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Abstract— According to a connectionist view, mental states
consist of the activations of neural units in a connectionist net-
work. We consider the similarity of representations that emerge
in unsupervised, self-organization process of neural lattices when
exposed to color spectrum stimuli. Self-Organizing Maps (SOM)
are trained with color spectrum input, using various vectorial
encodings for representation of the input. Further, the SOM is
used for heteroassociative mapping to associate color spectrum
with color names. Recall of association between the spectra and
colors is assessed. It shows that the SOM learns representations
for both stimuli and color names, and is able to associate them
successfully. The resulting organization is compared through
correlation of the activation patterns of the neural maps when
responding to color spectrum stimuli. Experiments show that the
emerged representations for stimuli are similar with respect to the
partitioning-of-activation-space measure almost independently of
the encoding used for input representation. This adds a new
example in favour of the usability of the state space semantics.

I. CONNECTIONIST NETWORKS AND REPRESENTATION OF
CONTENT

The state of a connectionist network is the momentary
activation levels of neurons [1]. A particular state may occur
as a response to stimuli. These have a representation in the
space spanned by the possible activations of the neurons in the
network. Vice versa, any pattern of activation in the network
may represent some, maybe latent, information. According to
a connectionist view, mental states consist in these activa-
tions [1]. Networks with different neural architectures may
reach comparable mental representations or states. Therefore
connectionists have been puzzled with a criterion for deter-
mining when activations in two connectionist networks have
similar content – or even, when they are representing the same
mental state.

Fodor and Lepore [2] argue that connectionist theory of
mind cannot give a satisfactory account of different individuals
being in the same mental state, for the identity of content
follows from the identity of networks, but this condition will
never be satisfied in practice. Laakso and Cottrell [3] note
the same problem in their statement: If connectionism is to
be an adequate theory of mind, we must have a theory of
representation for neural networks that allows for individual
differences in weighting and architecture while preserving
sameness of content.

In this article, we consider a method from Laakso and
Cottrell [3] for comparing the similarity of representations

in connectionist networks, and examine the possibilities of
exploiting it for comparing emergent representations in un-
supervised learning networks. We report the results based on
applying this method as a similarity measure for representa-
tions emerging in the Self-Organizing Maps.

II. MEASURING THE SIMILARITY OF STATE SPACE
REPRESENTATIONS

A straightforward way of measuring the similarity of the
state space representations in a network, or between two
networks having the same configuration, is to measure the
distance between the activation levels of their corresponding
neurons. In this position-in-activation-space view of similarity
[1], the proximity of the state space representations are clearly
dependent on the positions of activation. It is unclear, however,
how two networks with different number of neurons could
be compared according to this view, for common distance
measures are only defined for vectors of equal lengths.

Identifying content with characteristic groupings of activa-
tion patterns was proposed by Churchland [4]. There, it is
claimed that people react to the world in a similar way, because
their activation spaces are similarly partitioned. Laakso and
Cottrell acknowledge this as an evident solution, for it allows
different individuals to represent the same latent information
without needing to have identical networks.

Adopting this partitioning-of-activation-space view to sim-
ilarity of representations, Laakso and Cottrell [3] propose that
content is associated with relative positions in the partitioning
of activation space. The momentary representations should
then be compared by each representation’s location relative
to other possible activations in the same network.

Further, Laakso and Cottrell develop a method for assessing
the similarity of representations in two networks by comparing
their partitionings through correlating the distances between all
pairs of activation patterns in each network:

1) Collect the activation patterns evoked by inputs and
compute the distances between these representations.

2) Compute the correlation between the distances deter-
mined for all different state spaces.

The distances effectively capture the structure of represen-
tational space and eliminate the need to match the dimensions
of the two spaces.



Laakso and Cottrell [3] test their measure with different
architectures of MLP networks that learn to classify colors
based on spectral stimuli. The reported results show that

1) networks with the same architecture that were given
differently encoded spectral inputs learn similar internal
representations,

2) networks receiving identical stimuli learn nearly identi-
cal representations, even when their architecture differs.

