
AALTO UNIVERSITY
SCHOOL OF SCIENCE
Department of Information and Computer Science
Degree Programme of Computer Science and Engineering

Jussa Klapuri

Collaborative Filtering Methods on a Very
Sparse Reddit Recommendation Dataset

Master’s thesis

Espoo, 28th January, 2013

Supervisor: Prof. Erkki Oja

Instructor: Ilari Nieminen, M.Sc.(Tech.)

AALTO UNIVERSITY
SCHOOL OF SCIENCE
Department of Information and Computer
Science
Degree Programme of Computer Science and
Engineering

ABSTRACT OF MASTER’S THESIS

Author: Jussa Klapuri

Title: Collaborative Filtering Methods on a Very Sparse Reddit
Recommendation Dataset

Number of pages: vii + 48 Date: 28th January, 2013 Language: English

Professorship: Computational Science Code: T-61

Supervisor: Prof. Erkki Oja

Instructor: Ilari Nieminen, M.Sc.(Tech.)

Abstract:

The research question in this thesis concerns how accurately it is possible to estimate
users’ future votes based on their voting history when votes can only be for or against
(upvotes or downvotes). This estimation is done on a large and very sparse dataset
of over 23 million votes gathered from the website Reddit, which is a very popular
social news and entertainment website where users may vote content up or down. Since
over 84% of all the votes are upvotes, downvote estimation is made even more difficult.
Similar to the Netflix Prize, collaborative filtering (CF) methods can be used to approach
this problem.
The two main approaches in CF are neighborhood models and latent factor models.

Models using both approaches are implemented and tested in this thesis. Neighborhood
approach is implemented by using a k-nearest-neighbor (k-NN) classifier with 3 different
types of feature vectors and latent factor models are represented by the classical Sin-
gular Value Decomposition (SVD) and more advanced Variational Bayesian Principal
Component Analysis (VBPCA). While both SVD and VBPCA are implemented with
regularization, VBPCA also uses Bayesian inference methods by adding the noise term
into the model and introducing prior distributions over the model parameters.
For the experiments, the full Reddit dataset is preprocessed into 3 different sized

datasets (k-cores), where the biggest dataset represents the full dataset after removing
some noise and outliers and the smallest dataset represents the core of the data, i.e.,
the most active users and the most voted links. The middle dataset has some properties
from both the small and the big dataset. All models are tested for each dataset and the
results are measured using different metrics, most notably RMSE. VBPCA and link-
based k-NN model are shown to perform best on all datasets. While VBPCA is better
in terms of downvote estimation for the small and the middle datasets, link-based k-NN
performs best on the big dataset.

Keywords: Recommender Systems, Collaborative Filtering, Sparse Dataset, Singu-
lar Value Decomposition, Variational Bayesian PCA, k-Nearest Neigh-
bors, Stochastic Gradient Descent, Reddit, Netflix

AALTO-YLIOPISTO
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jussa Klapuri

Työn nimi: Yhteistoiminnalliset Suodattamismenetelmät Hyvin Harvalle Reddit-
datalle

Sivumäärä: vii+ 48 Päiväys: 28. tammikuuta, 2013 Kieli: englanti

Professuuri: Laskennallinen Tiede Professuurikoodi: T-61

Työn valvoja: Prof. Erkki Oja

Työn ohjaaja: DI. Ilari Nieminen

Tiivistelmä:

Diplomityön tutkimuskysymys on, kuinka tarkasti on mahdollista estimoida käyttä-
jien tulevaa äänestyskäyttäytymistä heidän äänestyshistoriansa perusteella, kun äänet
ovat joko puolesta tai vastaan. Estimointi suoritetaan laajalle ja hyvin harvalle data-
aineistolle, joka koostuu 23 miljoonasta äänestä Reddit-sivustolta. Koska yli 84% äänis-
tä on puolesta, vastaan olevien äänien estimointi on vielä vaikeampaa. Samaten kuin
Netflix prize -kilpailussa, yhteistoiminnallisia suodattamismenetelmiä (collaborative fil-
tering, CF) voi käyttää tämän ongelman ratkaisuun.
Kaksi päälähestymistapaa CF-menetelmillä ovat naapurusto- ja latenttimuuttujamal-

lit, joista kummastakin toteutetaan ja testataan menetelmiä. Naapurustomenetelmä
toteutetaan k:n lähimmän naapurin (k-NN) menetelmän avulla ja aliavaruusmenetel-
mistä käytetään esimerkkinä pääakselihajotelmaa (SVD) sekä variaatioapproksimoitua
pääkomponenttianalyysia (VBPCA). Vaikka molemmat SVD ja VBPCA on toteutettu
regularisaatiolla, VBPCA käyttää myös bayesiläistä päättelyä lisäämällä kohinatermin
malliin sekä mallintamalla priorijakaumat mallin parametreille.
Kokeita varten koko Reddit-aineisto esikäsitellään kolmeksi erikokoiseksi aineistoksi,

joista isoin vastaa melkein koko Reddit-aineistoa kun datasta on ensin poistettu kohi-
naa ja poikkeavia havaintoja. Pienin aineisto vastaa koko aineiston ydintä, siis kaik-
kein aktiivisimpiä käyttäjiä ja äänestetyimpiä linkkejä. Keskimmäinen aineisto sisältää
ominaisuuksia sekä pienestä että isosta aineistosta. Kaikki menetelmät ajetaan kaikille
aineistoille ja suorituskykyä mitataan eri mittareilla, pääasiassa keskineliövirheen neliö-
juurella (RMSE).
Kokeissa havaitaan, että VBPCA ja linkkipohjainen k-NN osoittautuvat testattavis-

ta menetelmistä parhaiksi kaikille aineistoille. Vaikka VBPCA onkin parempi kahdelle
pienimmälle aineistolle, linkkipohjainen k-NN on parempi suurimmalle aineistolle.

Asiasanat: Suositusjärjestelmät, Yhteistoiminnallinen Suodattaminen, Harva data,
Pääakselihajotelma, Pääkomponenttianalyysi

Preface and Acknowledgements

I wish to thank the Department of Information and Computer Science at Aalto Uni-
versity for hiring me as a summer student twice through my studies and especially the
VirtualCoach research project for funding this thesis. I am particularly grateful to
Krista Lagus and my instructor Ilari Nieminen for getting me involved in this health
and wellbeing related project in the first place and thanks to the whole VirtualCoach
research and partner team, especially to Lassi Haaranen and Antti Heikkilä for de-
creasing my workload considerably to be able to focus on completing this thesis.

Special thanks to Prof. Erkki Oja for supervision and valuable comments and
Tapani Raiko for great ideas and for lending me the Recommender Systems Handbook
that became the integral reference for this thesis.

Thanks to Taneli Riitaoja and Artturi Tilanterä for providing feedback and com-
ments on different parts of the text. Finally, thanks to my family and close ones for
supporting me through this thesis project.

Espoo, 28th January, 2013
Jussa Klapuri

iii

Contents

List of Symbols vi

List of Abbreviations vii

1 Introduction 1
1.1 Problem Setting . 1
1.2 Contribution of the Thesis and Related Work 2
1.3 Structure of the Thesis . 3

2 Recommender Systems 4
2.1 Collaborative Filtering . 5
2.2 Terminology and Notation . 6

3 Methods 8
3.1 Naive Methods and the Baseline Predictor 8
3.2 Neighborhood Based Methods . 9
3.3 Singular Value Decomposition . 11
3.4 Variational Bayesian Principal Component Analysis 12

3.4.1 Principal Component Analysis 12
3.4.2 Probabilistic PCA . 13
3.4.3 Variational Bayesian PCA (VBPCA) 14

3.5 Multiple Linear Regression Model . 15

4 Model Evaluation 17
4.1 Evaluation Metrics . 17
4.2 K-Fold Cross Validation . 19

5 Experiments 20
5.1 Full Reddit Dataset . 20

5.1.1 Preprocessing . 22
5.1.2 Preparing Different Sized Datasets 23

5.2 Stratified 5-fold Cross Validation . 25
5.2.1 Number of Neighbors for k-NN 25
5.2.2 Number of Components for SVD 27

5.3 Results for Small Reddit Dataset . 30
5.4 Results for Middle Reddit Dataset . 32
5.5 Results for Big Reddit Dataset . 34

iv

5.6 Analysis of Results . 37

6 Conclusions 44

Bibliography 46

v

List of Symbols

M A matrix
x A vector
x A scalar
N Number of rows (observations) in a dataset (indexed by i)
M Number of columns (variables) in a dataset (indexed by j)
N (µ, σ2) Gaussian distribution
µ Mean
σ2 Variance
Σ Covariance matrix
Ni(u) Set of closest neighbors of user u having voted link i
U Set of users
R Set of votes
K Number of folds in K-fold cross validation
K Set of known votes
I Set of links
S Set of possible values for votes
u, v Single votes
i, j Single links
d Dimension
k The number of nearest neighbors in k-NN or the number of compo-

nents in SVD
rui Value of vote by user u to item i
r̂ui Predicted value of vote by user u to link i
r̄u Average rating of user u
r̄i Average rating of link i
eui Error term for vote to link i given by user u
β Weight in linear regression
ε Gaussian noise term
P Probability
γ Learning rate
λ Regularization parameter
C(·) Cost function
θ Parameter vector
ξ Hyperparameter vector

vi

List of Abbreviations

ARD Automatic Relevance Determination
CF Collaborative Filtering
EM Expectation Maximization
i.i.d independent and identically distributed (random variables)
k-NN k Nearest Neighbors
MAR Missing At Random
ML Maximum Likelihood
MLRM Multiple Linear Regression Model
PCA Principal Component Analysis
PDF Probability Density Function
PPCA Probabilistic Principal Component Analysis
RMSE Root Mean Square Error
RS Recommender System
SGD Stochastic Gradient Descent
SVD Singular Value Decomposition
VBPCA Variational Bayesian PCA

vii

Chapter 1

Introduction

1.1 Problem Setting
Recommender systems are software tools and techniques providing suggestions for
items or objects that are assumed to be useful to the user. These suggestions can
relate to different decision-making processes, such as which books might be inter-
esting, which songs you might like, or people you may know in a social network.
(Ricci et al., 2011, p. 1) In this thesis, the particular interest of an RS is that of
reddit.com (Reddit), which is a type of online community where users can vote links
either up or down, i.e. upvote or downvote. Reddit currently has a global Alexa rank
of 134 and 65 in US (Alexa), which measures the combination of average daily visitors
and page views over a period of three months, making it one of the most popular sites
on the internet as of early 2013.

The front page of Reddit shows 25 popular stories or links for users, which can
be user-tailored. This ranking algorithm mainly depends on the popularity, i.e., the
votes given to the story, as well as the time frame of votes given (Salihefendic, 2010).
This thesis does not attempt to improve nor analyze this ranking any further, rather,
the research question of this thesis is:

Given a priori knowledge of a user’s voting history, will the user like or
dislike some specific content?

This approach means that when the link is given, for example highly ranked link on
the front page of Reddit, will the user upvote or downvote that link. Some practical
applications of this kind of mechanism could be to highlight the links a particular
user might like or to hide links that are assumed to be downvoted by the user, though
hiding bad links would cause even less links to be explicitly downvoted by the users,
leading to more difficulty in estimation (more details in Section 5.1). By using a
large sparse dataset containing millions of votes from thousands of users, this thesis
attempts to estimate the expected vote given by a user for a particular link by using
different methods and comparing their performance.

