Modelling of a PLC-Based
Railway Traflic Control System

Kimmo Varpaaniemi

Abstract

This paper describes the modelling of a distributed PLC system that was
developed by Mipro Oy and controls the traffic in the railway section between
Haapamaki and Seingjoki. The PROD tool of HUT-TCS is used for analysing
the model.

1 Introduction

Programmable logic controllers (PLCs) are widely used throughout the world, ap-
plications covering almost all areas of life. PLCs typically control things that tra-
ditionally have been controlled by switching circuits such as relay networks and
gate-logic networks. Unlike traditional switching circuits, PLCs are configurable,
and this configurability at least partially explains the success of PLCs.

Many PLC systems are distributed, consisting of PLC programs that communicate
by sending messages. Since the use of distributed PLC systems in safety-critical
tasks keeps increasing, there is an unquestionable need for werification techniques
and tools. By verification we mean ensuring correctness on one hand and detection
of errors on the other hand. A typical approach to verification is testing. However,
many distributed PLC systems are so complex that even coarse errors may remain
undetected, no matter how much effort is put into the design of the tests. In or-
der to extend the coverability of analysis, formal verification is needed. In formal
verification, a mathematical model of a system is constructed, and mathematically
formulated properties are shown to hold or not to hold in the model.

Reachability analysis is one of the basic techniques used in formal verification. In
reachability analysis, a given model of a system is expanded into a state space, the
reachability graph of the model. Model checking is a refined form of reachability
analysis. In model checking, the property of interest is typically formulated as a
temporal logic formula, and the goal is then to check whether the formula holds.

The major problem in reachability analysis, widely known as the state space explo-
ston problem, is that the reachability graph can be far too large to be fully and con-
cretely constructed. Fortunately, many verification tasks can be reliably carried out
without the full concrete construction of the reachability graph. Several approaches

have been developed for this purpose, e.g. symbolic model checking, compositional
methods, partial order methods, and the use of symmetries.

HUT-TCS (Helsinki University of Technology, Laboratory for Theoretical Computer
Science, former Digital Systems Laboratory) has a long experience in formal verifi-
cation, especially in reachability analysis. The development of reachability analysis
software has been particularly active. The PRENA tool was developed in the 80’s
and was successfully used e.g. for analysing a railway PLC system [8]. The PROD
tool [12], a successor of PRENA, was created in the beginning of the 90’s and has
been developed further since then. For PRENA and PROD, the model is given as a
high-level Petri net. Some methods for relieving the state space explosion problem
have been implemented in PROD. Particular effort has been put into the imple-
mentation of the stubborn set method [10, 11]. The stubborn set method belongs to
the class of partial order methods and is based on the idea that one interleaving of
actions is often sufficient for representing several interleavings.

At the end of the 90’s, the laboratory started to develop a new high-level Petri net
reachability analysis tool, called MARIA. The development is a part in a project
which has the name MARIA too. The MARIA project has a few subprojects where
case studies have been or are being carried out. One of these subprojects is concen-
trated on modelling and analysis of a PLC-based railway traffic control system. This
distributed PLC system was developed by Mipro Oy, and it controls the traffic in the
railway section between Haapamaéki and Seinijoki. PROD is the primary tool used
in the analysis. This paper describes the modelling of the system. The described
work started in March 2000, and the model was ready for analysis in August 2000.

2 The system which was modelled

The modelled system was developed by using the ELOP I package of HIMA [6].
HIMA also has the ELOP II package which is somewhat more compatible with
the IEC standard [7] than ELOP I. However, ELOP I itself is quite close to the
IEC standard as can be concluded e.g. by comparing the description in [5] to the
corresponding description in [7]. In discussions with Mipro Oy, it has also turned
out that the concept of a function block in ELOP T is essentially the same as in the
IEC standard. On page 61 of [7], function blocks are described as follows.

“For the purposes of programmable controller programming languages, a function
block is a program organization unit which, when executed, yields one or more
values. Multiple, named instances (copies) of a function block can be created. Each
instance shall have an associated identifier (the instance name), and a data structure
containing its output and internal variables, and, depending on the implementation,
values of or references to its input parameters. All the values of the output variables
and the necessary internal variables of this data structure shall persist from one
execution of the function block to the next; therefore, invocation of the same function
block with the same arguments (input parameters) need not always yield the same
output values.