In computing the similarity of the distances between points
in two representational spaces, Laakso and Cottrell [3] provide
a partitioning-of-activation-space criterion for semantic sim-
ilarity that answers the challenge Fodor and Lepore [2] place
on state space semantics.

III. EMERGENT REPRESENTATIONS AND ASSOCIATION

Laakso and Cottrell experiments base on supervised learn-
ing to associate color names with color spectra. This, we
think, is not a particularly plausible approach, though maybe
intentionally simplified, in the context where they present it:� differencies in encoding correspond to differencies in

sensory organs across animal species,� different numbers of neurons in the hidden layer of the
MLP correspond to variation according to individual and
cross-species differences in brain capacity and

The concept of color cannot be adequately studied only by
considering the logico-semantic structure of color words. One
has to take into account the color as a physical phenomenon.
Color naming also requires consideration of the qualities of
the human color perception system [5, 6].

We believe that color spectra stimuli as a physiological
input to a connectionistic system provides basis for the emer-
gence of latent representations in an unsupervised manner,
irrespectively of whether the colors have known symbols or
not. Adopting this approach, no color names or ready content
are needed for the formation of meaningful representations of
the stimuli. An association between a color symbol (name) and
spectrum stimulus could grow by their simultaneous excitation
of an unsupervised learning connectionist network.

The partitioning-of-activation-space criterion of Laakso and
Cottrell can be generally applied to measure the similarity
between any two neural representations [3]. In the following
we introduce tools to study this criterion and to repeat their
experiments in the unsupervised learning framework.

IV. METHODOLOGY

A. Self-Organizing Maps

The set of input samples to a connectionist network is
described by a real vector �������	� where 
 is the index of
the sample. Each node in the Self-Organizing Map (SOM) [7]
contains a model vector �
� ��� � , which has the same number
of elements as the input vectors. The nodes of the map form
an array with a definite topology. The array is often a two
dimensional rectangular grid.

The net outcome of the adaptation process (see [7] for
details) is that ordered values for the � � emerge over the array.

Initial values of the � � can be arbitrary. The basic properties
of this ordering are that the distribution of the model vectors
tends to approximate the density of input vectors, and that
the organization of model vectors in the array is such that the
mapping tends to preserve the topology of the input space.

The output or the activation of the SOM, as a response to
stimulus � � , is the excitation of the best matching unit (BMU)
and its neighboring neurons, whose values are determined by
the application. This is referred to as postsynaptic activation
in [8].

A detailed description about the selection of the parameters,
variants of the map, and many other aspects have been covered
in [7]. The SOM could be considered as an artificial neural
network model of the brain [8] e.g. regarding the observed
ordered “maps” in the cortex. It can also be viewed as a
model of unsupervised statistical machine learning, as an
adaptive knowledge representation scheme, as a statistical tool
for multivariate analysis, or as a data mining and visualization
tool.

B. Associative Mappings with the SOM

Assume two input patterns ����������� ��� and ����������� ��� are
concatenated to form a single input vector ��������� �!� �"�$#%��� .������� and ������� may encode some information & and '
presented simultaneously to the SOM. Now the model vectors�(� have components corresponding to & and ' , respectively:�(�%) * � ������� ������ +-, (1)

During training, the SOM builds an association between &
and ' . To evoke this association, the BMU . is defined on
the basis of � �/���� and ���/��� only. An estimate of ������� , in the
sense of the SOM mapping, is obtained as the vector � �����0 .
This recall of the � �����0 is referred to as associative mapping
by Kohonen [7].

If the variance of the patterns ������� are large compared to
the variance of the � ����� , then component � �/��� of the input
has in general little significance in computation of the distance
that determines the BMU. Consequently, the organization of
the map is not affected by ���/��� , but the SOM learns to
approximate ���/��� in the SOM neighborhood of ������� . The
special case, where ������� is not used in finding the BMU at
all is referred to as heteroassociative mapping [7].