This kind of problem can generally be approached efficiently by using collaborative
filtering (CF) methods. In short, collaborative filtering methods produce user specific
recommendations of links based on voting patterns without any need of exogenous
information about either users or links (Ricci et al., 2011, p. 145). Unlike many

1

CHAPTER 1. INTRODUCTION 2

other theses using similar models (see e.g. Vatanen, 2012; Noeva, 2012)for multiple
datasets, the main focus in this thesis is to apply CF techniques to the little-known
Reddit recommendation dataset (King, 2010). These techniques have gained a lot
more popularity after the winner of the recently completed $1 million Netflix Prize
competition (Netflix, 2009; Bell et al., 2007) used CF techniques in a central role.

The Netflix Prize competition was originally launched in 2006. At the time, Netflix
was mostly known as a DVD rental company, while nowadays it is the world’s leading
internet subscription service for films and TV programmes (Netflix). The company
decided to launch the competition in order to improve their algorithm in recommend-
ing films based on personal preferences. The provided training dataset contained
100,480,507 ratings from 480,189 users on 17,770 movies resulting in a sparse matrix
where only 1.2% of elements contain data (Netflix, 2009). To compare, the Reddit
dataset used in this thesis contains 23,091,688 votes from 43,976 users over 3,436,063
links resulting in a sparse matrix containing only 0.015% of the data in the full matrix.
A comparison of properties between the popular Netflix dataset and the less known
Reddit dataset is included in Table 1.1.

Users Items/Links Ratings/Votes Density
Netflix dataset 480,189 17,770 100,480,507 0.0118
Reddit dataset 43,976 3,436,063 23,079,454 0.000153

Table 1.1: Comparison between Netflix and Reddit dataset properties. Density rep-
resents the ratio of values observed in the full user-item matrix.

Due to sparsity reasons, the dataset was preprocessed in three different ways to
create three different sized datasets such that the biggest dataset contains almost
all of the data and is extremely sparse whereas the smallest dataset contains only
about 10% of the votes in the original dataset and is closer to the sparsity level of
the Netflix dataset. The size of the third dataset, 6.6 million votes, lays in between
the two datasets and has some properties from both datasets. See Section 5.1 for
more details on the preprocessed datasets for which all the methods were run. The
missingness mechanism is assumed to be missing at random (MAR) and all of the
methods presented in this thesis have the ability to deal with highly sparse data and
to generalize to new data to some extent. The general dichotomy of CF approaches
are neighborhood-based models and latent factor models. Both kinds of approaches are
implemented and tested on all datasets with some varying parameters.

1.2 Contribution of the Thesis and Related Work
During the writing of this thesis, the only other work publicly found reporting a simi-
lar approach to the dataset was an exercise work for the “CS 229: Machine Learning”
course at Stanford University (Poon et al., 2011). They documented their prepro-
cessing approach and its parameters well enough for others to be able to produce a
similar dataset. They also gave their invaluable results, which helped to compare the
results in this thesis against theirs. However, during the writing process it became

CHAPTER 1. INTRODUCTION 3

evident that the evaluation measure they used for analyzing the results (RMSE, see
Section 4.1) was probably not the single best measure for the spectrum of this thesis.
Also, since the strict preprocessing left only about 10% of the votes in the original
full Reddit dataset, it seemed reasonable to delve more deeply into the larger dataset.
That is the main reason for splitting the original dataset into 3 smaller datasets.

This thesis was written in a research project called VirtualCoach (Lagus) and the
dataset to be used was originally supposed to be provided by the project prototype
website called pathsofwellbeing.com. The website has produced datasets in the form
of stress questionnaire and nursing survey. Some of the users were partially active in
a Questions & Answers forum that is somewhat similar to Stack Exchange (Stack-
Exchange). However, the number of users and the resulting dataset describing their
behavior was clearly too small that any real scientific analysis could have been applied
to it. Luckily, my instructor, Ilari Nieminen, discovered an enormous dataset of real
world data from Reddit describing users’ history on voting specific links up or down,
based on whether the stories and discussions contained in the links are important
(King, 2010).

1.3 Structure of the Thesis
This thesis is organized as follows. Chapter 2 gives an overview on recommender
systems and collaborative filtering along with some basic terminology. All the meth-
ods used in the experiments section are described in Chapter 3. This includes the
naive and baseline predictors, Singular Value Decomposition (SVD) and k-Nearest
Neighbors (k-NN). Variational Bayesian Principal Component Analysis (VBPCA)
is described in Section 3.4, which starts by defining Principal Component Analysis
(PCA) and Probabilistic PCA (PPCA). Chapter 4 reviews the commonly used evalu-
ation metrics for comparing the results of experiments, most notably the Root Mean
Square Error (RMSE) and Receiver Operating Characteristic (ROC) curves. This
chapter also presents the K-Fold Cross Validation used in determining the best num-
ber of components k for SVD and the number of neighbors k for k-NN. Though k is
used as a parameter for both methods, they mean very different things and should
not be confused. In Chapter 5, the full Reddit dataset is analyzed in detail and its
pruning into three different sized datasets: small, mid and big, is described. The vote
estimation task is then conducted for the three datasets and the results are analyzed
at the end of the chapter. Chapter 6 concludes the thesis with discussion and some
directions for future work.

Chapter 2

Recommender Systems

The study of recommender systems (RS) is relatively new compared to research of
more classical information tools and techniques, such as search engines and databases.
Recommender systems development began from a simple yet useful observation: in-
dividuals, or users, often rely on others to provide them with recommendations on
making routine, daily decisions (Mahmood and Ricci, 2009; McSherry and Mironov,
2009). For example, it is common to rely on one’s friends for recommending the next
book to read or trust a film critic’s movie review.

In order to replicate this behavior, the first RSs applied algorithms to leverage
recommendations given by some community of users to the active user looking for
suggestions. The recommendations were items that other similar users, i.e., users
with similar tastes, had liked. This approach is termed collaborative filtering and its
basic idea is that if the active user has agreed with some other users in the past,
the active user will probably agree with the same users in the future and thus the
recommendations coming from these other users should be relevant or interesting.
(Ricci et al., 2011, p. 2)

When e-commerce Web sites started to develop, it soon became apparent that
there was a pressing need for providing recommendations from filtering the whole
range of alternatives. The exponential growth and variety of information available on
the Web frequently overwhelmed users, leading them to make poorer decisions (Ricci
et al., 2011, p. 2). The availability of choices started to decrease some users’ well-
being instead of providing benefits. It seemed that while choice is good, more choice
is not always better for everyone. Thus, while choice has implications to freedom,
autonomy and self-determination, excess choice may lead freedom to be regarded as a
kind of “misery-inducing tyranny”. (Schwartz, 2004) In recent years RSs have proved
to be valuable in coping with the whole information overload problem. In the end,
a recommender system solves this problem by pointing users towards new items that
are not yet discovered, but may be relevant to their current task. (Ricci et al., 2011,
p. 3)

From the service providers’ point of view, there are various reasons why this tech-
nology is exploited. Probably the most important function for a commercial RS is to
increase the number of items sold while selling more diverse items also attracts new
users to the service. Also, an RS may increase user fidelity by providing better recom-
mendations over time, leveraging the information acquired from the user in previous

4

CHAPTER 2. RECOMMENDER SYSTEMS 5

interactions. (Ricci et al., 2011, p. 5)
It seems evident that there are several important reasons as to why service providers

introduce RSs, but users may also want an RS if it will help them to support their
tasks or reaching their goals. The classical reference paper in this field is by Herlocker
et al. (2004), which defines eleven popular tasks that RSs may help implement. These
tasks contain some main or core tasks that are generally associated with an RS, such
as suggesting items that may be useful to a user, while other tasks are more related
to “opportunistic” ways to exploit an RS, such as checking the importance of a Web
page by checking its position in Google search results.

Recommendation systems are typically classified into six categories (Burke, 2007):

• content-based

• collaborative filtering

• demographic

• knowledge-based

• community-based

• hybrid recommender systems

Without delving deeper into these different RS types, the nature of the Reddit dataset
practically rules out 5 classes of these, leaving only collaborative filtering based meth-
ods, which will be the major topic in this chapter. For example, using content-based
methods in this application would require some external data, e.g. the actual contents
of the links or messages voted. With this kind of information it would be possible to
apply some text mining techniques to it, for example.

In general, recommender systems can rely on implicit or explicit feedback from the
user. Both types of feedback can also be used in a single recommender system. Ex-
plicit feedback is the most convenient and means having the user explicitly rate links,
whereas implicit feedback indirectly reflects user preferences. (Ricci et al., 2011, p.146)
In the particular dataset used for this thesis, having certain implicit data would help
the classification process enormously. For example, the dataset shows what user has
voted for a link, if the user has indeed voted something, but for missing values there is
no way of knowing whether a user has seen a link and decided not to vote, or simply
has not seen a link at all. This is related to the missingness mechanism, which is
assumed to be MAR (see Section 5.1).

’

2.1 Collaborative Filtering
Collaborative filtering (CF) methods produce user specific recommendations of links
based on patterns of votes without any need of exogenous information about either
users or links (Ricci et al., 2011, p. 145). The research in the field of collaborative
filtering has advanced a lot after the Netflix Prize (Netflix, 2009) was announced in
October 2006. This was the first time the research community was granted access to

CHAPTER 2. RECOMMENDER SYSTEMS 6

a large-scale, industrial strength dataset of 100 million movie ratings. This attracted
thousands of new people to this field, mainly scientists, engineers, students and enthu-
siasts. Because of the competition aspect, rapid development was encouraged where
participants built on each generation of techniques in order to improve prediction
accuracy.

CF systems need two fundamentally different entities in order to establish rec-
ommendations: items and users. While the term “item” is the general term in the
literature, the rest of the thesis will mostly use the term link which represents the
nature of the Reddit dataset better. With users and links, conventional techniques
model the data as a sparse user-link matrix, which has a row for each user and a
column for each link. The nonzero elements in this matrix are the votes.

The two main techniques of CF to relate users and links are the neighborhood
approach and latent factor models. The neighborhood methods are based on finding
similar neighbors to either links or users and computing the prediction based on
these neighbors’ votes, for example, finding k nearest neighbors and choosing the
majority vote. Latent factor models approach this problem in a different way by
attempting to explain the observed ratings by uncovering some latent features from the
data. These models include neural networks, Latent Dirichlet Allocation, probabilistic
Latent Semantic Analysis and SVD-based models (Ricci et al., 2011, p. 151). In this
thesis, the k-nearest-neighbors (k-NN) method is an example of the neighborhood
approach while singular value decomposition (SVD) and variational Bayesian principal
component analysis (VBPCA) are examples of latent factor models. SVD and VBPCA
are based on matrix factorization and transform both links and users to the same
latent factor space. This latent factor space then tries to explain the votes on factors
automatically inferred from user feedback. (Ricci et al., 2011, p. 146)

The accuracy of recommendations may significantly improve when external infor-
mation is involved (e.g. timestamps), in addition to users and links. For example,
time-aware SVD has been shown to improve the prediction accuracy on the Netflix
dataset greatly (Ricci et al., 2011, p. 160), but the Reddit dataset does not contain
any temporal data so time-aware factor models were not seriously considered. How-
ever, the Reddit dataset does include one variable that can be considered additional
information: the subreddits. The subreddits are basically subforums containing sim-
ilarly themed links, e.g. links related strictly to politics or science. In this thesis,
this subreddit data was used in an attempt to improve the performance of the k-NN
model (See Section 5.2.1 for details). However, the results from the experiments in
Sections 5.3-5.5 indicate that the other k-NN models performed better.

2.2 Terminology and Notation
For more formal review, some definition of notation is needed. In this thesis the same
notation is used as in the book Recommender systems handbook by Ricci et al. (2011).
The set of all users will be denoted by U , and the set of links by I. The sizes of the
sets U and I are |U| = m and |I| = n, correspondingly.