Only the input and output parameters shall be accessible outside of an instance of
a function block, i.e. the function block’s internal variables shall be hidden from the
user of the function block. [[Quotation ends. |]”

Figure 1 shows an essential copy of an actual page in a program listing of one of
the PLC programs of the Haapamaiki — Seinéjoki system. The figure contains two
instances of the function block which we call TR_YPKO01. (To be precise, the real
name of the block is TR-YPKO1. For the sake of simplicity, some other transliter-
ations of non-alphanumeric substrings have been made, too. Moreover, the original
page uses distinct long names for the formal parameters of the block, whereas we
just use the short names that appear in the description of the block itself.)

In the middle of the figure, there are two and-gates, one delay-on-timer (the delay
being 30 seconds as expressed), one or-gate, one monoflop (which generates an im-
pulse with a pulse length of one cycle of the PLC when its input changes from 0
to 1) and one SR-flip-flop (such that RESET, i.e. the lower input line, is dominant
against SET). A PLC program is executed “statement by statement” just like an
ordinary program, the only difference being that a “statement” in a PLC program
typically has a quite visual layout. In the case of Figure 1. the upper instance of
TR_YPKO1 is executed first. (This execution means executing several statements as
we shall soon see.) The first statement after that execution is the evaluation of the
upper and-gate (including the assignment to AS11_14). Then we have a statement
which evaluates the rest of the displayed gates in the same order as they were men-
tioned in the above sentence. (The assignment to ASET1H14 is included in that
statement.) After that, the lower instance of TR_YPKO1 is executed.

When modelling the execution of a statement, we of course have the freedom to
decompose the statement into a sequence of assignments to “imaginary” intermedi-
ate variables. (Such decompositions are useful at least for the stubborn set method
which has obvious problems with “large atomic actions”.)

Let us then look closer at TR_YPKO01 and its instances. Figure 2 shows the de-
scription of the block. Each execution of the block consists of 15 statements since
there are as many statements as there are names on the right-hand side of the fig-
ure. This block is simple in the sense that it has no actual internal variables unless
the necessary memory bits of the monoflops are counted. The instances in Figure
1 have three striking labels: HIGH, /* implicit 0 */ and /* invisible */. HIGH is
a variable which has the value 1 throughout the life of the PLC program. (To be
precise, the variable gets the value 1 in a few microseconds after the booting of the
program.) The comment /* implicit 0 */ does not belong to the original syntax but
refers to the fact that omitting an actual input parameter has the same effect as
having a variable with the value 0 as the parameter. The comment /* invisible */
does not belong to the original syntax either but refers to the fact that (at least for
this block), an omitted actual output parameter has the same effect as having an
internal variable in the place of the corresponding formal parameter. When mod-
elling the execution of the instances of the block, it is clearly justified to abstract
out any statements which have no effect on the history of the “caller”.

We have not yet considered how the PLC programs communicate with each other.
The protocols for the purpose in the Haapamaki — Seinajoki system are MODBUS

TR_YPKO1

ASET1H14 — LKO AS SUM }—— ASRY1 14
ASl 14 — AS1 ASET1 |}—— ASETUS14
Al 14 — Al LK1 —— /* invisible*/
AS1 10 —_— AS2 ASET2 }—— ASETUSIO
Al 10 —_1 A2 LK2 —— ASET1R14
HIGH — AS3 ASET3 |—— /*invisible*/
/* implicit 0*/ ——— A3 LK3 L /* invisible*/
HIGH —_ AA ASET4 |—— /*invisible*/
/* implicit 0%/ —— A4 LK4 — /* invisible*/
HIGH — ASS ASET5 |—— /*invisible*/
/* implicit 0*/ —— A5 LK5 —— /* invisible*/
HIGH — AS6 ASET6 |—— /*invisible*/
/* implicit 0*/ —— A6 LK6 — /* invisible*/
HIGH — AS7 ASET7 }—— /*invisible*/
/* implicit 0*/ ——d A7 LK7 —— /* invisible*/
/* implicit0*/ ——— ESTO
ASRY1 14 — &
DAHT —] AS11 14
ASET1 14 &