V. EXPERIMENTS

A. Data

In order to compare our results with those Laakso and Cot-
trell presented for the MLP, we prepared the spectrophotometer
measurements [9] for the “Munsell book of color: matte finish
collection” [10] in the same manner as in [3]. This resulted
in 640 patterns of color spectrum ���/1�� consisting of colors
red, yellow, green, blue and purple with hue values 2.5, 5, 7.5
and 10. The pattern is a 12-dimensional vector, where each
component represents the reflectance intensity of a color chip
measured at 25 nm intervals from 400 nm to 700 nm ranging



from 0 to 4095. These spectrum patterns were further encoded
as described in [3] into binary, real, gaussian and sequential
representations ���/1�23�546���/1879�:4$���/1�;:�:46���/1�<$� having dimensions
96, 12, 60 and 3, respectively. The first two encodings rep-
resent the frequency in 8-bit binary and real basis. In the
Gaussian, the frequency range is evenly partitioned by five
Gaussians in a manner akin to the trichromacy of color vision.
Each color is therefore represented by five real numbers. The
sequential encoding was formed by numbering the patterns
sequentially with three-digit decimal numbers resulting in
three-dimensional input. [3] The color names where given
symbols R, Y, G, B, P and encoding by the binary vectors

� ��=��� )?>@@@@@A @@@@@B

CED�F�F�F�F�GIH 4 if the symbol is RC$FJDKF�F�F�GIH 4 ” YC$FLFMDKF�F�GIH 4 ” GC$FLF�FMDKF�GIH 4 ” BC$FLF�F�FMD�G H 4 ” P

(2)

Every sixth of the patterns was taken in the test set and the
rest were used as the training set.

B. Testing procedure

To study the effects of encoding, a sample of five SOMs
(Sec. IV-A), each with random initial values for model vectors,
were trained for the four encodings of the color spectrum. Each
SOM was configured to use 13x9 neurons in hexagonal lattice
and the Gaussian neighborhood function. To find the effect of
the map size, maps of sizes 3x2, 5x3, 8x5, 10x8, 13x9, 15x11,
18x14, 20x15, 22x18 and 25x20 were trained additionally for
the binary and sequential encodings.

Following the partitioning-of-activation-space criterion
(Sec. II), Euclidean distances of the activations on each map
were computed for every pair of the test input patterns. Pearson
correlations and their p-values were then computed for these
distances. The activation of a neuron was computed with a
Gaussian neighborhood function [7], where the radius was set
to
D8NODPF

of the smaller of the dimensions of the map lattice.
For the emergence of an association between spectrum input���/1�� and color symbol input ���/=K� , these were concatenated

to form a single input vector during training (Sec. IV-B).
The color symbol part of the input was not used in finding
the BMU. After training, the map units were labelled with
the color symbol, whose component had the highest value
in the color part � ��=��� of the model vectors. This strongest
association for each test pattern was compared with the
respective color symbol of the test pattern. The performance
of recall of the color symbol was recorded.

SOM Toolbox [11] has been utilized throughout this study
when working with the SOM.

VI. RESULTS

A. Similarity of the emergent representations

First we want to get an understanding on how similar the
input representations resulting from the four encodings of the
color spectra are. For this purpose, the correlations between
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Fig. 1. Representations for the stimuli are similar to each other except in
the case of sequential encoding. The Hinton correlations between pairwise
distances of the input patterns of different encodings. The area of a box is
proportional to the correlation. Black boxes indicate significant correlation
(p-value Q 0.05). Numbering of the encodings: 1 for binary, 2 for real, 3 for
gaussian and 4 for sequential.
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Fig. 2. Emerged representations for the stimuli in the maps are similar to
the representations of the stimuli to some degree except for the sequential en-
coding. The Hinton diagram displays the mean correlations between distances
between input patterns for each encoding and distances between activations
of five networks trained on each encoding. Black boxes indicate mean p-value
less than 0.05. Numbering of the encodings: 1 for binary, 2 for real, 3 for
gaussian and 4 for sequential.

the distances between every input pattern pair are computed
as described in Sec. II. Correlations are strong except for the
sequential encoding, where the pattern distances only correlate
weakly with distances of the other encodings (Fig. 1). The
strong correlations indicate that the respective encodings have
preserved the relative distances between the patterns to large
degree. In these encodings, spectrum samples that are alike
are close to each other and between different samples there is
relatively longer distance. The reason for the weak correlations
with the sequentially encoded patterns is the peculiarity [3] of
the sequential encoding itself that hardly reflects the distances
between the original physical spectrum patterns.
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Fig. 3. The emergent representations in the maps are similar irrespectively
of the encoding the map was trained with, except for the maps that were
trained with the sequentially encoded stimuli. The Hinton diagram displays
the mean correlation between activations of five networks trained on each
encoding and five networks trained on each other encoding. The area of a
box is proportional to the correlation. Black boxes indicate mean p-value less
than 0.05. Numbering of the encodings: 1 for binary, 2 for real, 3 for gaussian
and 4 for sequential.

