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ABSTRACT

Motivation: Genome-wide measurement of transcript levels is
an ubiquitous tool in biomedical research. As experimental data
continues to be deposited in public databases, it is becoming
important to develop search engines that enable the retrieval of
relevant studies given a query study. While retrieval systems based on
meta-data already exist, data-driven approaches that retrieve studies
based on similarities in the expression data itself have a greater
potential of uncovering novel biological insights.

Results: We propose an information retrieval method based on
differential expression. Our method deals with arbitrary experimental
designs and performs competitively with alternative approaches,
while making the search results interpretable in terms of differential
expression patterns. We show that our model yields meaningful
connections between biological conditions from different studies.
Finally, we validate a previously unknown connection between
malignant pleural mesothelioma and SIM2s suggested by our
method, via RT-PCR in an independent set of mesothelioma samples.
Availability: Supplementary data and source code are available from
http://www.ebi.ac.uk/fg/research/rex.
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1 INTRODUCTION

DNA microarrays are a frequently used high-throughput tool for
measuring gene expression, which is reflected in the continuously
increasing amount of data available in public repositories such
as the Gene Expression Omnibus (GEO) (Barrett er al., 2009)
or ArrayExpress (Parkinson et al., 2009). The thousands of
gene expression studies in these repositories make it increasingly
challenging to retrieve data sets that are relevant to the user.
At the same time, the availability of these collections gives
us the opportunity to develop retrieval methods that take into
account the gene expression data from these studies to deliver
biologically meaningful results and provide insights into the
molecular mechanisms at work in the deposited studies.

There are two possible types of solutions for the task of retrieving
relevant studies from databases. Knowledge-driven approaches
are based on the metadata used to describe the deposited gene
expression studies. Various forms of string matching algorithms
have been applied to retrieve studies based on a textual query
(Zhu et al., 2008). Advanced solutions incorporate controlled
vocabularies or ontologies for semantic query expansion (Malone
et al., 2010). Given high-quality annotations, the likelihood of
biological relevance of the results is high, but methods using this
paradigm are limited to retrieving studies annotated with a known
label. Moreover, these approaches are fundamentally limited by the
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fact that the text-based description of a study and its results contains
only a fraction of the information in the actual gene expression data.

Data-driven or content-based approaches to information retrieval
or meta-analysis (Hunter ez al., 2001; Segal et al., 2004; Lamb
et al., 2006; Fujibuchi er al., 2007; Kapushesky er al., 2009;
Caldas et al., 2009; Hu and Agarwal, 2009; Huang et al.,
2010; Kupershmidt ez al., 2010; Engreitz et al., 2011) have a
high potential for discovering novel and biologically meaningful
relationships between the studied tissues, organisms, and biological
conditions, since similarities between studies are derived from
shared expression patterns. Differential expression is a natural
encoding for a study, as it describes the biological variation between
the studied conditions. It is also a very useful basis for data-
driven retrieval in heterogeneous collections of gene expression
studies, and meta-analysis in general, as it addresses issues such
as inter-platform incommensurability.

Data-driven information retrieval or meta-analysis methods
typically consist of the following four components: (1) a
decomposition of the experimental design of studies into differential
expression (pairwise comparison) of genes or gene sets; (2) a
method to measure the significance of differential expression (e.g.,
fold-change, t-test, or Gene Set Enrichment Analysis (GSEA);
Subramanian et al., 2005), which serves as a basis for encoding the
studies; (3) a method to extract biological patterns of interest from
the encoded studies; and (4) a relevance measure between studies,
conditions, or microarrays. Supplementary Table S1 describes the
various existing approaches for each of the components. Depending
on their scope, most existing methods include only a subset of the
components. For instance, the well-known meta-analysis module
map method (Segal et al., 2004) does not include an approach
for computing the relevance between studies. Conversely, several
information retrieval methods do not make use of any method to
extract shared expression patterns (Hunter ez al., 2001; Lamb et al.,
2006; Fujibuchi et al., 2007; Hu and Agarwal, 2009; Kupershmidt
et al., 2010).

