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Abstract

A family of satisfiable benchmark instances in conjunctive normal form is introduced.
The instances are constructed by transforming a random regular graph into a system of
linear equations followed by clausification. Schemes for introducing nonlinearity to the in-
stances are developed, making the instances suitable for benchmarking solvers with equiv-
alence reasoning techniques. An extensive experimental evaluation shows that state-of-
the-art solvers scale exponentially in the instance size. Compared with other well-known
families of satisfiable benchmark instances, the present instances are among the hardest.
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1. Introduction

During the last ten years there has been continuous interest in developing increasingly
robust and efficient solution techniques for the propositional satisfiability problem (SAT).
This research is largely motivated by the emergence of SAT-based techniques as a powerful
alternative to more domain-specific techniques in many applications [11, 17, 32, 35].

In this paper we are interested in constructing benchmarks useful for developing state-
of-the-art clausal SAT solvers. In particular, the goal is to develop families of satisfiable
benchmarks in conjunctive normal form (CNF) that are empirically hard. Ideally, this means
families of benchmarks for which the running time of state-of-the-art SAT solvers (i) scales
exponentially in the size of the instance and (ii) is substantial even for instances of modest
size. In this work we focus on developing empirically hard benchmarks for two of the most
successful classes of SAT solvers, i.e., those based on Davis-Putnam-Loveland-Logemann
(DPLL) type algorithms and local search. From the perspective of solver development,
benchmarks that are empirically hard for a particular class of SAT solvers reveal the prac-
tical gains of introducing new techniques (such as equivalence reasoning) into the solvers.

Benchmark sets arising from industrial applications constitute perhaps the most relevant
test cases from a practical perspective. However, they have some limitations especially in
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early stages of solver development. Industrial benchmarks typically come only as individual
instances that are quite large, which makes them difficult to use in testing new algorithmic
ideas, as large instances require substantial effort on optimizing key routines in the solver.
Moreover, benchmarks consisting of a limited number of individual instances are not well
suited for measuring improvement and scalability.

There are a number of properties that can be considered desirable for a family of
benchmarks, especially with solver development in mind. The family should have con-
trol parameters—such as size—that provide control over the difficulty of a test case. Test
cases with the same parameter values should have similar computational characteristics
(are roughly equally challenging) and already fairly small test cases should be empirically
hard. Test cases should have structure that could be exploited by an advanced solver and it
should be easy to generate large numbers of guaranteed satisfiable (unsatisfiable) test cases
of the same size.

A number of crafted families of unsatisfiable instances [16, 23, 50, 51] are known to be
hard not only empirically but also in a stronger sense. In particular, it has been shown that
minimal resolution proofs for various CNF families are exponential. Such results imply that
all SAT solvers based on proof systems that can be polynomially simulated by resolution—
including DPLL-based solvers [9]—scale exponentially on the considered CNF families.

Here we focus on hard satisfiable instances, which have turned out to be more difficult
to construct. In many applications the instances of interest are in fact satisfiable and the
key task of a SAT solver is to find a satisfying truth assignment [11, 17, 32, 35]. Hence,
good performance for satisfiable instances is very important in practice. Satisfiable test
cases are also useful in comparing different heuristics in their ability to guide the search
towards a satisfying truth assignment. Moreover, only satisfiable instances are relevant for
benchmarking incomplete (local) search methods.

Among the well-known sources of empirically hard instances are the random k-SAT [18]
model and its restrictions such as regular random k-SAT [14]. However, the satisfiability
of random k-SAT instances cannot be determined efficiently beforehand. This problem has
been addressed by “hiding” solutions by generating only clauses that are satisfied by truth
assignments selected beforehand [2, 7, 29]. More structured satisfiable benchmark instances
have been developed based on, for example, quasigroup completion [1, 31]. However, a large
number of variables is required in the clausal encoding of quasigroup completion to obtain
a challenging instance for state-of-the-art SAT solvers.

Although systems of linear equations modulo 2 are polynomial-time solvable by Gaus-
sian elimination, linear equation systems presented in CNF (XORSAT) are a well-known
source of empirically hard instances for DPLL solvers. For example, in the area of circuit
verification and logical cryptanalysis there are problems involving linear substructure (XOR
equations) that are very challenging for CNF-based solvers [8]. The random k-XORSAT
model [45] even exhibits a phase transition phenomenon similar to that of random k-SAT.
Starting from the seminal work of Tseitin [50], ways of transforming different types of graphs
into linear equation systems modulo 2 have been considered for constructing notably hard
CNF families. Such models enable the generation of instances with predefined satisfiability.
Many of the proposed satisfiable XORSAT families are motivated by spin glass models from
statistical physics [22, 28, 41]. Recently, satisfiable XORSAT has also been examined in a
complexity theoretic setting [3].
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In this paper we develop a satisfiable CNF family—(random) regular XORSAT—by
transforming random regular graphs into systems of linear equations modulo 2 presented in
clausal form. The idea behind constructing empirically hard satisfiable XORSAT instances
for DPLL-based solvers is to limit the effectiveness of Boolean constraint propagation as
much as possible. In this respect, the underlying graph should be “highly connected” and,
on the other hand, the number of occurrences of each variable should be as small as possible.
The novelty here is that we employ random regular graphs, i.e., random graphs with each
vertex having the same number of neighbors, to force these properties. Due to the simplicity
of the model, it is easy to generate large numbers of instances of the same size. Moreover, we
develop techniques for introducing nonlinearity (other Boolean connectives than XOR) into
the equation system to make the benchmarks challenging also for clausal solvers equipped
with equivalence reasoning techniques, i.e., special methods for solving linear equations
presented in clausal form.