The set of all votes is denoted by R = U × I, and the possible values for votes as
S = {downvote, upvote} = {−1, 1}, though most of the methods used in the thesis

CHAPTER 2. RECOMMENDER SYSTEMS 7

give estimations where S = [−1, 1]. It is also assumed that only one vote rui can be
cast by any user u ∈ U for a particular link i ∈ I. To distinguish users from links,
special indexing letters i, j, l will be reserved for links and u, v for users. Thus, the
subset of users who have voted a particular link i ∈ I are denoted with Ui. Likewise,
Iu represents the subset of links voted by user u ∈ U . Also, subset of links that are
voted by both users u, v ∈ U are denoted as Iuv = Iu ∩ Iv. Likewise for users, i.e.,
Uij = Ui ∩ Uj for i, j ∈ I.

A known vote rui indicates the preference of link i to user u, where higher value
indicates stronger preference. For the Reddit dataset the only values for the known
rui are -1 and 1. The predicted ratings are denoted by r̂ui ∈ [−1, 1]. All of the known
pairs of (u, i) for which rui is known are stored in the set K = {(u, i)|rui is known}.
Later on when the datasets are split into training and test sets, these are referred with
subscripts such as Ktrain.

All vectors are represented by bolded lowercase letters, such as u,v, while matrices
are represented by bolded uppercase letters, e.g. A,B.

Chapter 3

Methods

This chapter describes the collaborative filtering or machine learning methods used
for the vote estimation in detail. The methods presented in this chapter were chosen
because of differences in accuracy, performance and complexity. Also, baseline predic-
tor and SVD using stochastic gradient descent (Sections 3.1 and 3.3) are considered
classic methods in the field of collaborative filtering (Ricci et al., 2011). Neighborhood
based methods are also often used (Section 3.2), but approach the CF problem in a
very different way than latent factor models. Variational Bayesian Principal Compo-
nent Analysis is also introduced in Section 3.4 and is by far the most advanced method
used. Finally, multiple linear regression model (MLRM) is introduced in Section 3.5
as an example of an ensemble method, which combines the classifiers.

3.1 Naive Methods and the Baseline Predictor
Methods in this section represent common methods to be applied to new datasets.
Due to very large upvote/downvote ratio, it seems relevant to test how well simple
classifiers succeed. An example of a classifier that contains no model is the naive
classifier that simply classifies all the votes as upvotes. The value of the RMSE
metric (introduced in Chapter 4) for the naive method is called the dummy baseline.
If a model performs worse than the dummy baseline, there is either something wrong
with the implementation of the model or that model is simply ill-suited to this kind of
problem due to sparsity reasons, for example. Another simple method is the random
classifier that labels a given vote as an upvote with a probability of Pupvote and as a
downvote with a probability of Pdownvote = 1− Pupvote. The advantage of this against
the naive classifier is that some of the downvotes get correctly estimated too.

While the interest in CF models is to model the interaction between users and
links, much of the observed votes are due to effects associated with either users or
links, independently of their interaction (Ricci et al., 2011, p.148). For example,
some user might give downvotes 99% of the time or some controversial topic might
get downvotes from people that otherwise vote consistently but not in this particular
case. Baseline predictors (also known as biases) will encapsulate those effects.

A baseline predictor applied to the vote bias problem can be described as follows.
Let µ denote the overall average value of a vote. Since around 90% of votes are upvotes
(ones), the average vote will be around 0.8. This of course does not take into account

8

CHAPTER 3. METHODS 9

all the missing values indicated with a zero. Also, let bu, bi ∈ R denote the observed
deviations of user u and link i, respectively, from the average. Then the predicted
rating bui will be calculated as

bui = µ+ bu + bi. (3.1)

For example, let link j be slightly less interesting than an average link, so its
parameter bj would be, for example, -0.4. Also, let the user v be very negative about
everything so that he tends to rate things well below the average at bv = −0.5. When
µ = 0.8, the given vote will be estimated to be bjv = 0.8 − 0.4 − 0.5 = −0.1 which
rounds to −1, that is, a downvote. Of course, the parameters bu and bi must first be
estimated for each value of i and u, respectively.

The estimation can be done by solving the least squares problem

min
b∗

=
∑

(u,i)∈K

(rui − µ− bu − bi)2 + λ
(∑

u

b2u +
∑
i

b2i

)
, (3.2)

where the first sum term strives to find such parameters bu and bi that fit the given
ratings the best. The second term with λ is the regularizing term that attempts
to limit overfitting by penalizing the magnitudes of the parameters. Minimizing the
Equation 3.2 can be done using a simple stochastic gradient descent optimization
popularized by Simon Funk (Funk, 2006). First, all of the biases are initialized as
random values between [-1,1] for all users u ∈ U and links i ∈ I. The algorithm
loops over all known votes rui ∈ Ktrain and for each vote a prediction r̂ui is made
and the corresponding error eui = rui − r̂ui is computed. The algorithm continues by
moving along the opposite direction of the gradient, i.e., for a given training case rui
the update rules are:

• bu ← bu + γ · (eui − λ · bu)

• bi ← bi + γ · (eui − λ · bi)

where γ controls the learning rate and λ is the regularization parameter, for example,
γ = 0.0006 and λ = 0.2 for the small dataset in Section 5.3.
(Ricci et al., 2011, p. 148-152)

This simple method is easy to implement and no special care was given to optimize
the parameters since this is the baseline predictor and the interest was more on the
more complex methods, for which the first is Singular Value Decomposition in Section
3.3.

3.2 Neighborhood Based Methods
Nearest neighbors approach estimates the behavior of the active user based on the
users that are most similar to the active user or likewise find links that are similar to
the voted links. Intuitively it seems reasonable that if users u and v are most alike
from the set of all users, based on some criteria, then their voting behavior should be
too. For example, if user u upvotes a link, then it is unlikely for user v to downvote it

CHAPTER 3. METHODS 10

and vice versa. The problem is how to measure the similarity between users and how
many nearest neighbors of user u should be taken into account when estimating the
behavior of u.

In this thesis, vector cosine-based similarity and weighted sum of others’ ratings
were used, as in (Su and Khoshgoftaar, 2009). Thus, this is not the simplest form
of k-nearest neighbors (k-NN) implementation. In vector cosine similarity, the angle
between the user vectors is measured and the more similar the users are, the higher
the similarity value is. More formally, when u, v ∈ U and u,v are the corresponding
vectors containing user votes for all links, then the similarity between users u and v
is defined as

wuv = cos(u,v) =
u · v
||u||||v||

. (3.3)

Similar to Eq. 3.3, the cosine similarity wij can be computed for links i, j ∈ I.
Now, let Ni(u) denote the set of closest neighbors to u that have rated link i. The

classification of r̂ui can then be performed userwise by choosing an odd number of k
neighboring users from the set Ni(u) and classifying r̂ui to the class that contains more
votes. Similarly, the linkwise classification can be done for links in set Nu(i). The
classification depends on how many neighbors k are chosen in total. The parameter k
can be estimated through K-fold cross validation that will be introduced in Section
5.2.

However, this kind of simple neighborhood model does not take into account that
users have different kind of voting behavior. Some users might give downvotes often
while some other users might give only upvotes. For this reason it is good to introduce
rating normalization into the final k-NN method:

r̂ui = r̄u +

∑
v∈Ni(u)

wuv(rvi − r̄v)∑
v∈Ni(u)

|wuv|
. (3.4)

Here, the term r̄u denotes the average rating by user u to the items in Iu and is
called the mean-centering term. Mean-centering is also included in the nominator for
the neighbors of u. The denominator is simply a normalizing term for the similarity
weights wuv. This same formula can be written for link-based recommendations as
follows:

r̂ui = r̄i +

∑
j∈Nu(i)

wij(ruj − r̄j)∑
j∈Nu(i)

|wij|
. (3.5)

Both of these formulas will be implemented in Chapter 5. (Ricci et al., 2011)
There will also be a third neighborhood model implemented, which is based on

Equation 3.4 but the similarities between users are not computed between vectors
containing user votes for all links, but instead on their upvote ratio per each subreddit.
Since subreddits contain similar kinds of links, it is reasonable to assume that users
that have similar voting behaviors inside the same subreddits, may be similar in other
ways too. The main advantage with this approach is that the subreddit feature vector
can be several orders of magnitude smaller than the link vote vector of a user.

CHAPTER 3. METHODS 11

3.3 Singular Value Decomposition
Singular Value Decomposition (SVD) is a popular latent factor model in CF tasks
and it has been a successful approach in the Netflix contest (Bennett and Lanning,
2007). There exist several extensions of the SVD algorithm, or rather algorithms that
utilize singular values, such as SVD with k-NN and SVD with kernel ridge regression
(Paterek, 2007), but these are left out of the scope of this thesis.

The principle of SVD is to decompose any rectangular matrix A ∈ Rm×n as

A = UDV T , (3.6)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and D ∈ Rm×n is a
rectangular diagonal matrix containing the singular values dj of A (Siltanen and
Müller, 2012). The singular values dj are nonnegative and in decreasing order such
that

d1 ≥ d2 ≥ · · · ≥ dmin(m,n) ≥ 0, (3.7)

and of these only k values, or components, are chosen to use in this classification task.
SVD can be implemented in various ways, however, in CF field there are many

successful applications utilizing SVD with stochastic gradient descent popularized by
Funk (2006), such as Németh and Tikk (2007); Koren (2008). SVD implementation
used in this thesis is similar to baseline predictor in Section 3.1 and does not resemble
equation 3.6 at all since only the k highest singular values matter. This is done to make
it use less memory and to be able to use it with sparse matrices. Matrix factorization
models map users and links to a joint latent factor space of dimensionality k such that
the interactions between users and links are modeled as inner products in Rk. For
example, some factors might measure some obvious dimensions such as a link relating
to cats or users having some common feature, but most are probably completely
uninterpretable. Of course with the particular censored Reddit dataset used in this
thesis, there is no way to interpret any of the factors as being something obvious, but
it is likely that some of the factors could be interpreted if there was real data of the
contents of the links or messages posted by the users.

Let each link i be associated with a vector qi ∈ Rk, and each user be associated
with a vector pu ∈ Rk. The elements in pu measure the extent (positive or negative)
to which the user u possesses the correspending factors and similarly the elements in
qi measure the factors for link i. It is worth pointing out explicitly that these factors
pu and qi are different for both link and users, i.e., link factors measure different
aspects of the data than the user factors.

The resulting dot product qTi pu represents the overall interest of user u into the
characteristics of link i. The final rating also includes the baseline predictors from
Section 3.1 that depend only on the link or user such that the vote is predicted by
rule.

r̂ui = µ+ bi + bu + qTi pu (3.8)

CHAPTER 3. METHODS 12

The model parameters (bu, bi,pu, qi) can be learned by minimizing the regularized
squared error

min
b∗,q∗,p∗

=
∑

(u,i)∈K

(rui − µ− bu − bi − qTi pu)2 + λ(b2u + b2i + ||qi||2 + ||pu||2). (3.9)

This minimization is usually done using alternating least squares, or stochastic gra-
dient descent as in this thesis. The method will be similar to what was used for the
two parameters in Section 3.1, but includes update rules for the 2 additional vectors
pu and qi. Again, the error term is notated as eui = rui − r̂ui. Thus, the four update
rules are

• bu ← bu + γ · (eui − λ · bu)

• bi ← bi + γ · (eui − λ · bi)

• qi ← qi + γ · (eui · pu − λ · qi)

• pu ← pu + γ · (eui · qi − λ · pu)

This method could be improved by dedicating separate learning rates (γ1 − γ4)
and regularization (λ1 − λ4) to each type of learned parameters, i.e., to user biases,
link biases and factors themselves. This kind of strategy is described in more detail
in Takács et al. (2008). (Ricci et al., 2011, p. 151-152)

3.4 Variational Bayesian Principal Component Anal-
ysis

Variational Bayesian Principal Component Analysis (VBPCA) is the most advanced
and complex method used in this thesis. It is based on much simpler Principal Com-
ponent analysis described in Section 3.4.1 and probabilistic PCA (PPCA) in Section
3.4.2. These two methods are not implemented in this thesis, rather, they serve as the
introduction to the VBPCA. This section is mostly based on (Ilin and Raiko, 2008),
which serves as the technical report for the Matlab toolbox for variants of probabilistic
PCA algorithms in the presence of missing values that was developed by the authors
of the paper at the Department of Information and Computer Science of Aalto Uni-
versity. Good references for using VBPCA were also the master’s theses of Tommi
Vatanen (Vatanen, 2012) and Polina Noeva (Noeva, 2012).

