p(0) = ¢, v({(p)) = o, and n(p(|p| — 1)) C U\ A. For any
o € U* and for any A C U, the pair (o, A) is a CSP-failure of L iff (5, A) is a
stable failure of L or o is a CSP-divergence trace of L. (In order to be explicit, we
also require that all finite traces, divergence traces and CSP-divergence traces
are finite words of visible actions, all infinite traces are infinite words of visible
actions, and all stable failures and CSP-failures are members of U* x 28.) Two
LTSs are chaos-free failures divergences equivalent (CFFD-equivalent) iff they
have the same visible actions, the same value of the stability indicator, the same
infinite traces, the same divergence traces and the same stable failures. Two
LTSs are CSP-equivalent iff they have the same visible actions, the same CSP-
divergence traces and the same CSP-failures. O

Definition 3.5. Let n € N\ {0,1}. Let £ = {Lo,...,L,—1} be such that for
each ¢ € Nep,, L; = (S;, 04,4, Asy i) is an LTS. L is action-consistent iff for
all different ¢ and k in N, U; NS =0 and (So X ... X Sp—1) N (G US;) = 0.
L is strictly action-consistent iff £ is action-consistent and for all different 4
and k in Nc,, S NSy = 0. If £ is action-consistent, the parallel composition
of Lo, ..., Lp—1 is the LTS L = (S,0,S, A, ) such that S =Sp x ... x S,_1,
U=0pU...UU,-1,=S0U...USp-1,t = (to,---,tn-1),foranya € DU,
for any x = {(xq,...,2Zn—1) € S and for any y = (yo,-.-,Yn—1) € S, (z,a,y) € A
iffVie Nep: ((a €0 USi) A ((m45,0,y:) € 4:)) V(@€ B USy) Ay = ;). O

Definition 3.5 conforms to [12]. The parallel composition operation can be
thought to carry out hiding after fine-grained alphabet-based synchronization.
The synchronized invisible actions are the “hidden” actions. There is no need for
renaming because several invisible actions are allowed. Proposition 3.1 is based
on the considerations in [13].

Proposition 3.1. Let n € N\ {0,1}, and let {Ko,...,Kn_1} and
{Lo,...,Ln_1} be strictly action-consistent sets of LTSs. If for each i € N<,,
K; is CFFD-equivalent to L;. then the parallel composition of Kq, ..., K, 1 is
CFFD-equivalent to the parallel composition of Ly, ..., L, 1. Respectively, if
for each i € N, K; is CSP-equivalent to L;, then the parallel composition of
Ky, ..., K,_1 is CSP-equivalent to the parallel composition of Lo, ..., Ly 1.
O



Since Definition 3.5 allows synchronization of invisible actions, the claim
obtained from Proposition 3.1 by omitting the word “strictly” is not valid.
However, there is a good reason to allow synchronization of invisible actions.
Namely, the connection, mentioned in the beginning of Introduction, between
CFFD-equivalence and preservation of linear time temporal properties does not
require CFFD-equivalence to be any kind of a congruence. The less we have
visible actions, the better are the chances to get significant reduction by using
the stubborn set method, On the other hand, it is up to the user of the method
to decide which actions in a component LTS are visible.

4 Stubborn sets

Throughout this section, we assume the following.

— n € N\ {0,1}, and for each i € Nop, L; = (S;,U;, 3, A4, ;) is an LTS, and
n; is the “n of L;” w.r.t. Definition 3.1.

— {Lg,...,Lp_1} is action-consistent, L = (S, U, , A, ) is the parallel com-
position of Lg, ..., L,_1, and ng is the “n of L” w.r.t. Definition 3.1.

— 8= (80,...,8n_1) € S is an unstable state, and (U U ) N2~ = .

Let us recall from Definition 3.4 that a state x is stable iff no invisible action is
enabled at z. Definition 4.1 is restricted to unstable states because the underlying
theory [11,12] suggests that for any stable state z, any potential CSP-stubborn
set at = would have to contain all the actions that are enabled at x.

Definition 4.1. Let A CUUS. A is CSP-stubborn at s iff the following four
conditions hold.

— SNnr(s) N A # 0. In other words, A contains at least one invisible action
that is enabled at s.

UNnp(s)NA=0orU C A.In other words, if A contains some visible action
that is enabled at s, then A contains all visible actions.

For each a € ANn(s) and for each i € N, (a & U; US;) V (n:(s;) C A).

For each a € A\ 11 (s), there is some i € N, such that a € (U; US;) \ 7:(ss)
and n;(s;) C A.