Next we examine the similarity between the representation
that has emerged in the map for a given input stimulus and
the representation of the stimulus itself. For this purpose, the
distances between the activations of the map evoked by each
input pair are computed. These are found to be similar to some
degree across encodings (Fig. 2). The correlations, though
significant, are weaker than those between encodings (Fig. 1).
Only the sequentially encoded stimulus is not similar to any
representation, but its own. As the SOM forms a non-linear
mapping that tends to preserve the topology of the input space,
there is an expected similarity between the distances of the
input patterns and the distances of their representations — in
proportion to the similarity of the stimuli encodings.

Finally we compare the emerged organization of repre-
sentations in the maps, with respect to the partitioning-of-
activation-space view of similarity. The distances do correlate,
irrespectively of the encoding that the map was trained with,
except for the maps that were trained with the sequentially
encoded stimulus (Fig. 3). They correlate only in the maps
trained using sequential encoding.

The representations are similar, when they correlate, as
similar color spectra activate approximately equal positions
in the maps, relative to activations stimulated by other spectra
samples. If one compares individual responses between two
maps they may seem to have no relation at all. This is
due to the degree of freedom available to the organization
during training. The SOM may take different directions in
the organization, depending on the initial values or other
randomness in the training phase. It is worth noting that the
correlations seem to be stronger between the activations than
between the activations and stimuli (Fig. 2).
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Fig. 4. The strength of the association for each color name in the 13x9 units
of a map. This map was trained with the real encoded color spectrum and the
encoded color names as input. Strong associations for each color are grouped
together.
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Fig. 5. The strength of the association for each color name in the 13x9 units
of a map. This map was trained with the sequentially encoded color spectrum
and the encoded color names as input. For most of the colors the association
is not strong and is overlapping with associations for other colors.

B. Emergence of association between colors and spectra

The association between color symbols and spectra has
emerged during training by their simultaneous input to the
map. The result can be analysed by plotting, for every map
unit, the values for the components that match the color
symbols in the model vectors, � ��=K�� . Values near 1 for such a
component indicate that the unit has received little other input
than 1 for the component in question. This can only happen
with the chosen color symbol encoding (2), if spectra that map
into this unit, have the same color. Hence high values for a
component indicate strong association between the respective
color and the stimulus patterns mapping into the unit. Values
near 0 indicate that the spectra mapping into the unit is not
associated to that color at all. The strength of the association
increases as the values for a component increase from 0 to 1.

In the map receiving the real encoded stimuli, color com-
ponents have high values in distinct regions of the map
(Fig. 4). Units in these regions are images of spectra that have
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Fig. 6. Correlations between the representations in the maps trained on
the real encoding versus map size, and their correlation to input patterns.
Representations get more similar to each other as the map size grows, but less
similar to input patterns. Map sizes are 3x2, 5x3, 8x5, 10x8, 13x9, 15x11,
18x14, 20x15, 22x18 and 25x20.

the respective color symbol as the component. For the real
encoding, the same colors are very well grouped together in
the input space.

In contrast to the real encoding, for the sequentially encoded
input, the regions occupied by the color symbols are noticeably
overlapping for some colors (Fig. 5). This happens because
the input patterns have little information about the color. One
of the tree dimensions of the input carries the information.
Association can grow only along that dimension.

When we compare the results for the recalling of the color
symbols of the input patterns, one has to remember that the
maps were not specifically trained to recall the color symbol,
but the color component having the highest value indicates
the association. For the real and sequential encoded maps the
association was correct for 68% and 40% of the test patterns,
respectively. This further supports the idea that the encodings
are qualitatively different.