Three challenges that are particularly significant in the context
of large and highly heterogeneous gene expression repositories
but that so far have not been addressed are the decomposition of
studies with an arbitrary experimental design, facilitation of the
biological interpretation of the retrieval results, and the systematic
evaluation of the retrieval performance. For instance, most methods
are designed to deal only with studies comparing case vs. control.
Other methods are able to handle studies with arbitrary designs,
but decompose studies into comparisons in ways that induce study-
specific bias and hinder the interpretation of the retrieval results. As
an example, comparing two phenotypes (e.g. normal vs. disease)
in a multi-factorial study while ignoring additional experimental
variables may introduce confounding factors.

In this paper, we propose REx (data-driven Retrieval of
Experiments), which extends our earlier data-driven information
retrieval method (Caldas et al., 2009). An overview of the key steps
of the method is provided in Figure 1. First, for the decomposition
of studies into pairwise comparisons, we introduce an approach
that takes into account the fact that a comparison depends not only
on the phenotypes being compared, but also on the phenotypes
which are held constant in the comparison, i.e. the context. In each
comparison, the other experimental factors need to have the same
values in order to avoid confounding factors. Unlike in our previous

work, this approach is applicable to any type of experimental factor.
The underlying data-driven modeling has also been extended.

Our proposed unsupervised learning model enables the detection
of associations between studies and the interpretation of these
associations in terms of recurrent patterns of differential expression.
The new model additionally takes into account correlations in the
activity of gene expression patterns; moreover, while the earlier
method worked purely on the level of gene sets, we now additionally
model the activity of the specific genes in the sets to increase
accuracy and enable more specific interpretations. Finally, we
propose a novel ontology-based approach for evaluating the retrieval
results, to deal with the wide range of biological and medical subject
areas spanned by the studies in the repository.

We apply REx to a collection of 1092 studies taken from the
ArrayExpress repository, involving three species (human, mouse,
and rat) and corresponding to a total of 6925 phenotype comparisons
(in our previous feasibility study, we applied our method to less than
800 comparisons derived from human studies). We show that the
inferred differential expression patterns correspond to functionally
coherent core intersections of gene sets. We also demonstrate that
the numerical retrieval performance of our method is competitive
with existing approaches. In a series of case studies, we point out
that connections between conditions found by our method have
been confirmed in independent studies. These case studies illustrate
how conditions can be connected on a molecular level, and provide
evidence for the validity of our approach.

In an experimental validation study, we explored a connection
found by our method that hints at a potential role of the basic
helix-loop-helix transcription factor Single-minded homolog 2, short
isoform (SIM2s) in malignant pleural mesothelioma (MPM), which
has not been previously described in the literature. Using real-
time polymerase chain reaction (RT-PCR), we were able to detect
significant SIM2s under-expression in an independent set of MPM
tumors, indicating that SIM2s may effectively have a role in MPM.
This shows that our data-driven information retrieval approach can
indeed be used to obtain novel biological insights from large and
heterogeneous collections of transcriptomics data.

2 METHODS
2.1 Data

2.1.1 Gene Expression Studies Data sets from transcriptomics
studies in human (Homo sapiens), mouse (Mus musculus) and rat (Rattus
norvegicus) were obtained from the ArrayExpress Archive on 26 October
2009 by selecting all data sets that include a preprocessed expression matrix
and sufficiently curated annotation. The data sets fulfilling these criteria are
also included in the ArrayExpress Atlas database (Kapushesky ez al., 2009)
and the same underlying data were used to construct our collection. A total
of 1092 microarray data sets were retrieved. Out of these, 479 were from
human, 445 were from mouse, and 168 were from rat studies.

2.1.2 Gene Sets For our analysis we used the canonical pathway
gene set collection (C2.CP) provided by the Molecular Signature Database
(Version 2.5) (Subramanian et al., 2005). This collection contains 639 gene
sets that represent pathways from a range of public databases.

2.1.3  Tumor Specimens and RT-PCR Tumor tissue specimens were
obtained from ten malignant pleural mesothelioma (MPM) patients that were
diagnosed with mesothelioma tumor at Royal Brompton and Harefield NHS
Trust, United Kingdom. Of those, six were epithelial and four were biphasic
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Fig. 1. Flowchart outlining the key steps of the REx information retrieval framework. “MSigDB” is the Molecular Signature Database, “NDCG” is the

Normalized Discounted Cumulative Gain measure.