A is CSP-eligible at s iff there is some @@ C U U & such that @ is CSP-stubborn
at sand A =QNnr(s). Let X C S. A is CFFD-stubborn at (s, X) iff A is CSP-
stubborn at s and the following condition holds.

- {8} x(NA) x (XU{s}))NA=0orU C A. In other words, if some suc-
cessor transition of s leads to some state of X U {s} and the label of the
transition is an invisible action of A, then A contains all visible actions.

A is CFFD-eligible at (s, X) iff there is some  C U U S such that @ is CFFD-
stubborn at (s, X) and A = Q Nnr(s). O



Lemma 4.1. U U S is CSP-stubborn at s and CFFD-stubborn at (s, X) for any
X C S. If s is not a successor state of itself, then the set of CSP-stubborn sets at
s is the same as the set of CEFD-stubborn sets at (s,0). Leti € N¢,, and X C S.
If {Lo,...,L,_1} is strictly action-consistent, U =0 and n;(s;) # 0, then S; is
CSP-stubborn at s and CFFD-stubborn at (s, X).

Proof. The claims are direct consequences of Definition 4.1. O

The optimization considerations in the sequel consider Definition 4.1 simply
as a “given hopefully useful definition of constrained stubbornness”, without
worrying about the reasons for the definition. Proposition 4.1 is due to [12].

Proposition 4.1. Let f be a function from S to 2°YS such that for each state
z reachable from 1, either x is stable and f(x) =nr(x) or z is unstable and
f(x) is CSP-eligible at L. Let L' be the LTS which has the set of transitions
{{z,a,y) € Ala€ f(x)} and is otherwise the same as L. Then L' is CSP-
equivalent to L. |

There is also a connection between CFFD-eligibility and CFFD-equivalence,
but it is difficult to express the connection without presenting an algorithm that
in the case of a finite L, constructs an LTS that is CFFD-equivalent to L. The
set X of Definition 4.1 represents the “current” contents of a certain depth-first
search stack. We omit the details.

From now on, we assume that L is finite. We define the decision prob-
lems CSPELIGTR, CFFDELIGTR, CSPELIGST and CFFDELIGST, and the
corresponding optimization problems CSPELIGTROPT, CFFDELIGTROPT,
CSPELIGSTOPT and CFFDELIGSTOPT as follows.

CSPELIGTR: “Given m € N, does s have a CSP-eligible set A such that the
number of successor transitions of s labelled by actions of A is less than or equal
to m?” CSPELIGTROPT: “Find a CSP-eligible set A at s such that the number
of successor transitions of s labelled by actions of A is the least possible.”

CFFDELIGTR: “Given X C S and m € N, does (s, X) have a CFFD-eligible
set A such that the number of successor transitions of s labelled by actions of A
is less than or equal to m?” CFFDELIGTROPT: “Given X C S, find a CFFD-
eligible set A at (s, X') such that the number of successor transitions of s labelled
by actions of A is the least possible.”

CSPELIGST: “Given m € N, does s have a CSP-eligible set A such that the
number of successor states of s via transitions labelled by actions of A is less
than or equal to m?”. CSPELIGSTOPT: “Find a CSP-eligible set A at s such
that the number of successor states of s via transitions labelled by actions of A
is the least possible.”

CFFDELIGST: “Given X C S and m € N, does (s, X) have a CFFD-eligible
set A such that the number of successor transitions of s via transitions labelled
by actions of A is less than or equal to m?” CFFDELIGSTOPT: “Given X C S,
find a CFFD-eligible set A at (s, X) such that the number of successor states of
s via transitions labelled by actions of A is the least possible.”



Theorem 4.1 is a “moral corollary” of Theorem 5.1 of [15]. At this point, the
distinction between NP-hardness and NP-completeness is important. We shall
return to the question of NP-completeness later in this section.

Theorem 4.1. The problems CSPELIGTR, CFFDELIGTR, CSPELIGST and
CFFDELIGST are NP-hard.

Proof. The famous NP-complete problem SAT can be reduced simultaneously
to all of the four problems, much in the same way as SAT is reduced to the prob-
lem ELIGCARD in [15]. The key to success in [15] is the construction of the so
called characteristic net. It is possible to construct a strictly action-consistent
set of small deterministic LTSs such that their parallel composition is isomor-
phic to the reachability graph of the characteristic net, the initial state is the
reference state and not a successor of itself, all enabled actions are invisible, the
successor transitions of the initial state do not share any target state, and there
is a bijective cardinality-preserving mapping from the eligible sets of the charac-
teristic net to the CSP-eligible sets of the parallel composition. By Lemma 4.1
we then know that the CSP-eligible sets at the initial state are the same as the
CFFD-eligible sets at the pair of the initial state and the empty set. O

In order to organize the transformation of the above mentioned decision
and optimization problems into and/or-graph problems, we extend the concept
of stubbornness by utilizing the fact that in a sense, Definition 4.1 treats the
component LTSs as indivisible units. As can be seen e.g. from Algorithm 2 in
Chapter 4 of [1], it is mostly a matter of taste how the domain of elements
in stubborn sets is chosen. In our extension, the elements are blocks as defined
below.