3.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a technique that can be used to compress
high dimensional vectors into lower dimensional ones and has been extensively covered
in literature (See e.g. Jolliffe (2002)). Assume we have N data vectors of dimension
d represented by y1,y2, . . . ,yN that are modeled as

yj ≈Wxj +m, (3.10)

CHAPTER 3. METHODS 13

where W is a d× c matrix, xj are c× 1 vectors of principal components and m is a
d× 1 bias vector such that the relation c ≤ d ≤ N is assumed. PCA findsW ,xj and
m such that they minimize the reconstruction error on cost function

C =
N∑
j=1

||yj −Wxj −m||2. (3.11)

The solution for PCA is the unique principal subspace such that the column vectors
of W are mutually orthonormal and, furthermore, for each k = 1, . . . , c, the first k
vectors form the k-dimensional principal subspace. The principal components can
be determined in many ways, including singular value decomposition, least-square
technique, gradient descent algorithm and alternating W-X algorithm. All of these
can also be modified to work with missing values. More details are discussed in
(Ilin and Raiko, 2008).

It is worth noting here that SVD and PCA are very closely related. Let X be a
data matrix that has been preprocessed to have a zero mean. Principal components
ofX can be computed through the eigenvectors of its covariance matrixXXT . Since
the covariance matrix is symmetric, the matrix is diagonalizable and the eigenvectors
can be normalized to be orthonormal:

XXT = QΛQT . (3.12)

Assume X has the SVD expansion X = UDV T according to Eq. 3.6. Then

XXT = (UDV T)(UDV T)T

= (UDV T)(V DUT) (sinceV TV = I)

= UD2UT

= QΛQT .

(3.13)

This means that the square roots of the eigenvalues of XXT are the singular values
of X, and the columns of U are the eigenvectors of XXT .

3.4.2 Probabilistic PCA

For PCA, there is a notable absence of an associated probabilistic model for the
observed data, which probabilistic PCA (PPCA) includes (Tipping and Bishop, 1999).
Other advantages of PPCA include well-founded regularization, model comparison,
interpretation of results and extendability (Ilin and Raiko, 2008). The PPCA model
includes a Gaussian noise term explicitly in the PCA model (3.10) as

yj = Wxj +m+ εj (3.14)

where principal components xj and the noise εj have a Gaussian prior distribution as

p(xj) = N (xj; 0, I), p(εj) = N (εj; 0, σ2I). (3.15)

Here, N (x;µ,Σ) denotes normal probability density function (pdf) over variable x
with mean µ, covariance Σ and I is the identity matrix. The variables xj and noise

CHAPTER 3. METHODS 14

terms εj are assumed to be independent, identically distributed (i.i.d) and mutually
independent. The parameters of the model include W ,m and v and is expressed as

p(yj | xj,W ,m, v) = N (yj;Wxj +m, σ2I) (3.16)

The model can be identified by finding the maximum likelihood (ML) estimate with
expectation maximization (EM) algorithm. For more details on the algorithm, see
Ilin and Raiko (2008). While PPCA is less prone to overfitting than the simplest
least-squares algorithms, it can overfit, especially with unreasonably large number of
principal components.

In chapter 5, no experiments were run using this algorithm, since VBPCA algo-
rithm always seemed to outperform simpler PPCA in the random experiments made
during the early parts of this thesis process.

3.4.3 Variational Bayesian PCA (VBPCA)

PPCA seems to suffer from overfitting in some cases and a common way to cope with
it is to penalize parameter values that lead to increased complexity in explaining the
data. In the Bayesian formulation this means introducing a prior over the model
parameters in addition to PPCA model’s (3.14)-(3.15) so that

p(m) =
∏
i

N (mi, µ, wm), p(W) =
c∏

k=1

N (Wk; 0, wkI). (3.17)

The model (3.17) uses the same priors for each column Wk in the matrix W and
includes hyperparameters wm and wk that can also be updated during learning. Hy-
perparameter µ for the mean is also used form. Parameter wk is used for determining
the right number of principal components in the model, resulting in wk values tending
to zero when the evidence for the corresponding k-th principal component for reliable
data modeling is weak. This kind of technique is referred to as automatic relevance
determination (ARD) in the machine learning literature (Bishop, 2006).

Variational Bayesian Principal Component Analysis (VBPCA) is based on vari-
ational Bayesian inference first introduced in Bishop (1999), as one of the central
issues with using PCA is that of choosing the appropriate number of components.
Let us consider the ML estimation of the hyperparameters ξ = (v, wk, wm) in the
model defined in (3.14) - (3.17). The variational view of the EM algorithm requires
the computation of the posterior p(θ|Y , ξ) on the E step.

The E-step is modified to update the approximation q(θ) in order to minimize the
cost function

C(q(θ), ξ) =

∫
q(θ) log

q(θ)

p(θ,Y |ξ)
dθ

=

∫
q(θ) log

q(θ)

p(θ|Y , ξ)
dθ − log p(Y |ξ)

(3.18)

On the M-step the likelihood p(Y |ξ) is maximized using the posterior approximation
q(θ) (Noeva, 2012). Computationally convenient form for PCA model is

q(θ) =
N∏
i=1

q(mi)
N∏
i=1

q(wi)
D∏
j=1

q(xj) (3.19)

CHAPTER 3. METHODS 15

Now, the object is to find the distribution q(θ) of form (3.19) such that the cost
function C(q(θ), ξ) is minimized.

The EM algorithm for VBPCA includes the following steps (Noeva, 2012):

1. Initialize the hyperparameters ξ

2. E step: update alternatively one factor of q(θ) while keeping the other factors
fixed to minimize the cost function (3.18)

3. M step: compute new values for hyperparameters ξ to increase the likelihood
p(Y |ξ) with the distribution q(θ) used as it was the true posterior density
function p(θ|Y , ξ).

For a curious reader, the steps and the exact update rules for all parameters are
explained in more detail in Appedix E (VBPCA With Fully Factorial Approximation)
of (Ilin and Raiko, 2008).

3.5 Multiple Linear Regression Model
Models can be composed of multiple classifiers that complement each other so that
the resulting model gives better accuracy than any one classifier by itself. There
are many techniques for combining multiple classifiers, such as voting, bagging and
stacking (Alpaydin, 2004). Voting corresponds to taking a linear combination of the
classifiers, also known as ensembles, by giving a weight to each one. Better classifiers
get higher weights and contribute more to the final classification. Bagging is a voting
method that trains the classifiers on slightly different training sets thus making them
different. Stacking is a technique that combines base-learners through a combiner
system, which is a learner itself, so that its output does not have to be linear.

In this thesis, the classical multiple linear regression model (MLRM) is used due to
its simplicity. MLRM is the classical regression model for more than one explanatory
variable that is explained in (Moore and McCabe, 2006), for example. Let x1, . . . , xp
be the explanatory variables and y the response variable. The statistical model for
multiple linear regression is then

y = β0 + β1x1 + β1x2 + · · ·+ βpxp + ε, (3.20)

where β0, . . . , βp are the regression coefficients and ε is the noise term. Another way
to look at this model is to consider the response variable y to be the final classification
that linearly depends on p classifiers x1, . . . , xp with weights β0, . . . , βp, where β0 is
the weight for the naive classifier. When y is represented as a vector containing all
the estimates, the model can be represented as

yi = β0 + β1xi1 + β1xi2 + · · ·+ βpxip + εi, (3.21)

for i = 1, 2, . . . , |Ktest| (See 2.2 for notation). Additionally, the deviations εi are
i.i.d and pair-wise independent from the normal distribution N (0, σ2). The regression

CHAPTER 3. METHODS 16

coefficients β0, . . . , βp can be solved using the method of least squares, i.e., minimizing
the quantity

|Ktest|∑
i=1

(yi − β0 − β1xi1 − β1xi2 − · · · − βpxip). (3.22)

Since regression analysis is such an integral part of any statistics toolbox for different
programming languages or statistics textbook, this presentation will not attempt to
explain the MLRM principle any further.

Once the regression coefficients have been solved, the final predictions can be
computed by the linear combination

ŷi = β0 + β1xi1 + β1xi2 + · · ·+ βpxip. (3.23)

The values of regression coefficients β0, . . . , βp also reveal how much each classifier
contributes to the final prediction.

Chapter 4

Model Evaluation

This chapter introduces the evaluation metrics used in this thesis and some general
model evaluation methods. Evaluating the results is very important in this kind of
application to prevent models from overfitting to the training set, thus decreasing the
performance on the test set. Also, searching for the best parameters for the methods,
particularly for SVD and k-NN, using K-fold cross validation is essential.

4.1 Evaluation Metrics
Consider the problem of predicting the votes rui for the Reddit dataset. This section
describes how methods can be compared using different metrics. The simplest metric
is called accuracy and it determines how many of the total estimates are predicted cor-
rectly, i.e., number of pairs (u, i) such that r̂ui = rui. This is a rather noninformative
metric for the Reddit dataset, since the number of upvotes is 7-8 times higher than
the amount of downvotes, so simply predicting all votes being upvotes gives accuracy
of 0.86-0.90 depending on the dataset (see Table 5.4 for the properties of different
datasets).

The Root Mean Squared Error (RMSE) is probably the most popular metric used
in evaluating the accuracy of predicted ratings (Ricci et al., 2011, p. 273). It was also
chosen as the measure in the Netflix prize competition (Netflix, 2009), where the prize
was offered to the first team being able to decrease RMSE of Netflix’s own algorithm
by 10%. The RMSE between the predicted ratings r̂ui and actual ratings rui for the
known user-link pairs (u, i) in test set Ktest is the defined as

RMSE =

√
1

|Ktest|
∑

(u,i)∈K

(r̂ui − rui)2. (4.1)

By squaring the difference of predicted and actual rating, more emphasis is put to
larger errors. In Netflix ratings, this works well since the ratings by users are on scale
ranging from 1 to 5 and the recommendation algorithm by the Netflix gives predicted
movie ratings for users as full and partial stars, i.e., not integers but real numbers
with one decimal (3.7 for example). However, in binary classification case such as this
thesis’ upvote/downvote classification, there will be only 2 classes, nothing inbetween
the classes. Still, most of the algorithms introduced in Chapter 3 model the error as

17

CHAPTER 4. MODEL EVALUATION 18

a real number during stochastic gradient descent, and VBPCA in particular displays
the RMSE error during every iteration. This means that while this softer RMSE is a
good measure for the convergence of the algorithms, the real classification of upvotes
and downvotes need to be hard, i.e., r̂ui ∈ {−1, 1}. For this reason, every algorithm
was measured with soft RMSE, meaning imputing the estimates into Equation 4.1,
and hard RMSE, which rounds the estimates to the nearest class and only then applies
RMSE.