MPMs. As a control we used a microscopically normal scraped pleural tissue
lining of the lung of a 39 year old, previously healthy male patient operated at
the Helsinki University Central Hospital for a non-neoplastic intrabronchial
inflammatory polyp. We then measured the expression levels of MMP2,
MMP3, MMP14, SNAII, SNAI2, MYOM2, SIM2I, and SIM2s via RT-PCR.
We provide the full details of our experimental procedure in Supplementary
Text S1.

2.2 Information Retrieval Framework

2.2.1 Study Decomposition The collected and preprocessed data sets
were decomposed into binary comparisons between two conditions, denoted
by A and B, to be able to determine differentially expressed genes and gene
sets. We applied the following criteria:

1. All samples for the conditions A and B are annotated with exactly
one of two different factor values that belong to the same experimental
factor.

2. If there are additional experimental factors used in the study, the factor
values of each of those must be the same for all samples associated
with conditions A and B. These factor values form the context of the
comparison.

3. For each condition there must be at least three samples.

4. Neutral factors are removed before studies are decomposed into
comparisons. Neutral factors are factors that would not result in
meaningful comparisons and have a very large number of associated
factor values within a study. The factors “age” (without stratification)
or “individual” are examples for such cases. The full list of neutral
factors is shown in Supplementary Text S2.

We extracted all possible comparisons according to these rules, which
resulted in a total of 6925 comparisons. Of those, 1976 are from human
studies, 2137 are from mouse studies and 2812 are from rat studies.

The extracted comparisons were further classified into whether they are
interpretable or not. We define a comparison to be interpretable if either A or
B can be considered as a “control” or “normal” state in the experiment. Such
conditions are, for example, wild type strains when different genotypes are
being compared, a mock treatment when the effects of drugs are analyzed, or
healthy tissues when cancers are studied. The assumption is that the effects
observed in an interpretable comparison can be attributed to the non-control
condition.

In order to identify interpretable comparisons, we assembled a list
of control factor values by manually classifying all factor values used
in the collection of data sets. The full list of control factor values is
shown in Supplementary Text S3. We were able to classify a total of 908
comparisons as interpretable, with 325 coming from human, 429 coming

from mouse and 154 coming from rat studies. The number of interpretable
comparisons is almost nine times higher than in our earlier study, where
only 105 interpretable comparisons were used. Furthermore, in our earlier
work we only considered comparisons of disease against some control as
interpretable, whereas here we considered interpretable comparisons derived
from a wide range of different experimental factors.

2.2.2 Differential Expression We use the signal-to-noise ratio as a
measure of differential expression of each gene in each comparison. We
then apply GSEA version 2.04 (Subramanian et al., 2005) to test for the
overrepresentation of pre-defined gene sets among the most up or down-
regulated genes, and collect the 50 gene sets with the highest normalized
score, ignoring the direction of differential expression. Unlike in previous
work (Caldas et al., 2009), we also consider the most differentially expressed
genes in each gene set, a subset known as the leading edge subset
(Subramanian et al., 2005). We provide additional details in Supplementary
Text S4.
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Fig. 2. Plate diagram of the proposed graphical model. Rectangles indicate
sets of variables, with the cardinality of the set marked in the bottom right
corner. Gray nodes correspond to observed data.
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2.2.3  Unsupervised Learning Method We propose a latent variable
mixture model for analyzing the GSEA results. Patterns of gene set and gene
differential expression are represented as mixture components and GSEA
comparisons are encoded as soft combinations of those components. The
model structure is shown in Figure 2. We assume there are 7" mixture
components, or submodules, with the ¢-th submodule consisting of two
vectors of Bernoulli distributions, ¢, and 1p,. The vector ¢, has length
equal to the number of gene sets and models the binary activation status
of each gene set; the vector 1), has length equal to the total number of
genes in the data set and models the leading edge subset of each gene set.
The activation status of a gene set j in a given GSEA comparison and the
composition of its leading edge subset are assumed to be generated by first
picking a submodule ¢; then, the binary activation status of gene set j is a
sample from a Bernoulli distribution parameterized by ¢y, ;, while for each
gene g in that gene set we generate its leading edge subset membership
by sampling from a Bernoulli distribution with parameter v 4. In order
to model correlations between submodules, we incorporate a two-level
submodule selection procedure (Li and McCallum, 2006); we assume that
each GSEA comparison 4 has a discrete distribution over so-called modules,
parameterized by a vector 8;; each module m has a discrete distribution over
submodules, parameterized by a vector 77,,,. The selection of a submodule ¢
is made by first choosing a module m using 6; and then choosing submodule
t using 7,,,. The variables u and v in Figure 2 indicate the chosen module
and submodule, respectively. Finally, we endow each 6; and m,,, with
conjugate symmetric Dirichlet prior distributions, and each ¢, ; and v 4
with conjugate symmetric Beta prior distributions, parameterized by ag, auy,
g, and vy, respectively. The conjugate prior distributions are primarily
chosen for the purpose of analytical tractability, as it allows us to derive a
collapsed Gibbs sampler for inference and estimation, which has been shown
to work well in latent variable mixture models (Griffiths and Steyvers, 2004).
For reasonably uninformative priors, such as the ones used in this paper, this
choice does not markedly decrease generality.