Definition 4.2. The dependency graph at s is the undirected graph where the
set of vertices is N., and there is an edge between i and k iff i #k and
(SinSrNnL(s) #0) Vv (B; Nnp(s) #0) A (O Nnp(s) #0)). @ is the function
from N, to 2V<» such that for each i € N.,,. &(i) is the set of vertices of the
maximal connected subgraph of the dependency graph at s such that i € &(4).
The set of blocks at s is B = {®(i) | i € N, }. (Consequently, blocks are pair-
wise disjoint and form a partition of N,,.) I' is the function from U U & to 2V<»
such that for each a € UUS, I'(a) = {i € Nep | a € U; U S} £ is the function
from 2V<» to U U S such that for each Y C Ny, 4Y) = Uiey (U; US;). A set
Y C N, contributes to a transition {x,a,y) € Aiff t =sand Y NI(a) #0. A
set Y C N, contributes to a state y € S iff there is some a € U U & such that
(s,a,y) € A and Y contributes to (s,a,y). 0 is the function from 2%¥<» to N
such that for each Y C N, O(Y) is the number of those transitions in A to
which Y contributes. f is the function from (2%) x (2¥<») to N such that for
each U C S and for each Y C Ny, #(U,Y) is the number of those states in U
to which Y contributes. m|

Lemma 4.2. (i) Let B € B and a € £{(B) NnL(s). Then I'(a) C B. (i) With the
same B and a, let C € B\ {B}, ¢ € ¢(C),y € S, (s,a,y) € A and (s,q,y) € A.
Then y = s.



Proof. The first claim is an obvious consequence of Definition 4.2. So, since B
and C are disjoint, it must be the case that I'(a) and I'(q) are disjoint and for
each i € I'(a) UTI'(q), y; = s; where y = (Yo, .-, Yn—1)- O

Proposition 4.2. For any Y C B, §(S\ {s},UveyY) = >y #(S\ {s},Y)
and O(UyeyY) = Yy ¢y 0(Y). For any B € B,
§(5,B) <9(B) = Eaee(B)nnL(s) Hief(a) |({si} x {a} x Si) N Ail.

Proof. The claims are obvious consequences of Definition 4.2 and Lemma 4.2. O

Definition 4.3. The set of visible blocks at s is 2 = {B € B | {(B)NU # 0}.
The set of enabled blocks at s is H = {B € B | {(B)Nnr(s) # 0}. The set of
visibly enabled blocks at s is He = {B € B | £(B)NUNnL(s) # 0}. (Though
His € 2NH, (2NH)\ He can be nonempty.) The set of invisibly enabled blocks
at sis He ={B € B[ £(B)NSNnL(s) # 0}. (Hs # @ because throughout this
section, we assume s to be unstable.) @ is the function from U U S to 25 such that
VaeUUS: Oa) ={®() | (i € I'(a)) A (a & ni(s;))}- / is the function from
28 t0 2993 such that VY C B: /() = nr.(s) N (Uyeyl(Y)). § is the function
from 2% to 28 such that VACUUS: (4) ={B e B|{(B)NA#0}. Let
Y C B. Y is block-CSP-stubborn at s iff the following three conditions hold.

- YNHg #0.
—IfYNHs#0,then 2 C Y.
— For each a € Uyey Uiey (mi(si) \ n(8)), Y N O(a) # O.

YV is block-CSP-eligible at s iff there is some Z C B such that Z is block-CSP-
stubborn at s and Y = ZNH. ¥ is the function from 25 to 28 such that
VX C S W(X) = {0() | (i € New) A ({5} x S x (XU {s})) N A £ )},
(Consequently, ¥(X) C Hg.) Let X C S. Y is block-CFFD-stubborn at (s, X) iff
Y is block-CSP-stubborn at s and the following condition holds.

- IfYN¥(X)#0, then 2 C Y.

Y is block-CFFD-eligible at (s, X) iff there is some Z C B such that Z is block-
CFFD-stubborn at (s, X) and Y = ZNH. O

Proposition 4.3. The following hold for each Y C B, for each AC U US and
for each X C S.

— If Y is block-CSP-eligible at s, then §(+/()) =Y and /(Y) is CSP-eligible
at s.