t — O 5 | aseTiv14
ASET1H14 —] R

30s | —

2l 4
ASET1R14
TR_YPKO1

ASET2H14 — LKO AS SUM }—— ASRY2 14
ASl 14 — AS1 ASET1 |}—— ASETUS14
Al 14 Al LK1 /* invisible*/
AS1 10 —_1 AS2 ASET2 |}—— ASETUSI10
Al 10 —_ A2 LK2 —— /* invisible */
AS1 06 — AS3 ASET3 }—— ASETUSO6
Al 06 —] A3 LK3 —— /* invisible*/
ASl1 04 —_ AA ASET4 |—— /*invisible*/
Al 04 — A4 LK4 —— /* invisible*/
AS1 02 — ASS ASET5 |—— /*invisible*/
Al 02 — A5 LK5 ——— ASET2R14
HIGH — AS6 ASET6 |—— /*invisible*/
/* implicit0*/ —— A6 LK6 —— /* invisible*/
HIGH — ASY ASET7 |—— /*invisible*/
/*implicit 0%/ —— A7 LK7 — /* invisible*/
/* implicit0*/ ——— ESTO

Figure 1: A sample page in a PLC program listing (essentially a copy of page 16 of
Mipro’s SK2-KL01.98, version E014).

LKO
ASl
ESTO

LKO
Al

AS2
ESTO

LK1
A2

AS3
ESTO

LK2
A3

AHA
ESTO

LK3
A4

AS5
ESTO

LK4
A5

AS6
ESTO

LKS
A6

AS7
ESTO

LK6
A7

ASl
AS2
AS3
AHA
AS5
AS6
AS7

ASET1

LK1

ASET2

LK2

ASET3

LK3

ASET4

LK4

ASET5

LK5

ASET6

LK6

ASET7

LK7

AS_SUM

Figure 2: The logic of the TR_YPKO01 block (essentially a copy of page 2 of Mipro’s

TR-YPKO01.10, version 574E).

[4, 6, 9] and HIBUS [6], the latter being used in connections where high speed is
strongly preferable and the distance is very short.

3 An intermediate modelling language

In order to have a clear connection between the high-level Petri net model and
the original system description, an intermediate modelling language was designed.
The intermediate language is strictly line-oriented. For each type of a gate in the
original description, the intermediate language has a corresponding operator. One
line typically represents the evaluation of a single gate. There are also operators for
presenting the communication between the programs, even though the PL.C program
listings do not include the actual data transfers. (MODBUS and HIBUS take care
of the actual transfers.)

The intermediate language presentation is written into several files in such a way
that one file typically corresponds to either a single page in the original description
or to a part of such a page. The name of the file identifies (at least) the program,
the page and the part of the page. Communication operations are integrated with
the original description either by inserting communication lines in “ordinary” files
or by creating separate files with appropriately chosen page numbers and subscripts.
The names of the files and the order of the lines in the files thus define a flow of
control for each of the programs.

Block instances can be handled separately, but this is not optimal w.r.t. the main-
tenance of the files. Therefore, there is a simple metanotation for describing a block
without fixing the instance. Representations of the instances can then be obtained
by writing simple filters which produce files for the instances. The metalanguage
file for the TR_YPKO1 block looks as follows.

27 <& 1kO* asilx l!estox
asetlx <@ 27

1kix <& 1kO* al*

37 <& 1lki1x* as2* !esto*
aset2* <@ 37

1k2% <& 1k1* a2*

47 <& 1k2* as3* lestox*
aset3* <@ 47

1k3* <& 1k2* a3%

b7 <& 1k3* asdx l!estox
aseté4* <@ 57

1kd* <& 1k3* ad*

67 <& 1k4* asbx l!lestox
asetb* <@ 67

1k5* <& 1k4x* ab*

7?7 <& 1kb% as6* lesto*
aset6* <@ 77

1k6x <& 1k5%* a6*

87 <& 1lk6%* as7* lesto*

aset7* <@ 87

1k7* <& 1k6%* aT7*

as_sum* <& asl* as2* as3* as4* asbx as6x asT7*

The asterisks and the question marks are the only metanotation. The file for the
upper instance of TR_YPKO1 in Figure 1 looks as follows. An appropriate choice
for the name of the file is sk2_k101_98_p16_0.mip. The reduction in the number of
lines is explained by the fact that many of the formal output parameters are simply
redundant w.r.t. this instance.

2 <% asetlhl4 asi_14
asetus14 <@ 2

1k1_1000 <& aset1hl4 al_14
3 <& 1k1_1000 as1_10
asetusl10 <@ 3

asetliri4 <& 1k1_1000 al_10
asryl_14 <& as1_14 as1_10

Respectively, the file for the lower instance of TR_YPKO01 in Figure 1 looks as follows.
An appropriate choice for the name of the file is sk2_k101_98_p16_2.mip.