We use a collapsed Gibbs sampler (Griffiths and Steyvers, 2004) to
compute approximate posterior distributions for w and v, as well as
estimates for 6, 7, ¢, and ) given the observed GSEA results and a
pre-defined number of modules and submodules.

The relevance of a GSEA comparison 7 to a query g is computed as the
expected probability that the parameters of comparison 7 generated the data
in comparison g. Using a general probabilistic formulation, this amounts to
computing

rel(q,r) < / P(ag|¥,) P(¥]X)dT |
v

where X is the input data and W is the collection of random variables upon
which inference is performed (Buntine ez al., 2004).

Finally, our model allows computing for each comparison the marginal
probability that each gene set is active. Using the inferred estimates for the
model variables, the marginal probability of a gene set being active in a given
comparison is given by the following expression:

M T
P(gene set s is active|comparison i) = Z Z Oimnmtdrs (1)
m=1t=1

The full details of our model are described in Supplementary Text SS5.

2.3 Performance Evaluation

In our previous work, the evaluation of retrieval results relied on a manual
classification of comparisons into “cancer-related” and “not cancer-related”
(Caldas et al., 2009). This was possible because the number of comparisons
was fairly small. For the REx method described here, we developed
a scalable approach that employs an ontology-based relevance score to
evaluate the performance of the method.

The Experimental Factor Ontology (EFO; Malone et al., 2010) is a
representation of the relationships between experimental factor values used
in the studies in ArrayExpress and essentially a directed, acyclic graph with a
root. Each experimental factor value corresponds to a path between the root

and a downstream node, with more specific terms generally being further
away from the root. For evaluation purposes, and to compare our method
to other information retrieval methods, we used the EFO as an external
“gold standard”, based on which the relevance of a retrieved comparison
given a query is measured. This approach is a systematic solution for
evaluating retrieval results from a large, heterogeneous collection of studies
that contains data on a wide range of subjects, that would otherwise require
a large number of experts from different fields to evaluate the results; this
expert knowledge is partially encoded in the ontology.

To evaluate retrieval performance with the EFO, we used an expert-
curated mapping to associate the experimental factor values that define
interpretable comparisons with terms in the EFO (Release 1.7), if possible.
The mapping is also used for the ArrayExpress Atlas and available as
a table in the ArrayExpress database. When the non-control condition
of an interpretable comparison can be mapped to the EFO, we call the
comparison an evaluable comparison. A total of 219 evaluable comparisons
were identified based on the mapping from the ArrayExpress Atlas, with 137
coming from human studies, 39 coming from mouse studies and 43 coming
from rat studies.

To compute the similarity between terms in the EFO and thus between
comparisons in our collection, we employed a modified version of the
Jaccard coefficient (Manning et al., 2008), which yields a graded relevance
score between 0 and 1. We then applied the Normalized Cumulative
Discounted Gain (NDCG) measure (Jarvelin and Kekildinen, 2002) to
evaluate REx based on the modified Jaccard coefficient. The approach is
described in detail in Supplementary Text S6.