Soft RMSE was used in (Poon et al., 2011) and gave the only reference measure-
ment that could be found for this dataset. In their coursework, they combined several
algorithms, including k-Nearest-Neighbors, SVD, K-means and “Bayesian Probabilis-
tic Matrix Factorization using Markov Chain Monte Carlo”, and the linear combina-
tion of the models. The best score they got was RMSE of 0.491433, which became a
goal in this thesis. In the end, it was clear that VBPCA was able to beat this result by
itself, but still did not dominate all the other metrics for methods used in this thesis.
Also, they do not justify the usage of RMSE as their only metric well enough. In
general, there are four possible outcomes between the real votes and predicted votes,
as shown in Table 4.1.

Predicted vote:
Upvote Downvote

Actual vote: Upvote True-Positive (tp) False-Negative (fn)
Downvote False-Positive (fp) True-Negative (tn)

Table 4.1: Confusion matrix, listing the four possible outcomes of Reddit dataset
classification.

Some commonly used quantities can be computed from the table values, namely:

Precision =
#tp

#tp + #fp

Recall (True Positive Rate) =
#tp

#tp + #fn

False Positive Rate =
#fp

#fp + #tn

(4.2)

Two of the most common ways to compare these quantities are called precision-recall
curves and Receiver Operating Characteristic (ROC), both of which measure the
proportion of preferred links that are actually recommended. While precision-recall
curves compare precision with recall that emphasizes the proportion of recommended
items that are preferred, ROC curves emphasize the proportion of items that are not
preferred but end up being recommended anyway. (Ricci et al., 2011, p. 275). To
select whether to use precision-recall or ROC is based on the domain. In this Reddit
recommendation task it is more important to minimize false positive rate, to prevent
users seeing links that they may find offensive or boring.

CHAPTER 4. MODEL EVALUATION 19

4.2 K-Fold Cross Validation
The problem with unregularized machine learning models consisting of some param-
eters θ is to choose the best performing parameters value θbest. Usually a more
complex model gives better results for the training set, for example if the scalar pa-
rameter θ = k is the number of principal components, the higher values of k gives
better results simply because the model is overfitting the training set. However, this
does not mean that the model is necessarily the best choice for the test set, since the
data structure is slightly different from the training set. This problem is similar to
the often cited problem of finding the best value k for fitting a polynomial of degree
k to a set of points.

In K-fold cross validation, the dataset X is randomly divided into K equal-sized
parts Xi, i = 1, . . . , K and the model is trained K times such that each time a certain
dataset Xi is chosen as a validation set and the rest are combined into the actual
training set. Then, the validation set errors are used in determining which model, or
model parameters, would perform best on the test set. It is also imporant to make sure
that class prior probabilities are similar between the training set and the validation
set. This is called stratification. (Alpaydin, 2004, p. 331)

With the Reddit dataset, stratification is practically ensured because the dataset
is so large that this happens naturally when dividing the votes randomly into the
training and validation sets (see Section 5.2).

Chapter 5

Experiments

The first section in this chapter introduces the full Reddit dataset, its properties
and the preprocessing that was performed. Section 5.1.2 examines the three different
subsets of the full Reddit dataset and how the parameters were chosen. Section 5.2
examines the training sets through K-fold cross validation and attempts to find the
best number of neighbors k for all the different k-NN tests and also the number of
components for SVD that should give the best results for the test set. The next three
Sections (5.3-5.5) explain how the experiments were run and what were the results.
Finally, Section 5.6 examines how the estimation accuracy might have depended on
other factors, such as the ratio of upvotes per downvotes of a user.

5.1 Full Reddit Dataset
Reddit dataset originated from a topic in social news website Reddit (King, 2010).
It was posted by a software developer working for Reddit in early 2011 in hopes
of improving their own recommendation system. The original dataset consists of
23,091,688 votes from 43,976 users over 3,436,063 links in 11,675 subreddits (see the
definition of a subreddit from Section 2.1). A snapshot of preprocessed dataset can be
seen in Table 5.1 along with the possible values for the different variables in Table 5.2.
The users in the dataset represent almost 17% of the total votes on the site in 2008,
which means that the users represented in the dataset are very active in the whole
Reddit community. All of these users also gave their permission to use their votes in

User id Link id Subreddit id Vote
52133 1642985 2 -1
11720 1613099 3 1
11720 2139739 3 1
12070 1577844 3 1

...
...

...
...

Table 5.1: A snapshot of some rows of the Reddit dataset after changing the labels
from strings into numbers and sorting subreddit-wise. There are over 23 million rows
like this.

20

CHAPTER 5. EXPERIMENTS 21

Users: {1, . . . , 43976}
Links: {1, . . . , 3436063}
Subreddits: {1, . . . , 11675}
Votes: {−1, 1}

Table 5.2: All the different values possible in each column.

research (King, 2010). This means that this subset of users might not describe the
whole userbase of Reddit accurately, but this cannot be proven either way from the
dataset and in any case these experiments could be thought to be accurate to at least
this subset of users.

The original dataset has over 23 million rows where the first three columns contain
32 hexadecimal digits, unique to specific link, user, or subreddit. The fourth column
indicates whether the user gave an upvote −1 or an upvote 1. No other values are
possible as shown in Table 5.2, which also means there is no zero value to indicate
that the user has indeed seen the link, but has not given a vote either way. This
means that there is no way to know for sure whether any of the links are actually new
to the user, which leads to the assumption on missing-data mechanism.

There are four types of missingness mechanism formalized in Rubin (1987), of
which missingness at random (MAR) is assumed for the Reddit dataset. MAR means
that given the observed data, the missingness mechanism does not depend on the
unobserved data and thus, there is no general model used for the missing data in this
thesis. One can ask how much does it really matter that it is not known if a user
has deliberately decided not to vote a link that he has seen? Due to the way the
website Reddit works, there are several factors that would make it highly likely that
a huge majority of unvoted links are such the user has not seen. First, the amount of
links in the full Reddit dataset is so large that no average user would have the time
and effort to skim through all of those. This is supported by the fact that the most
productive user in the preprocessed datasets has voten 78478 links (on average 215
links per day for one year) while the median was only 63 for the same dataset (see
Table 5.6). Second, links stay on the surface only for a couple of hours or days at the
maximum, so if a user does not visit the website for a couple of days, many links will
remain unseen. This is especially true for the average new users that probably will
not be digging through the much older links, unless maybe the most popular ones.
In conclusion, for some active users skimming through huge amounts of links without
giving many votes, this estimation will probably not give very good results and would
greatly benefit from having the additional information on links the user chose not to
vote. Then again, it is rather justified to assume that the estimation does work for
the users on average.

A Very important aspect of the dataset is that while the links in Reddit website
always contain some topic and text, this data contains none. It is not possible to see
what kind of keywords the links contain, which renders content-based recommendation
systems completely useless. However, different kinds of CF techniques are applicable
to this data as mentioned in Section 2.1.

The original idea behind releasing the dataset was to improve their community
recommendation system, i.e., to help users to find similar user groups or communi-

CHAPTER 5. EXPERIMENTS 22

Example of Reddit data

link_1 link_2 link_3 link_4link_5

user_1

1 1 1 -11

user_2

1

user_3

1

user_4

1 1

user_5

1

user_6

1 -1 1 1

user_7

?

user_8

?

Figure 5.1: Bipartite graph representation of Reddit data. Subreddits are visualized
as colors on the links (square vertices). The vote values are represented as numbers
on the arcs, where “?” means no vote has been given.

ties, not simply to recommend them some new subreddit that they might think is
interesting. In short, the purpose was to cluster the users. During the early prepara-
tion of this thesis, several approaches were considered to this dataset. The interesting
questions, in no particular order, included:

• Given a link, will the user upvote or downvote it?

• What is the most relevant (new) link for the user?

• What is the most relevant (new) subreddit for the user?

• Who are the most similar users to the given user?

• Can the users be grouped in a meaningful way based on similarities and sub-
reddits?

Eventually, the first question became the topic of this thesis and a solution for the
fourth question was provided when experimenting on k-NN method, though the cosine
distance (Eq. 3.3) was the only similarity measure used in this thesis.

5.1.1 Preprocessing

The original identifiers of the variables were 32 characters long strings due to data
obfuscation reasons. Clearly, identifiers were too long so the first step in the pre-
processing phase was to replace the original ids for the 3 different variables, users,
links and subreddits, into integer numbers to help processing the data and also to
save memory. This phase was implemented in the Python programming language,
because of its very useful dictionary data structure. After this phase, the integers in
the different columns have the values as in table (5.2). Example rows of the data are
presented in table (5.1).

The dataset can be visualized as a bipartite undirected graph (figure 5.1), where
the circle vertices have an edge only to link vertices, represented as squares, and

CHAPTER 5. EXPERIMENTS 23

Dataset User cutoff Link cutoff Subreddit cutoff
Small 1 500 1
Mid 135 135 135
Big 4 4 4

Table 5.3: cutoff values

vice versa. Subreddits can be represented as the color of square vertex and the edges
between vertices are the vote values, either 1 or−1. The research question is visualized
in the graph as the edges with a question mark ? to be estimated from the known
edges of the data.

Even though no graph-theoretic approaches are used in the classification problem
in this thesis, this visualization is particularly useful in explaining the preprocessing
and the concept of core of the data. In graph theory, the degree of a vertex v equals
to the number of edges incident to v. If the degree of any vertex is very low, there
may not be enough data about the vertex to infer the value of an edge, meaning the
vote, where this vertex is in the either end. An example of this can be found in figure
(5.1) between link_4 and user_7, where the degree of user_7 is 1 and the degree
link_4 is 3. Clearly this is a manifestation of the new user problem (Adomavicius
and Tuzhilin, 2005), meaning that the user would have to vote more links and the link
would have to get more votes in order to accurately estimate the edge. These kinds
of new users and unpopular links make the estimation task very difficult and thus
should be pruned out of the data. This can be done by using cutoff values such that
all the corresponding vertices having a degree below the cutoff value are pruned out of
the data. With higher cutoff values, only a subset of the data called core of the data
remains, which is similar to the idea of k-cores introduced by Seidman (1983). This
subset contains the most active users who have voted a large part of all the remaining
links, and the most popular links which are voted by almost every user. Subreddits
are also pruned out using proper cutoff values.

5.1.2 Preparing Different Sized Datasets

In order to test the algorithms with datasets that have a different sparsity level, the
preprocessed dataset was pruned with three different sets of cutoff values that can be
seen in Table 5.3.

The idea was to create the biggest dataset with very low cutoff values such that
per each user or link there are at least four observations so links can be split between
training set and test set. The smallest dataset in turn was pruned with higher link
cutoff values, resulting in a smaller dataset that can fit into the computer’s memory,
even when expressed as a full matrix. This is exactly the same dataset that was used
in Poon et al. (2011). For the middle dataset, or “mid”, the cutoff values were set so
that its size would lie in the middle between the sizes of the big and small datasets
on log10-scale and also its cutoff values were chosen to be equal to each other.

The pruning algorithm worked by removing all subreddit vertices that had less
edges than the cutoff values, then doing the same for user nodes and link nodes. The
algorithm only stopped when it did not remove any type of a node during the whole

CHAPTER 5. EXPERIMENTS 24

Ratio of
Dataset Users Links Subreddits Votes Sparsity upvotes
Small 24,528 3,246 28 2,092,043 0.0263 0.9017
Mid 7,973 22,907 86 5,990,745 0.0328 0.9015
Big 26,315 853,009 2,556 17,349,026 0.000773 0.8688
Full 43,976 3,436,063 11,675 23,079,454 0.000153 0.8426

Table 5.4: Comparison of the training sets.

iteration. This ensured that the cutoff values really were valid on the pruned dataset,
instead of naively removing all the different kinds of nodes with corresponding cutoff
values during one iteration. This would have resulted in some nodes having less
edges than the cutoff values proposed. No matter what cutoff values were chosen, the
algorithm seemed to take at most 10 iterations, or about 20-60 seconds of computer
time.