2 <& aset2hl4 asi1_14
asetus14 <@ 2

1k1_1010 <& aset2h14 al_14
3 <& 1k1_1010 as1_10
asetusl10 <@ 3

1k2_1010 <& 1k1_1010 a1_10
4 <& 1k2_1010 as1_06
asetus06 <@ 4

1k3_1010 <& 1k2_1010 al_06
1k4_1010 <& 1k3_1010 al_04
aset2ri14 <& 1k4_1010 a1_02
asry2_14 <& as1_14 as1_10 as1_06 as1_04 as1_02

The file representing the behaviour in the middle of Figure 1 is written “directly
by hand” and looks as follows. An appropriate choice for the name of the file is
sk2_k101_98_p16_1.mip.

asl1_14 <& asryl_14 d_aht
2 <& asl11_14 asetl_14

3 </ 30s asetlhi4d

4 <| 3 asetiri4d

5 <Q 4

asetlhld <# 2 5

In general, a line of the intermediate language is of the form “variable <operator
operands”. The operands themselves do not include operators, with the exception
that negation is allowed in an operand. The delays of timers are presented by using
the same time unit as in the original description. A variable can have the form of
an integer. In such a case, the variable represents an output of a gate such that the
output has no name in the PLC program listing. (In order to avoid confusion about
the meaning of the integers, neither 0 nor 1 is accepted for presenting a variable.)
The idea is that these numbers are written onto the printed pages of the program
(by using a pencil for the purpose) and then used consistently in the files. Though
ELOP I supports full integer arithmetics, non-binary integer constant input lines
are very rare in the Haapamaki — Seindjoki system, and these rare cases become
nicely handled by using a specific escape notation.

The intermediate language has specific “pseudo-semaphore operators” for modelling
of communication. Depending on the way in which these operators are used, the
communication varies between “minimally asynchronous” (by means of storage vari-
ables which together form a single message in a buffer of capacity 1) and “effectively
synchronous” (due to the fact that programs can be “forced to wait”). This way
of modelling the communication has practically nothing to do with the protocols
MODBUS and HIBUS which in principle should be modelled. However, the state
space explosion problem forces us to make coarse or even virtually absurd compro-
mises in the modelling of communication. Our way of modelling only limits the view
of the observer. In other words, the analysis is concentrated on behaviours where
the PLC programs just happen to proceed in the modelled way.

We have not yet mentioned the worst-of-all source of state space explosion problem
in the Haapamaki — Seinajoki system, namely the so called testable inputs. Testable
inputs are variables which can become changed fully arbitrarily, each time the pro-
gram “measures” them. The intermediate language has an operator for describing
such nondeterminism. Though many of the testable inputs defined in the programs
can be and actually have been abstracted away, there are still sufficiently many
of them to keep the number of states astronomical. The unfortunate thing w.r.t.
PROD is that the stubborn set method alone is strictly insufficient against this kind
of nondeterminism. (This follows from the fact that the nondeterminism remains
even if the system is artificially sequentialised by means of static priorities.)

4 On the high-level Petri net model

There is a filter which produces a high-level Petri net description for PROD from the
files written in the intermediate language. The translation is mostly not of general
interest. The problem of how the semantics of the gates should be translated can
be reduced to a problem of how a few macros should be defined. Due to the state
space explosion problem and the lack of a time concept in PROD, some compromises
w.r.t. the timers are necessary. An apparently good approximation is to assume that
every delay is a constant multiple of a PLC cycle. This is what has been done in [3].
Having that approximation and using [5, 7], it was actually very easy to define the

needed macros. If it later turns out that some of the macros has an inappropriate
definition, it is easy to simply change the definition.

From the programmer’s point of view, the translation had several more or less in-
teresting problems. One of the problems was how to keep the number of high-level
transitions small. Namely, PROD itself uses a compilation approach where the
amount of produced code is proportional to the number of high-level transitions.
The solution was to define distinct high-level transitions for only those operations
which really seemed to need distinct high-level transitions. Since PROD’s net in-
put language has always had the C language on the bottom, it was natural to use
constant C arrays in the concrete transition descriptions.