2.4 Module and submodule interpretation

We used a statistical significance approach to compute a collection of gene
sets and genes with a high activation probability for each module and
submodule. Here, we describe the procedure only for submodules; for
modules, the only difference is that it is first necessary to compute module-
to-gene-set and module-to-gene probabilities by standard marginalization.
For submodule k, we first computed the probability that the submodule
activates both gene set s and gene g via the product ¢y, s g g ds,g, Where
Jds,g asserts if gene g belongs to gene set s. We then assessed which genes
have a significantly high probability of being activated relative to other
genes. This was done by using a one-tailed Wilcoxon rank-sum test, where
the samples being compared are all the (gene set, gene) joint probabilities
that involve a particular gene vs. all other joint probabilities. An equivalent
approach was used for gene sets. Significance was assessed at the standard
g-value threshold of ¢ < 0.05. This allows obtaining for each submodule
a list of significantly probable genes and gene sets. To further bind the two
lists, we pruned the list of significant gene sets by removing those which
are not overrepresented in the list of significant genes, as assessed by a
hypergeometric test with a cut-off of ¢ < 0.05.

3 RESULTS AND DISCUSSION
3.1 Case Studies

We retrieved the top 25 most relevant results for each of the 908
interpretable comparisons in our collection and created HTML-
based reports for each of these queries. The full list of reports is
available online at http://www.ebi.ac.uk/fg/research/rex.

Using these reports we performed a series of case studies in order
to obtain a qualitative evaluation of the retrieval performance of
REX. In each case study we interpreted the retrieval results for one or
more query comparisons with the help of the reported most relevant
gene sets and the literature. Due to space constraints the details
of the case studies are described and discussed in Supplementary
Text S7, S8, and S9. In summary, we were able to use REx to
identify links between conditions such as malignant melanoma and
cardiomyopathies, or between pancreatic cancer, insulin signaling,
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diabetes mellitus, and inflammation. REx also identified a set of
comparisons from different studies that were all related to the central
nervous system.

3.2 RT-PCR Experimental Validation: SIM2s
Expression in Malignant Pleural Mesothelioma

We queried the database with a comparison of malignant pleural
mesothelioma (MPM) vs. normal in human pleura. The top 25 most
relevant comparisons are presented in Supplementary Table S2. The
top two retrieved comparisons come from the same study and test
the effect of potassium and thapsigargin in human cerebrovascular
smooth muscle cells. Both potassium and thapsigargin lead to
elevated levels of Ca®*, by activating Ca®" influx channels
and depleting intracellular Ca®' storage, respectively (Pulver-
Kaste et al., 2006). Abnormal levels of Ca?t can promote tumor
cell proliferation and resistance to apoptosis (Feng et al., 2010),
which potentially explains the connection to MPM. A hallmark
for epithelial and biphasic MPM is the expression of the calcium
binding protein calretinin, which is used in the identification of the
tumors, although it remains unclear what might be its putative role
in carcinogenic processes (Henzi et al., 2009).