The resulting dataset was then immediately split into a training set and a test set,
such that the training set contained about 90% of the votes and the test set around
10%, respectively. All the models were trained and model parameters estimated using
only the data in the training set and the test set was only used for getting the final
results. The splitting algorithm worked userwise, i.e., it randomly divided a user’s
votes between the training set and test set for all users such that at least one vote was
put into the test set, regardless of the split ratio. This means that it was guaranteed
that for each user there was at least one vote in the test set for classification, even
if the user had given only a few votes. For example, in the largest dataset with user
cutoff at 4, one was randomly put into test set and the rest three into training set. If
a user had given 101 votes, 11 were in the test and 90 in the training set. Otherwise
there would have been a large amount of less productive users, for whom all of their
votes were either in the training set (not possible to test the estimation) or in the test
set (just guessing the classification, i.e., classifying all votes as upvotes like a naive
predictor).

The resulting training set properties are described in Table 5.4, where there are
several interesting points to be seen. First, the number of subreddits gets diminished
when the datasets get smaller. This means that the most relevant links for the small
dataset are spread into only two dozen subreddits, which seems reasonable since there
are around the same amount of default subreddits for all the users. Second, the big
dataset seems to be around 34 times more sparse than the smallest, while the middle
one is the least sparse. This results from the fact that the cutoff values chosen by
Poon et al. (2011) were very link-heavy, while the mid dataset was pruned using equal
values for the three cutoff values. For this same reason, mid dataset has less users
than links, similar to the full and big dataset, but contrary to the small dataset. So
in short, it has properties from both small and big dataset.

The resulting test set properties are described in Table 5.5, where it is apparent
that the ratios of upvotes stay very close to the training set values. In general the
estimation of downvotes is a lot more difficult than upvotes. This is partly due to
the fact that downvotes are rarer and thus the prior probability for upvotes is around
six to nine times higher than for the downvotes so the prior is always on the side of

CHAPTER 5. EXPERIMENTS 25

Ratio of
Dataset Votes upvotes
Small 221828 0.9032
Mid 661903 0.9018
Big 1915124 0.8687

Table 5.5: Comparison of the test sets.

Mean Median Std Max
Small dataset: Users 68.6 11 180.1 2798

Links 518.0 480.5 189.4 2730
Mid dataset: Users 603.6 278 1026.7 15462

Links 210.0 165 136.9 1908
Big dataset: Users 486.6 63 1929.8 78478

Links 150.1 5 45.5 2707

Table 5.6: Properties of votes given by users and votes for links of all datasets.

upvotes. This also means that the dataset is much more sparse when using only the
downvotes.

The histograms of users and links in Figure 5.2 are also rather interesting. It is
apparent that all these distributions have a thin tail, more so for the big dataset, and
some of the figures seem to be truncated from the left, which is due to preprocessing.
For example, the link histogram for the small dataset starts after around 500 links
whereas the user histogram seems to start at 1. This can be simply explained by the
cutoff values described in Table 5.3. Some properties of histograms in Figure 5.2 are
shown in Table 5.6.

5.2 Stratified 5-fold Cross Validation
Two of the methods used in this thesis have a hyperparameter that needs to be
explicitly defined in order to run the tests. For choosing the best possible value for
this hyperparameter, or at least some very close approximation that is well justified,
5-fold cross validation is used. The number of folds K in K-fold cross validation is
typically 10 or 30 (Alpaydin, 2004, p. 331), but the Reddit dataset is so large and
uniform so stratification happens naturally, justifying the use of smaller number of
folds. Also, to save computational time, the number of folds was chosen to be 5.

5.2.1 Number of Neighbors for k-NN

With the Reddit dataset, the k-NN model can be implemented in various ways, de-
pending on whether the neighbors mean the neighbors of links, users or some other
feature entirely. In this thesis, the k-NN model is implemented in three ways: user-
wise, linkwise and subreddit-wise (sr-wise). As mentioned in Section 3.2, the subreddit
vector is significantly smaller than the link vector. This is evident from Table 5.4,
where the number of elements in the link vector is 853,009 for the big dataset, but only

CHAPTER 5. EXPERIMENTS 26

0 500 1000 1500 2000 2500 3000
0

5000

10000

15000
User votes histogram for the Small dataset

Total votes given

N
u
m

b
e
r

o
f
u
s
e
rs

0 1000 2000 3000 4000
0

100

200

300

400
Link votes histogram for the Small dataset

Total votes given

N
u
m

b
e
r

o
f
lin

k
s

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000
User votes histogram for the Mid dataset

Total votes given

N
u
m

b
e
r

o
f
u
s
e
rs

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000
Link votes histogram for the Mid dataset

Total votes given

N
u
m

b
e
r

o
f
lin

k
s

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4 User votes histogram for the Big dataset

Total votes given

N
u
m

b
e
r

o
f
u
s
e
rs

0 1000 2000 3000 4000
0

2

4

6

8
x 10

5 Link votes histogram for the Big dataset

Total votes given

N
u
m

b
e
r

o
f
lin

k
s

Figure 5.2: Histograms of users and links for the different datasets. The rows of
pictures correspond to the small, mid and big dataset, in that order, and the columns
are for users and links, correspondingly. The histograms for the big dataset are barely
visible, due to their extremely thin tail.

CHAPTER 5. EXPERIMENTS 27

2,556 for the subreddit vector. The computations linkwise required some significant
optimizations, since computing the distance matrix between all the links would have
required hundreds of gigabytes of memory and computing the necessary distances for
each observed vote one at a time meant jumpin around in memory, requiring more
than a week of computation time. In the end, the computation time was reduced to
mere 2 hours on a regular laptop requiring less than 8 GB of memory.

The performance of the k-NN model with differing number of neighbors was evalu-
ated using 5-fold cross validation for the training set for each odd number of neighbors
k between 1 and 51. Due to random splitting of the data during cross validation, there
were some votes given by users to links that no other user had voted, i.e., the users
did not have any neighbors. In this situation, naive model was used and the vote was
approximated to be an upvote, which would be the right decision around 86-90% of
the time (the corresponding dummy baseline of the dataset). In practise, there were
very few votes with no neighbors for the voting users, in practise less than about 0.1%,
so its effect was considered to be negligible.

The performances between different folds had very little variance, so the over-
all performance was measured by taking a mean of the hard RMSE metric for the
validation set of all folds.

The performance for user-based and link-based recommendation can be seen in
Figure 5.3 for all datasets. It seems that the performance of user-based recommenda-
tion increases as the number of neighbors increases and if k was increased beyond 51,
the RMSE might get even lower. However, the increased performance is considered
so little that the values given by these experiments will be used for the test set.

The results of the subreddit-based recommendation are in Figure 5.4. The sudden
increase on the right-most points on each graph is due to it representing the per-
formance using all of the available neighbors. For the small and mid datasets, it is
evident that choosing three or more neighbors results in better estimation than the
dummy baseline. For the big dataset even one neighbor is enough. The best choice
for the number of neighbors k was chosen to be the one that produced the smallest
RMSE on the validation set. The K values for small, mid and big dataset were 21,21
and 19, correspondingly.

5.2.2 Number of Components for SVD

For estimating the optimal number of components for SVD, 5-fold cross validation was
also used. The first experiments were run on SVD with the number of components
of: 2, 7, 15, 30. From these results it was decided to run more experiments near the
value which got the lowest RMSE on the first time so the cross validation was not for
all k values between 1 and 30, but for values near the potential minimum. For each
experiment, the algorithm was given at most 5000 iterations but also the possibility of
stopping earlier using rmsstop-criterion with 100 step length. This means that the al-
gorithm will stop when either the absolute difference |RMSEt−100−RMSEt| < 0.0001
or the relative difference |RMSEt−100−RMSEt|/RMSEt < 0.001, where RMSEt is the
corresponding validation set RMSE on iteration t. It is important to note that this
rmsstop with the same parameters was used for all datasets when running the base-
line algorithm and SVD on the test set. Also, the learning rates and regularization

CHAPTER 5. EXPERIMENTS 28

0 5 10 15 20 25 30 35 40 45 50
0.5

0.52

0.54

0.56

0.58

0.6

0.62

The number of neighbors

R
M

S
E

Small dataset

0 5 10 15 20 25 30 35 40 45 50
0.54

0.56

0.58

0.6

0.62

0.64

The number of neighbors

R
M

S
E

Mid dataset

0 5 10 15 20 25 30 35 40 45 50
0.6

0.65

0.7

0.75

The number of neighbors

R
M

S
E

Big dataset

Dummy baseline

k−NN userwise

k−NN linkwise

Dummy baseline

k−NN userwise

k−NN linkwise

Dummy baseline

k−NN userwise

k−NN linkwise

Figure 5.3: Userwise and linkwise k-NN performance on all validation sets using
different number of nearest neighbors for 5-fold cross validation. The lowest RMSE
(marked as a green dot) is marked on the plots. The number of neighbors to use in
userwise and linkwise k-NN are 49 and 17 for small, 51 and 21 for mid, and 49 and
21 for big dataset.

CHAPTER 5. EXPERIMENTS 29

5 10 15 20 25 30 35 40 45 50

0.58

0.6

0.62

0.64

The number of neighbors

R
M

S
E

Small dataset

5 10 15 20 25 30 35 40 45 50

0.58

0.6

0.62

0.64

The number of neighbors

R
M

S
E

Mid dataset

5 10 15 20 25 30 35 40 45 50
0.64

0.66

0.68

0.7

0.72

0.74

The number of neighbors

R
M

S
E

Big dataset

Dummy baseline

k−NN SR−based

Dummy baseline

k−NN SR−based

Dummy baseline

k−NN SR−based

Figure 5.4: Subreddit-wise k-NN performance on all validation sets using different
number of nearest neighbors for 5-fold cross validation. The lowest RMSE (marked
as a green dot) is marked on the plot. These green dots are at 21, 21 and 19 for small,
mid, and big datasets.

CHAPTER 5. EXPERIMENTS 30

parameters in Table 5.7 are same for these crossvalidation tests and the final experi-
ments.

Dataset Learning rate γ Regularization parameter λ
Small dataset 5.0× 10−4 0.2
Mid dataset 1.0× 10−4 0.2
Big dataset 2.0× 10−5 0.2

Table 5.7: SVD learning rates and regularization parameters used in cross validation
tests and final experiments.

The results of the cross validation tests are shown in Figure 5.5 where it can be
seen that the optimal number of components for the small, mid and big dataset are
4,6 and 2, correspondingly. At first it seemed that there was something wrong with
experiments, e.g., with the parameters of the stochastic gradient descent, because the
results meant that using less components is better for the big dataset, even though
there is more potential for complexity in the dataset to be explained by higher number
of components. It may be that the reason this happens is that the big dataset is simply
so sparse that using more components does not really explain the data itself, instead
the additional components may overfit to the structures caused by the noise inherent
in the data. This hypothesis is supported by the fact that the highest number of
components indicated by the cross validation results is for the mid dataset, which is
the least sparse dataset.