From the analysis point of view, the model is challenging. It has already inspired
one methodological “dirty trick”: non-branching points in a reachability graph can
be eliminated without even temporary book-keeping when the graph is known to
have sufficiently many branching points which exclude the possibility of getting into
an infinite loop in the elimination.

5 Conclusions and acknowledgements

This work has been funded by The National Technology Agency of Finland, Finnish
Rail Administration, Elisa Communications, Nokia Networks, and Nokia Research
Center. The research tasks in the railway subproject of MARIA have been defined
in co-operation by HUT-TCS, Finnish Rail Administration and Mipro Oy. Jarmo
Tuomi has been the main contact person at Finnish Rail Administration. Sari Becker
and Matti Katajala, the main contact persons at Mipro Oy, have provided all the
program listings and explained the semantics of the system. HIMA documents have
been provided by Mipro Oy and by Hans-Leo Ross from HIMA.

Jan Elfstrém wrote specifications [1] on the basis of the safety documents of Finnish
Rail Administration (e.g. [2]). These specifications were ready for analysis in Septem-
ber 2000. The analysis itself should produce results by the end of the year 2000.
Due to the state space explosion problem, the amount and impressiveness of the
results depend mostly on luck.

Also the earlier years in the subproject included interesting modelling and analysis
problems. Lauri Tiittula and Ilkka Herttua did some of the work then, but the
author of this paper is responsible for the false alarms that were received by Finnish
Rail Administration in January 2000.

References

[1] Jan Elfstrém, Haapamden ja Seindjoen vdlisen rataosuuden liikenneohjausoh-
jelmiston vaatimusten formalisointi (an internal report of the MARIA project),
Helsinki University of Technology, Laboratory for Theoretical Computer Sci-
ence, Espoo, Finland, October 2000.

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

Finnish Rail Administration (Ratahallintokeskus, RHK), Elektronisen asetin-
laitteen vaatimukset, RHK 1232/732/97, Helsinki, Finland, September 1997.

Monika Heiner and Thomas Menzel, “Time-related Modelling of PLC Systems
with Time-less Petri Nets,” in René Boel and Geert Stremersch (Eds.), Dis-
crete Event Systems: Analysis and Control, (Proceedings of WODES2000, the
5th Workshop on Discrete Event Systems, Ghent, Belgium, August 21-23,
2000), The Kluwer International Series in Engineering and Computer Science,
Vol. 569, Kluwer Academic Publishers, Boston MA, USA, 2000, pp. 275-282.

HIMA (Paul Hildebrandt GmbH + Co KG Industrie-Automatisierung),
Description of the Building Block HK-MMT-1: MODBUS Master with Tele-
phone Modem, Edition 9425, HIMA, Briihl, Germany, 21 p.

HIMA (Paul Hildebrandt GmbH + Co KG Industrie-Automatisierung),
“Features and Extensions of the Logic Symbols,” in Chapter IV in one of
the manuals of HIMA System Software ELOP I, HIMA, Briihl, Germany,
pp- 55-57.

HIMA (Paul Hildebrandt GmbH + Co KG Industrie-Automatisierung),
Safety Manual TI 96.05 (9814), HIMA, Briihl, Germany.

IEC (International Electrotechnical Commission), International Standard IEC
1181-3; Programmable Controllers — Part 8: Programming Languages, First
edition 1993-03 (Reference number IEC 1131-3: 1993(E)), IEC Central Office,
Geneva, Switzerland, 1993, 207 p.

Johan Lilius and Patric Ostergard, “On the Verification of Programmable Logic
Controller Programs,” in Proceedings of the 12th International Conference on
Application and Theory of Petri Nets, Gjern, Denmark, June 2628, 1991,
pp. 310-328.

Modicon, Inc., Industrial Automation Systems, Modicon Modbus Protocol Ref-
erence Guide (PI-MBUS-300), Modicon, Inc., North Andover MA, USA
(http://www.modicon.com/techpubs/toc7.html).

Antti Valmari, State Space Generation: Efficiency and Practicality, Doctoral
thesis, Tampere University of Technology, Publications 55, Tampere, Finland,
December 1988, 170 p.

Kimmo Varpaaniemi, On the Stubborn Set Method in Reduced State Space
Generation, Doctoral thesis, Helsinki University of Technology, Digital Systems
Laboratory Report A 51, Espoo, Finland, May 1998, 105 p.

Worldwide web, page http://www.tcs.hut.fi/Software/prod /index.html.