The third most relevant comparison is an investigation of an RNAi
knockdown of SIM2s (single-minded homolog 2, short isoform)
in a human colon carcinoma cell line at 18 hours. SIM2, located
on chromosome 21, encodes a basic helix-loop-helix transcription
factor and has two splicing isoforms, SIM2s (short) and SIM2I
(long). Due to its chromosomal location, SIM2 has been associated
with Down syndrome (trisomy 21). For instance, over-expression of
SIM?2 has been shown to induce a partial Down syndrome phenotype
in mouse (Chrast et al., 2000). Due to the fact that individuals with
Down syndrome have a higher risk for leukaemia but a lower risk for
solid tumors than the general population (Hasle et al., 2000), there
are genes on chromosome 21 that are likely candidates for tumor
suppressors or oncogenes (Laffin et al., 2008). SIM2s has been
found to be over-expressed in colon and prostate cancer (Aleman
et al., 2005; Halvorsen et al., 2007), and under-expressed in breast
cancer (Kwak et al., 2007). The connection found by REx suggests
SIM2s may be differentially expressed in MPM. To the best of our
knowledge, SIM2s has not yet been identified as having a role in
MPM. Interestingly, Sim2 expression was found in the mesothelium
of mice during embryonic development, whereas Sim2 mutant mice
died within 3 days of birth from breathing failure due to the defects
in the structural components surrounding the pleural cavity, such
as pleural mesothelium tearing. After severe dyspnea, disruption of
the pleural mesothelium basement membrane was observed in Sim2
mutants (Goshu et al., 2002). In the MPM study analyzed by our
model (Gordon et al., 2005), SIM2s was slightly under-expressed
in comparison to a pleural control (fold-change = 0.87). We
tested via RT-PCR measurements whether SIM2s under-expression
could be observed in an independent set of 10 MPM patients.
This set consisted of six epithelial MPM and four biphasic MPM
(both histological subtypes are included in the original MPM study
(Gordon et al., 2005) analyzed by our model). We also quantified the
expression of genes known to be closely related to SIM2s, namely its
transcriptional targets MYOM?2 (Woods et al., 2008), MMP3 (Kwak
et al., 2007), MMP2, and SNAI2 (Laffin et al., 2008). Finally, we
also measured the expression of MMPI4, which has been recently
observed to be differentially expressed in MPM (Crispi et al., 2009),

as well as the expression of SNAII and SIM2I. The log-ratio results
are presented in Figure 3.

MMP2 MMP14  SNAI1T  SNAI2 MYOM2  SIM2s

log2(MPM/pleura)
o -
1

Fig. 3. Bar plots of MPM vs pleura log-ratio gene expression values
obtained via RT-PCR. The height of the bars represent the log-ratio
expression of the corresponding genes and error bars indicate the standard
deviation.

SIM2s was significantly under-expressed (p < 0.05) in MPM
patients in comparison to a pleural control. MMP3 and SIM2I
expression was detected in all MPM specimens (except MMP3 in
one biphasic sample) but not in the pleural control. While this
implied differential expression of those genes in MPM, the lack
of expression in the pleural control precluded us from obtaining
numerical fold-change values. Although we did not confirm
significant over-expression of MMP 14 reported earlier (Crispi et al.,
2009), the expression levels of MM P14 were significantly correlated
with the expression of MMP2 (r = 0.74, p < 0.05), in accordance
with the fact that MMP14 is required for MMP2 activation (Crispi
et al., 2009). However, we did observe significant over-expression
of SNAI2 (p < 0.05). Over-expression of SNAI2 and MMP3
is consistent with their potential role as repressive transcriptional
targets of SIM2s (Laffin er al., 2008; Kwak et al., 2007). Finally,
over-expression of MYOM?2 is consistent with the fact that it can
be activated by both short and long isoforms of SIM2 (Woods
et al., 2008); in the analyzed MPM samples we observed SIM2!
over-expression.

The fact that we observed statistically significant SIM2s under-
expression in an independent set of MPM patients suggests that
SIM2s may be a relevant gene in MPM. Currently, no known
role for SIM2s in MPM has been described. However, it has
been observed that SIM2s RNALI silencing in MCF-7 cells induces
an epithelial-mesenchymal transition (EMT)-like phenotype and
estrogen receptor (ER) a-negative tumors in mouse via an MCF-7
xenograft assay (Laffin et al., 2008). Over-expression of EMT-
related genes, including SNA/2, has been recently observed in mixed
MPM (Casarsa et al., 2011), which is consistent with our RT-PCR
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results. The importance of estrogen signaling in MPM is an open
question, although recent studies indicate that ERS levels have
prognostic value in MPM (Pinton et al., 2009). The GADD45A
gene, which has been observed to be up-regulated in the SIM2s
depletion study analyzed by our model (Aleman er al., 2005), is
a transcriptional target of ER3 (Paruthiyil er al., 2011). It is thus
tempting to hypothesize that SIM2s expression may be connected
to the estrogen signaling network. An important line of evidence
comes directly from REx. The top three gene sets reported for
both the SIM2s and MM studies are “metabolism of xenobiotics
by cytochrome p450”, “androgen and estrogen metabolism”, and
“arachidonic acid metabolism”. Cytochrome p450 (CYP) enzymes
are known to mediate estrogen metabolism (Tsuchiya et al., 2005).
The genes in the xenobiotics and arachidonic acid metabolism gene
sets significantly overlap, as per a one-tailed Fisher’s exact test
(p < 0.05).