5.3 Results for Small Reddit Dataset
This section describes the results of all the methods described in Chapter 3 on the
small Reddit dataset. The models were trained on the full training set and all results
are for the corresponding test set. The results of all the methods are seen in Table
5.8. For the columns Accuracy, Class average accuracy, Downvotes, and Upvotes, the
higher is better. On the contrary, for columns Soft and Hard RMSE, the lower is
better. Column Upvotes means the ratio of correctly estimated upvotes and similarly
for Downvotes. Class average accuracy is the mean between these two columns. Naive
and random methods were trivial to implement, since there is no real model behind,
and the experiments were fast to run. As expected, random model gets some of the
downvotes right by pure chance while naive model does not classify votes as downvotes
at all and gives an RMSE of 0.6221, the dummy baseline for the small dataset. This
is the upper limit that each real model should be able to beat.

Baseline predictor was run using parameters γ = 0.0006 and λ = 0.2, which were
chosen by empirically testing different values to find the highest ones that did not
cause the SGD to diverge. The algorithm was given 3000 iterations to converge while
also using the rmsstop criterion. In the end, the algorithm ran a couple of hundred
iterations until converging.

The parameters for the SVD with SGD were: γ = 0.0005, λ = 0.2 and the number
of components was set at 4, as indicated by the results in Section 5.2.2. The algorithm

CHAPTER 5. EXPERIMENTS 31

0 5 10 15 20 25 30

0.56

0.58

0.6

0.62

0.64

The number of components

R
M

S
E

Small dataset

0 5 10 15 20 25 30

0.56

0.58

0.6

0.62

0.64

The number of components

R
M

S
E

Mid dataset

0 5 10 15 20 25 30

0.64

0.66

0.68

0.7

0.72

0.74

The number of components

R
M

S
E

Big dataset

SVD
Dummy baseline

SVD
Dummy baseline

SVD
Dummy baseline

Figure 5.5: SVD performance on all validation sets using a different number of com-
ponents for the 5-fold cross validation. The lowest RMSE is marked as a green dot.
The corresponding lowest RMSEs are achieved using 4 components for small dataset,
7 for the middle dataset and 2 for the big dataset.

CHAPTER 5. EXPERIMENTS 32

was given 5000 iterations with rmsstop. The k-NN model was run with 5 neighbors
userwise, 9 linkwise and 21 neighbors using subreddit features.

VBPCA was run with the default settings using the same rmsstop-criterion as
other methods with 8 components. Setting the number of components for VBPCA
is not so critical since it uses automatic relevance determination (see Section 3.4.3).
The number of components was thus chosen to be double the amount of components
determined for SVD, since both of SVD and VBPCA are subspace methods. Too few
components would make VBPCA underperform and too many would make it overfit
the training set leading to poorer performance.

Class
Soft Hard average

Method Accuracy RMSE RMSE accuracy Downvotes Upvotes
Naive 0.9032 0.6221 0.6221 0.5000 0.0000 1.0000
Random 0.8244 0.8381 0.8381 0.4998 0.0972 0.9023
Baseline 0.9161 0.5052 0.5794 0.6183 0.2490 0.9875
SVD 0.9231 0.4875 0.5546 0.6757 0.3688 0.9825
k-NN_SR 0.9176 0.5065 0.5740 0.6282 0.2692 0.9871
k-NN_User 0.9175 0.5058 0.5745 0.6201 0.2513 0.9889
k-NN_Link 0.9222 0.4912 0.5579 0.6545 0.3226 0.9864
VBPCA 0.9243 0.4861 0.5503 0.6795 0.3759 0.9831
MLRM 0.9256 0.4766 0.5457 0.6710 0.3553 0.9866

Table 5.8: Metrics for the different methods on the small Reddit test set, when the
training phase was done on the corresponding testset. Bolded numbers signify the
best result for that particular metric.

As expected, the results in Table 5.8 show that MLRM performed best on 3 metrics
while VBPCA was very close and was by far the best on estimating downvotes. Much
simpler SVD also comes very close to VBPCA in each metric. It is very important
to note that both of these single methods outperform the best result that (Poon
et al., 2011) were able to achieve using the same dataset. Their best RMSE score was
0.491433 using a linear combination of models while the best score using MLRM
in this thesis is 0.4766, which is 3.11% percent better. k-NN models perform more
poorly than SVD and VBPCA for this dataset and the link-based recommendation
approach seems to be the best. The weights of MLRM are presented in Table 5.9,
which clearly shows that the highest weights are for the link-based k-NN and VBPCA.
Here, the naive method represents the constant term of linear regression. ROC curves
for the methods are presented in Figure 5.6, where the MLRM clearly dominates all
the others.

5.4 Results for Middle Reddit Dataset
The tests for the mid dataset were run much the same way as for the small dataset.
Learning rate for the stochastic gradient descent needed to be tuned down a bit.
Thus, the parameters used were γ = 0.00005 and λ = 0.2 for baseline predictor and

CHAPTER 5. EXPERIMENTS 33

Method MLRM weights
Naive 0.0071
Baseline -0.1869
SVD 0.2656
k-NN_SR 0.1106
k-NN_User -0.0359
k-NN_Link 0.4615
VBPCA 0.3976

Table 5.9: Weights for the MLRM for the small dataset. Higher absolute values mean
higher relevance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Baseline

SVD

VBPCA

k−NN_SR

k−NN_User

k−NN_Link

MLRM

Naive

Figure 5.6: ROC curves for the small Reddit dataset.

CHAPTER 5. EXPERIMENTS 34

γ = 0.0001 and λ = 0.2 for SVD with number of components being 7. VBPCA was
run with the same setting, except changing the number of components to 14, using the
same heuristic of doubling the optimal number of components for SVD. The results
of the experiments are presented in table 5.10. Surprisingly, link-based k-NN achieves
the lowest RMSE of single models and actually performs really close to MLRM. This
is no coincidence since its weight for the MLRM is as high as 0.6176 (from Table 5.11),
over 50% higher than for VBPCA. However, VBPCA is superior on downvotes metric
and thus on class average accuracy also. ROC curves are shown in Figure 5.7.

Class
Soft Hard average

Method Accuracy RMSE RMSE accuracy Downvotes Upvotes
Naive 0.9018 0.6268 0.6268 0.5000 0.0000 1.0000
Random 0.8225 0.8426 0.8426 0.4990 0.0965 0.9016
Baseline 0.9161 0.5038 0.5793 0.6237 0.2599 0.9876
SVD 0.9205 0.4924 0.5641 0.6709 0.3604 0.9815
k-NN_SR 0.9171 0.5058 0.5759 0.6268 0.2655 0.9881
k-NN_User 0.9176 0.5030 0.5740 0.6256 0.2621 0.9890
k-NN_Link 0.9237 0.4833 0.5524 0.6668 0.3470 0.9865
VBPCA 0.9222 0.4879 0.5578 0.6837 0.3870 0.9805
MLRM 0.9263 0.4715 0.5430 0.6821 0.3782 0.9860

Table 5.10: Metrics for different methods on the mid Reddit dataset.

Method MLRM weights
Naive -0.0110
Baseline -0.3497
SVD 0.1948
k-NN_SR 0.0972
k-NN_User 0.0883
k-NN_Link 0.6176
VBPCA 0.3870

Table 5.11: Weights for MLRM for the mid dataset. Higher absolute values mean
higher relevance.

5.5 Results for Big Reddit Dataset
Baseline predictor and SVD were run using parameters γ = 0.00002 and λ = 0.2 and
SVD was run with two components, as Section 5.2.2 indicated. The same heuris-
tic was used for VBPCA as for the other datasets, thus it was run with 4 compo-
nents.For some reason the SVD performs poorly. No other model was run with so
many different parameters during this thesis but SVD, but still its performance did
not improve. VBPCA does still perform very well so subspace models can get good
results for this dataset, but for some reason SVD cannot. Linkwise k-NN performs

CHAPTER 5. EXPERIMENTS 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Baseline

SVD

VBPCA

k−NN_SR

k−NN_User

k−NN_Link

MLRM

Naive

Figure 5.7: ROC curves for the middle Reddit dataset.

CHAPTER 5. EXPERIMENTS 36

very well and amazingly succeeds in estimating almost 45% of downvotes right with-
out compromising the upvote estimation rate. For this reason it also gets the highest
weight for the MLRM in Table 5.13. Also, linkwise k-NN and VBPCA combined gets
weighted around 90% of the all the methods so leaving all the other methods out
from the MLRM model would not decrease its estimation performance significantly.
ROC curves in Figure 5.8 show the differences between models clearly. VBPCA and
k-NN_Link are above other methods close together while SVD is below the other
models and seems like it is underperforming, since its worse than the baseline predic-
tor.

Class
Soft Hard average

Method Accuracy RMSE RMSE accuracy Downvotes Upvotes
Naive 0.8687 0.7248 0.7248 0.5000 0.0000 1.0000
Random 0.7720 0.9549 0.9549 0.5002 0.1316 0.8689
Baseline 0.8937 0.5707 0.6521 0.6630 0.3502 0.9759
SVD 0.8900 0.5859 0.6632 0.6612 0.3508 0.9716
k-NN_SR 0.8942 0.5658 0.6507 0.6682 0.3617 0.9747
k-NN_User 0.8930 0.5697 0.6542 0.6738 0.3766 0.9711
k-NN_Link 0.9048 0.5451 0.6172 0.7091 0.4438 0.9745
VBPCA 0.8991 0.5505 0.6353 0.6929 0.4132 0.9726
MLRM 0.9067 0.5293 0.6108 0.7043 0.4298 0.9788

Table 5.12: Metrics for different methods on the big Reddit dataset.

Method MLRM weights
Naive -0.0150
Baseline -0.0156
SVD 0.0350
k-NN_SR 0.0032
k-NN_User 0.0942
k-NN_Link 0.5058
VBPCA 0.4075

Table 5.13: Weights for MLRM for the mid dataset. Higher absolute values mean
higher relevance.

CHAPTER 5. EXPERIMENTS 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Baseline

SVD

VBPCA

k−NN_SR

k−NN_User

k−NN_Link

MLRM

Naive

Figure 5.8: ROC curves for the big Reddit dataset.

5.6 Analysis of Results
The results given in sections 5.3-5.5 are mostly for comparing the performance of
different methods. To see how many downvotes and upvotes were actually estimated
correctly, the confusion matrices (these were explained in Section 4.1) for all datasets
are presented in Tables 5.14-5.16. The results are based on the models that performed
best on class average accuracy metric, which means VBPCA for the small and mid
datasets and k-NN_Link for the big dataset.

Predicted vote:
Upvote Downvote

Actual vote: Upvote 196969 13397
Downvote 3394 8068

Table 5.14: Confusion matrix for the results of VBPCA model on the small dataset.

CHAPTER 5. EXPERIMENTS 38

Predicted vote:
Upvote Downvote

Actual vote: Upvote 585266 39850
Downvote 11632 25155

Table 5.15: Confusion matrix for the results of VBPCA model on the mid dataset.

Predicted vote:
Upvote Downvote

Actual vote: Upvote 1621083 139911
Downvote 42496 111634

Table 5.16: Confusion matrix for the results of linkwise k-NN model on the big dataset.

The rest of this section presents figures representing how dependent the estimation
accuracy is on some other factors, such as the upvote ratio of a user. In this con-
text, the estimation accuracy means the estimated accuracy that depends on external
factors after the estimation phase is done using the MLRM model for each dataset.

Figure 5.9 shows the upvote ratio compared to estimation accuracy. It seems evi-
dent that on average, having a higher upvote ratio increases the estimation accuracy.
Since upvotes are generally much easier to estimate than downvotes, this is quite
logical consequence of the fact that around 90% of votes are upvotes and thus it is
easier to learn the model describing upvotes than downvotes. The increasing trend of
the pictures in Figure 5.9 is most obvious with the mid dataset, which also has the
highest density of all the datasets in this thesis.