C. Effects of scaling of the map capacity

The number of units in the SOM determines its capacity to
differentiate between input patterns. In order to rule out the
possibility that the results are remarkably dependent on the
map capacity, we compared the results for maps of different
sizes for the real and sequentially encoded inputs.

When we examine the similarity between the SOM rep-
resentations and the real encoded stimuli as a function of
map size (Fig. 6), the inputs are similar to their representation
for the maps having less than 80 units. For the larger maps
this similarity is not very strong. On the other hand, if we
look at the similarity of the representations as the maps grow
larger, we note that it increases up to sizes of 40 units and
then saturate. Similarity between the representations is clearly
greater than the similarity between representations and stimuli
for map sizes larger than 40 units.

In contrast to the real encoding, the maps trained with
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the sequential encoding show little difference between the
similarity across representations and the similarity between
representations and stimuli (Fig. 7) — though the same trends
for the effects of the size can be recognised. In this encoding
there is little detailed structure that the SOM could reveal even
with greater capacity.

As the capacity of a map grows, its resolution in discrimi-
nating between inputs improves. This is evident in Fig. 8 that
shows the accuracy improving up to sizes of 300 units and
then saturating at the level of 85% for the real encoding and
70% for the sequential encoding.

VII. DISCUSSION

We have studied the relationship between continuous (per-
ceptual) domain and discrete (symbolic, linguistic) domain in
supervised learning framework (see also [12]). In particular,



we have considered how different encodings or representations
of the input data influence concept formation process.

Figures 6 and 7 show that there is a much weaker relation-
ship between the stimulus and the coded representations than
across representations. This was also reported in [3]. More
interestingly, when the map size is small, i.e., there are not
enough degrees of freedom to account for the complexity of
the data to be coded, the best it can do is to get close to
reproducing the input. This is the reason for the poor results
found for small sizes of the maps — metaphorically, it would
correspond to being able to simply reproduce the inputs in a
’parrot-like’ manner.

When the degrees of freedom increase, the map representa-
tion is able to reach ’meaningful’ coding of the inputs, in such
a way that formation of the internal semantics occurs, hence
getting more distant from the inputs, but better structured.
Using a similar analogy as in the above, one could say
metaphorically that the map is capable of understanding the
meaning of what it is producing. After reaching a certain
degree of complexity, any increase of map size can only help
refining the structuring.

Figure 7 shows that, if the input encoding is ’unnatural’,
it can be expected that without a clear external constrain to
the representation, i.e., supervision, all maps can not reach
the desired representation. The maps then stay in the level
of simply reproducing as much as possible the input pattern.
We could say that these maps have not found any significant
internal structure, content, in the stimuli.

The measure of similarity presented in [3] is easily trans-
posable to unsupervised mapping. We still find it to be a very
useful one. Emergent representations follow a similar path as
supervised codings, as different systems (e.g. varying sizes of
maps) reach similar formation of the core content.

We have shown that supervision is not needed in order to
gain meaningful representations regardless of the input encod-
ing if the encoding can be considered ’natural’. Of course, raw
input may not always be sufficient source for meaning concep-
tual organization but some external or secondary information is
necessary. However, we claim that the statistical characteristics
of the primary input data is a reasonable starting point for the
formation of conceptual structures.

In the future, we plan, e.g., to study more in detail the
notion of ’naturalness’ of encoding schemes, and the sources
of variation and ambiguity in the concept formation process.
We also aim to take into account the apparent hierarchical
nature of many conceptual structures.

VIII. CONCLUSIONS

The motivation behind the present paper was to examine
Laakso and Cottrell findings regarding measures of similarity
between representations [3], in emergent, i.e. unsupervised
environments. We observed the following:

1) the SOM learns representations both for stimuli and
color symbols and is able to associate them successfully,

2) application of the partitioning-of-action-space criterion
for measuring the similarity of the latent representations

for the stimuli show that the representation are alike
almost independently of the encoding used for input.

The discovered usability of this criterion for the emergent
representations, adds new support in favour of the state space
semantic view of mind, and gives a counter example against
the challenges Fodor and Lepore [2] have placed on the
connectionist theory.
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