Together, our results and existing work indicate that SIM2s may
have a relevant role in MPM, potentially via the EMT network and
estrogen signaling.

3.3 Functionally Coherent Differential Expression
Patterns

We computed for every module and submodule a group of top gene
sets and genes, as described in Methods. We assessed the functional
profile of each group of genes by testing for the overrepresentation
of Gene Ontology (GO) (Ashburner et al., 2000) biological process
terms.

Supplementary Figures S1 and S2 display the associations
between enriched functional categories as described by gene sets
and modules and submodules, respectively. Modules are enriched
on a wide span of biological processes such as apoptosis (e.g.,
module 1), metabolism (e.g., module 31), neoplasia (e.g., module
38), respiration (e.g., module 13), toll-like receptor signaling (e.g.,
module 28), and transcription (e.g., module 8). There is also an
overall trend for modules to focus either on metabolic gene sets
or disease-related gene sets, although modules from one group
typically include gene sets from the other group.

Next, we studied how the modules combine submodules.
Supplementary Figure S3 displays a heatmap of the distribution
of submodules within the modules. It shows that each module is
primarily focussed on a small number of submodules, with some
of the submodules being effectively used by several modules. It
also shows that while some submodules are predominant in at least
one module, other submodules act as module fine-tuners, not being
highly probable in any module.

These results demonstrate that our latent variable model is able to
extract meaningful patterns of differential co-expression of gene sets
and map them to core subsets of the most differentially expressed
genes in those gene sets.

3.4 Retrieval Performance

We evaluated REx quantitatively by using each comparison in turn
as a query, and measuring how well related comparisons were
retrieved using the NDCG based on the EFO. This complements
the qualitative evaluation through case studies and experimental
validation. To put our quantitative results into context, we also
computed the NDCG for other retrieval approaches, namely a
Term Frequency - Inverse Document Frequency (TF-IDF) model

(Manning et al., 2008) with cosine similarity based on a count
representation for the GSEA results as described in previous
work (Caldas et al., 2009), a Spearman rank correlation approach
based on the fold-change ratios of the expression data, a Pearson
correlation approach using the inferred distributions over modules
of the comparisons, our own earlier method (Caldas et al., 2009),
and a random baseline.

Random TF-IDF LDA  Pearson REx Spearman

T

0.90

0.85 T

0.80

Normalized Discounted Cumulative Gain

—

—
O.OO/I/

Fig. 4. Data-driven retrieval performance, NDCG results. The box
plots summarize the distribution of Normalized Discounted Cumulative
Gain (NDCG) results for 219 interpretable query comparisons. “LDA”
corresponds to our earlier method (Caldas et al., 2009).

The box plots of the NDCG results are shown in Figure 4.
For succinctness, we show only the NDCG results of the best-
performing combination of modules and submodules; the results
for alternative number of modules and submodules are shown in
Supplementary Figure S4. For the random baseline, we computed
for each query comparison the median NDCG over 1000 random
permutations of all other comparisons. In order to obtain a rigorous
measure of the difference in performance between methods, we ran
a two-tailed Wilcoxon signed-rank test over the NDCG values of
every pair of methods, correcting for multiple hypothesis testing via
a g-value threshold of ¢ < 0.05. The random baseline performs
significantly worse than all non-random approaches (¢ < 0.05).
The difference between Pearson correlation and the remaining
non-random approaches is also significant (¢ < 0.05), as is
the difference between Spearman correlation and the remaining
approaches (¢ < 0.05). To confirm whether this difference
corresponds to worse or better performance, we repeated the
same procedure but this time using a one-tailed Wilcoxon signed-
rank test. Pearson correlation performed significantly worse than
all other non-random approaches, while Spearman correlation
performed significantly better. We then analyzed the magnitude of
the difference in NDCG values between our method and Spearman
correlation. The NDCG values obtained by REx are on average 99%

1102 ‘2 Joquiede uo 1s9nb Aq /610°seuinolployxosoirewoluiolq//:dny wouy pepeojumoq


http://bioinformatics.oxfordjournals.org/

(s.d. = 0.03) of the NDCG values obtained using the Spearman
correlation approach.