Figure 5.10 presents the number of votes given by users against their estimation
accuracy. Since the histogram of given votes is thin tailed (See Figure 5.2), Figure
5.10 also has most of it mass with the users giving less votes.

Figure 5.11 shows how the estimation accuracy depends on the user’s activity in
different subreddits. The mean curve for the mid dataset seems to have more variation
than for the small dataset, but this is highly likely to be a statistical property of the
data due to limited number of observations on very low and very high subreddit
productivity levels.

The plots in Figure 5.12 are seemingly quite different if the upvote ratio is com-
puted linkwise instead of userwise. This may be because in larger datasets there are
more users with lower upvote ratios and since downvotes are more difficult to estimate
in general, the trend tends to go downward when upvote ratio decreases.

Figure 5.13 compares the number of votes per link with the estimation accuracy.
There is a clear trend that having more votes per link increases the estimation accuracy
on average.

CHAPTER 5. EXPERIMENTS 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Small dataset

Upvote ratio

E
st

im
at

io
n

ac
cu

ra
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Mid dataset

Upvote ratio

E
st

im
at

io
n

ac
cu

ra
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Big dataset

Upvote ratio

E
st

im
at

io
n

ac
cu

ra
cy

Figure 5.9: Comparing upvote ratio of users with the corresponding estimation accu-
racy.

CHAPTER 5. EXPERIMENTS 40

0 50 100 150 200 250 300
0

0.5

1
Small dataset

Number of votes given by user

E
st

im
at

io
n

ac
cu

ra
cy

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
Mid dataset

Number of votes given by user

E
st

im
at

io
n

ac
cu

ra
cy

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
Big dataset

Number of votes given by user

E
st

im
at

io
n

ac
cu

ra
cy

Figure 5.10: Comparing total number of votes of users to their corresponding estima-
tion accuracy. Notice that while the plots seem quite similar, the scaling of horizontal
axis multiplies with larger datasets.

CHAPTER 5. EXPERIMENTS 41

0 5 10 15 20 25 30
0

0.5

1
Small dataset

Number of subreddits the user has voted in

E
st

im
at

io
n

ac
cu

ra
cy

single users
mean of accuracy per sr number

0 10 20 30 40 50 60 70 80
0

0.5

1
Mid dataset

Number of subreddits the user has voted in

E
st

im
at

io
n

ac
cu

ra
cy

single users
mean of accuracy per sr number

0 50 100 150 200 250
0

0.5

1
Big dataset

Number of subreddits the user has voted in

E
st

im
at

io
n

ac
cu

ra
cy

single users
mean of accuracy per sr number

Figure 5.11: Comparing the number of different subreddits where the user has been
active to the estimation accuracy.

CHAPTER 5. EXPERIMENTS 42

Figure 5.12: Comparing upvote ratio of all links to their corresponding estimation
accuracy.

CHAPTER 5. EXPERIMENTS 43

Figure 5.13: Comparing the number of votes per link to the corresponding estimation
accuracy.

Chapter 6

Conclusions

In this thesis, the recommendation problem in the context of for or against voting was
approached using two kinds of collaborative filtering techniques: neighborhood models
and latent factor models. Three ways of computing the k-nearest neighbors were im-
plemented: user-based, link-based and subreddit-based approach. Three latent factor
models were also implemented: Baseline classifier, SVD and VBPCA. Baseline and
SVD models were implemented using stochastic gradient descent while the VBPCA
was applied using the Matlab toolbox developed by Ilin and Raiko (2008). MLRM
was used as a simple and robust ensemble method for combining the results.

The Reddit dataset was introduced, analyzed and split into 3 different sized
datasets and all the experiments were run on these three datasets with missing-at-
random assumption. For finding the best number of neighbors for the k-NN models,
5-fold cross validation was used. The experiments indicated that too many neighbors
were better than too few and the optimal number of neighbors was around 20 or
more, regardless of how the neighborhood was defined in a particular k-NN model.
Choosing more than 20 neighbors did not seem to decrease or increase the RMSE,
except for the sr-wise k-NN model.

5-fold cross validation was also implemented for the SVD and the results indicated
that the optimal number of neighbors k differed between the datasets. This relation
seemed to depend on the size and sparsity of the dataset, such that for the sparser
dataset it was more difficult to find relevant components and thus the SVD was
implemented with only 2 components for the big dataset, but 7 components for the mid
dataset. The number of components for VBPCA was decided to be twice the amount
that was estimated for SVD, since VBPCA can use ARD for adjusting the components
towards zero, if the evidence of the relevance of the corresponding components is weak.

The results on the small dataset using soft RMSE were shown to be 3.11% better
than the best result from Poon et al. (2011). The RMSE from VBPCA, SVD and
link-based k-NN were shown to be better than their best result. This was most
likely due to implementing SVD with SGD as shown by Funk (2006), VBPCA simply
being more advanced model for problems like these and k-NN being implemented in a
different way than theirs. VBPCA was also shown to be superior model on downvote
estimation for the mid and small dataset, while link-based k-NN was better for the big
dataset. The ensemble method MLRM was superior on accuracy and RMSE for all
datasets as one would expect, MLRM being the only ensemble method implemented.

44

CHAPTER 6. CONCLUSIONS 45

From the results of the k-NN classifiers, it is clear that using the user’s votes for the
most similar links is consistently better than estimating votes given by the most similar
users. During the beginning of running the experiments, it seemed like a good idea to
use the subreddit features as the distance measure between the users since it reduces
the dimensionality and intuitively sounds good. However, this approach did not work
as well as the userwise and linkwise k-NN. It is also worth noting that computing
the k nearest neighbors based on links or users may easily become intractable, if the
user-link matrix becomes less sparse. Even for the user-item matrix being as sparse as
it is for the big dataset, the implementation was nontrivial and in actuality probably
the most difficult thing to program efficiently during the experiments phase.

In conclusion, VBPCA and link-based k-NN were by far the best models, which is
further evidenced by the highest weights on the MLRM model for these two models.

The results could most likely be improved by introducing more classifiers, for
example Restricted Boltzmann Machines (Salakhutdinov et al., 2007), or combining
the results of several classifiers with some better suited technique, such as stacked
generalization (Alpaydin, 2004, p. 364).

The dataset itself could also be improved by additional data, such as including
the content of the links to the dataset to enable using content-based approach to
this dataset, such as text mining. Another possibility would be to add part of the
IP address to the dataset for some general geographical analysis. While this kind of
data addition might introduce some privacy or business interest concerns, there are
also ways to increase the value of the dataset without introducing any harm to the
business or to the users. For example, introducing temporal data to the dataset, e.g.,
timestamps to all the votes would increase the breadth of models that could be used
for the dataset as well as the number of interesting research questions to be asked.
One such question would be the extent of multiple user accounts per person for voting,
or the usage of throw away accounts for very short term usage. Some cases of such
behavior might stand out from the dataset. Also, time aware factor models, such
as timeSVD++, have been shown to improve the estimation accuracy on the Netflix
dataset (Ricci et al., 2011, p. 160) so it might improve on Reddit dataset too.

From the viewpoint of this thesis, the most useful addition to the dataset would
be the “zerovotes”, i.e., certainty of a user seeing a link without voting it either way.
This would transform the classification problem from 2 class problem to a 3 class
problem, where the number of zerovotes would most definitely dominate over upvotes
and downvotes.

Hopefully larger and more complete datasets than the Reddit dataset will be
released in the future too, for the joy of hobbyists and professionals alike, without
compromising the privacy of the users present in the data.

Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734–749.

Alexa. Alexa - reddit.com site info. http://www.alexa.com/siteinfo/reddit.com.
Accessed January 17, 2013.

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press, 1st edition.

Bell, R., Koren, Y., and Volinsky, C. (2007). The bellkor solution to the netflix prize.
KorBell Team’s Report to Netflix.

Bennett, J. and Lanning, S. (2007). The netflix prize. In KDD Cup and Workshop in
conjunction with KDD.

Bishop, C. (1999). Variational principal components. In Artificial Neural Networks,
1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), vol-
ume 1, pages 509 –514 vol.1.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Burke, R. (2007). Hybrid web recommender systems. The adaptive web, pages 377–
408.

Funk, S. (2006). Netflix update: Try this at home (december 2006). http://sifter.
org/simon/journal/20061211.html/. Accessed January 17, 2013.

Herlocker, J., Konstan, J., Terveen, L., and Riedl, J. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS),
22(1):5–53.

Ilin, A. and Raiko, T. (2008). Practical approaches to principal component analysis in
the presence of missing values. http://users.ics.aalto.fi/alexilin/papers/
tkk-ics-r6.pdf.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer, second edition.

King, D. (2010). Want to help reddit build a recommender? – a public dump of voting
data that our users have donated for research. http://redd.it/dtg4j. Accessed
January 17, 2013.

46

BIBLIOGRAPHY 47

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 426–434. ACM.

Lagus, K. Virtualcoach blog. http://blog.pathsofwellbeing.com. Accessed
November 24, 2012.

Mahmood, T. and Ricci, F. (2009). Improving recommender systems with adaptive
conversational strategies. In Proceedings of the 20th ACM conference on Hypertext
and hypermedia, pages 73–82. ACM.

McSherry, F. and Mironov, I. (2009). Differentially private recommender systems:
building privacy into the net. In Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’09, pages 627–
636, New York, NY, USA. ACM.

Moore, D. S. and McCabe, G. P. (2006). Introduction to the Practice of Statistics.
W. H. Freeman and Company, 5th edition.

Németh, B. and Tikk, D. (2007). Major components of the gravity recommendation
system. ACM SIGKDD Explorations Newsletter, 9:80.

Netflix. Netflix company timeline. https://signup.netflix.com/MediaCenter/
Timeline. Accessed January 17, 2013.

Netflix (2009). Netflix prize webpage. http://www.netflixprize.com/. Accessed
January 5, 2012.

Noeva, P. (2012). Sampling methods for missing value reconstruction. Master’s thesis,
Aalto University School of Science.

Paterek, A. (2007). Improving regularized singular value decomposition for collab-
orative filtering. In Proceedings of KDD Cup and Workshop, volume 2007, pages
5–8.

Poon, D., Wu, Y., and Zhang, D. Q. (2011). Reddit recommendation system. http://
cs229.stanford.edu/proj2011/PoonWuZhang-RedditRecommendationSystem.
pdf. Accessed January 17, 2013.

Reddit. reddit: the front page of the internet. http://www.reddit.com/about/.
Accessed January 17, 2013.

Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors (2011). Recommender
Systems Handbook. Springer.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines
for collaborative filtering. In ACM international conference proceeding series, vol-
ume 227, pages 791–798.

BIBLIOGRAPHY 48

Salihefendic, A. (2010). How reddit ranking algorithms work. http://amix.dk/blog/
post/19588. Accessed January 17, 2013.

Schwartz, B. (2004). The paradox of choice: Why less is more. Harper Perennial.

Seidman, S. (1983). Network structure and minimum degree. Social networks,
5(3):269–287.

Siltanen, S. and Müller, J. L. (2012). Linear and Nonlinear Inverse Problems with
Practical Applications. Society for Industrial and Applied Mathematics.

StackExchange. Free, community-powered Q&A. http://www.stackexchange.com/.
Accessed January 17, 2013.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.
Adv. in Artif. Intell., 2009:4:2–4:2.

Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2008). Matrix factorization and
neighbor based algorithms for the netflix prize problem. In Proceedings of the 2008
ACM conference on Recommender systems, pages 267–274. ACM.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component anal-
ysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):611–622.

Vatanen, T. (2012). Missing value imputation using subspace methods with applica-
tions on survey data. Master’s thesis, Aalto University School of Science.