— If Y is block-CFFD-eligible at (s, X ), then §(+/(¥)) = Y and \/(Y) is CFFD-
eligible at (s, X).

— If A is CSP-eligible at s, then \/(§(A4)) = A and §(A) is block-CSP-eligible
at s.

— If A is CFFD-eligible at (s, X), then +/(§(A)) = A and J(A) is block-CFFD-
eligible at (s, X).

Proof. A brute force comparison between Definitions 4.1 and 4.3 suffices. a



Definition 4.4. For any and/or-graph G = (Vg, Vg, k, F) and for any Z C B,
G reflects (s, Z) iff there is u € Vi \ ({s} U B) such that the following hold.

- Vo ={p,stUBand Vg = {k}UDBUS) \ nr(s).

— F(k) = Mg, F(p) = £2, and F(s) = 0.

— For any a € (BUS) \ nw(s), F(a) = O(a).

— For any B € B, F(B) C {u,s}UUUS.

— For any B € B, F(B)N (BUS) = Uier(n:i(si) \ n(s)).

— Forany Be B, p € F(B) iff Be Hip U Z.

— For any B € B, s € F(B) iff B contributes to s. m|

Proposition 4.4. Let X C S and Y C B. Let Gy be any and/or-graph that re-
flects (s,0), and let G be any and/or-graph that reflects (s,¥(X)). Then the
following hold.

— Y is block-CSP-eligible at s iff Y U {s} is (H U {s})-solid w.r.t. G;.

— Y is block-CFFD-eligible at (s, X) iff Y U{s} is (H U {s})-solid w.r.t. G>.
— If Y is (HU {s})-solid w.r.t. Gy, then Y U {s} is (H U {s})-solid w.r.t. G;.
— If Y is (HU {s})-solid w.r.t. Ga, then Y U {s} is (H U {s})-solid w.r.t. Gs.

Proof. A brute force comparison of Definitions 2.1 and 4.3 suffices. O

Propositions 4.2, 4.3 and 4.4 give us a way to reduce each of CSPELIGTR,
CFFDELIGTR CSPELIGST and CFFDELIGST to SOLIDWEIGHT and to
reduce each of the corresponding optimization problems to SOLIDOPTW. It is
obvious that G of the above kind can be constructed in low-degree polynomial
time w.r.t. to the length of the input of any of the problems CSPELIGTR,
CSPELIGTROPT, CSPELIGST and CSPELIGSTOPT, independently of the
way in which the input is encoded.

Respectively, G5 of the above kind can be constructed in low-degree polyno-
mial time w.r.t. to the length of the input of any of the problems CFFDELIGTR,
CFFDELIGTROPT, CFFDELIGST and CFFDELIGSTOPT. However, since X
is a part of the input while the number of successor states of s can be exponen-
tial w.r.t. the length of the input, the polynomial time requirement necessitates
enumeration of X instead of enumerating the successor states of s. (In the case
of deterministic LTSs, it is possible to construct in low-degree polynomial time
an alternative and/or-graph that expresses Definition 4.1 directly and has all
successor states of s as vertices analogous to the above vertex s.)

The reduction of the problems needs appropriate weights for the “refer-
ence vertices of solidity” but does not add any constraint to SOLIDWEIGHT
or SOLIDOPTW. For CSPELIGTR, CFFDELIGTR, CSPELIGTROPT and
CFFDELIGTROPT, the weight of an enabled block B is 9(B), and the weight of
s is 0. An array representing the weight function can be computed in low-degree
polynomial time. Due to Lemma 2.1 and Theorem 4.1, we thus get Theorem 4.2.

Theorem 4.2. CSPELIGTR and CFFDELIGTR are NP-complete. O

In the case of the problems CSPELIGST, CFFDELIGST, CSPELIGSTOPT
and CFFDELIGSTOPT, the weight of an enabled block B is #(S \ {s}, B), the
weight of s is 1. Unfortunately, here we do not have any general polynomial time
claim and thus do not know any analogy to Theorem 4.2 either.



5

Conclusions

The contributions of this paper to the stubborn set method are the following.
(i) The problem of minimizing the number of successor states was transformed
into an and/or-graph problem. By using the translation presented in [15], the
and/or-graph problem in question can be transformed into a logic program prob-
lem that e.g. Smodels [9, 17] is ready to solve. (ii) The potential difference in com-
plexity between the problem of minimizing the number of successor states and
the problem of minimizing the number of successor transitions was taken into dis-
cussion. (iii) By means of the difference between CSP- and CFFD-stubbornness,
the role of constraints in the and/or-graph construction was concretized.
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