The difference in performance between REx and the best-
performing approach seems to be consistent, albeit small. Although
Spearman rank correlation performs slightly better than REXx,
all evaluated retrieval methods have essentially a very similar
performance according to the gold standard derived from the EFO.
The advantage of REXx is that it readily provides key information
for the interpretation of the results, as illustrated by our case
studies. The fact that our proposed model-based relevance measure
outperforms other approaches that use the GSEA encoding, but
performs slightly worse than Spearman correlation with a fold-
change encoding, suggests that the proposed relevance measure
itself is sensible, but that the current GSEA encoding may be
suboptimal. Finally, the retrieval results obtained by our method
are robust with regard to the number of modules and submodules.
Changing the number of modules and/or submodules yields retrieval
results that are significantly correlated with the reported ones. We
also found that for multiple choices in the number of modules and
submodules, the structures inferred by the model yield comparison-
to-gene-set probabilities that are significantly correlated with the
comparison-to-gene-set probabilities in the final model, which
justifies the similarity in the query results. The details are described
in Supplementary Text S10.

4 CONCLUSION

We proposed a method, REx, for performing data-driven
information retrieval in a heterogeneous, large repository of
transcriptomics studies. By associating studies with shared patterns
of differential gene set and gene expression, REx facilitates the
analysis of the retrieval results. We also proposed an ontology-based
approach to evaluate the retrieval results, which will become more
precise, as more and more phenotypes are mapped to the ontology.
Additionally, we carried out case studies showing that the method
yields biologically meaningful results. In one of the case studies,
REXx suggested a novel connection between differential expression
of SIM2s and malignant pleural mesothelioma (MPM), which we
validated by observing significant SIM2s under-expression in an
independent set of MPM tumor samples. These results show that
REX can be used to drive biological discovery. Finally, we pointed
out that both REx and existing work are particular cases of a general
framework that unifies meta-analysis and information retrieval.

As the main aim of information retrieval and meta-analysis
methods is to join multiple, heterogeneous data sets in order
to obtain robust and novel findings, one particularly important
direction of research is how to extend the current framework
to alternative or multiple data types. Generally, REx can be
applied to functional genomics data types for which GSEA is a
suitable analysis method (Subramanian er al., 2005). While not
demonstrated here, the method is immediately applicable to gene
expression data generated with sequencing technologies (RNA-seq)
once gene-level measurements have been derived. The same applies
to data sets obtained from quantitative proteomics studies, e.g. using
mass spectrometry, which can also be analyzed with GSEA. REx
can also be applied to collections of metabolite profiling studies, but
there are some practical challenges that would have to be addressed,
such as the need for an appropriate collection of metabolite sets that

is analogous to the gene set collection in the Molecular Signature
Database. Although we did not consider integration of multiple
data types (e.g., Guan et al., 2010), our proposed information
retrieval and meta-analysis framework provides a sound basis for
that task. For instance, since our method is primarily based on the
activation of gene sets, studies with different data types can readily
be merged as long as the same collection of gene sets can be used,
i.e. transcriptomics and proteomics data sets could be integrated and
used for retrieval without major changes to the method.

There is a wide spectrum of practical applications for REx. For
instance, implemented in repositories of gene expression data, the
method could be used to complement existing knowledge-based
approaches for study retrieval. When considering this scenario,
where new studies are frequently added to a repository, the
unsupervised learning algorithms employed by REx would benefit
from the ability to perform online learning, which is an interesting
and relevant area of future research. With such algorithms in place,
the links between studies provided by REx could also serve as
navigational aids in exploratory settings to guide users to relevant
studies in very large repositories.

Overall, as we have showed in this paper, the relatively
unexplored paradigm of data-driven information retrieval in
transcriptomics data offers the possibility of obtaining novel
biological findings based on existing data, and holds the potential
to ultimately accelerate biomedical research in areas as diverse as
drug repurposing or biomarker development.
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