We perform extensive experimental evaluation of regular XORSAT with the following
main conclusions.

• Both DPLL based and local search state-of-the-art SAT solvers scale exponentially
on regular XORSAT. Furthermore, all instances of the same size are roughly equally
challenging.

• By introducing nonlinearity into regular XORSAT, also DPLL solvers with equivalence
reasoning techniques scale exponentially. However, we observe significant differences
in the effectiveness of different equivalence reasoning techniques.

• Compared with several other families of satisfiable benchmarks, regular XORSAT is
among the hardest with respect to the number of variables. As suggested by the results
of the SAT Competition 2005 (see http://www.satcompetition.org/), already small
instances of regular XORSAT are very hard to solve.

The paper is organized as follows. Preliminaries are presented in Section 2. Section 3
introduces regular XORSAT and offers a hypothesis to explain the empirical hardness of
the instances. Experimental evaluation of regular XORSAT against other known families
of hard satisfiable instances is presented in Section 4.

2. Preliminaries

Let X be a set of Boolean variables. Associated with every variable x ∈ X there are
two literals, the positive literal, denoted by x, and the negative literal, denoted by x̄. A
clause of length k (a k-clause) is a disjunction of k distinct literals. A propositional formula
in conjunctive normal form (a CNF formula) is a conjunction of clauses. We adopt the
standard convention of viewing a clause as a finite set of literals and a CNF formula as a
finite set of clauses. A truth assignment τ associates a truth value τ(x) ∈ {0, 1} with each
variable x ∈ X. A truth assignment satisfies a CNF formula if it satisfies every clause in it.
A clause is satisfied if it contains at least one satisfied literal, where a literal x (respectively,
x̄) is satisfied if τ(x) = 1 (respectively, τ(x) = 0).

The satisfiability problem (SAT) is to decide whether a given CNF formula (the “problem
instance”) admits a satisfying truth assignment. If every clause in the instance has length
k, then we speak of the k-SAT problem.
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A graph is a pair G = (V, E), where V is a finite set and E is a set of 2-element subsets
of V . The elements of V are called vertices and the elements of E edges. Two vertices
u, v ∈ V are adjacent if {u, v} ∈ E. A vertex u ∈ V is incident to an edge e ∈ E if u ∈ e.
The degree d of a vertex is the number of vertices adjacent to it. A graph is d-regular if
all of its vertices have degree d. A graph is bipartite if there exist X, Y ⊆ V such that
X ∪ Y = V , X ∩ Y = ∅, and every edge is incident to one vertex in X and one vertex in Y .
Such a pair (X, Y ) is a bipartition of the graph.

3. Regular XORSAT

In this section we describe the proposed family of hard satisfiable benchmarks which we
call regular XORSAT. Roughly, the generation procedure is as follows. First, a 3-regular
constraint graph is selected uniformly at random. Then, a system of linear equations modulo
2 based on the graph is constructed. Finally, the actual regular XORSAT instance is
obtained by transforming the equations into an equivalent set of clauses. As an optional
postprocessing step, various degrees of nonlinearity may be introduced into the clause set.

We now proceed to describe and analyze regular XORSAT in more detail.

3.1 The Basic Construction

Let n be the number of variables in the regular XORSAT instance to be constructed.
Let X = {x0, x1, . . . , xn−1} be an associated set of n Boolean variables and let Y =
{y0, y1, . . . , yn−1} be a set of n elements, each corresponding to an equation in a system
of n equations over X. A constraint graph G = (V, E) with bipartition (X, Y ) characterizes
the occurrences of the variables in the equations, that is, {xj , yi} is an edge of G if and only
if the variable xj ∈ X occurs in the equation yi ∈ Y . The foundation of our construction lies
in selecting a constraint graph G uniformly at random from the set of all 3-regular graphs
with bipartition (X, Y ). As a running example, consider the graph in Figure 1.

y0 y1 y2 y3

x0 x1 x2 x3

Figure 1. A 3-regular constraint graph

Once a constraint graph G has been selected, construct a system of linear equations
based on G as follows. Let A = (aij) be the n × n matrix whose entries are defined for all
i, j = 0, 1, . . . , n − 1 by

aij =

{

1 if {xj , yi} ∈ E,

0 if {xj , yi} /∈ E.

Select uniformly at random a ~z ∈ {0, 1}n and let ~b ∈ {0, 1}n so that ~b ≡ A~z (mod 2). The
system of linear equations is now A~x ≡ ~b (mod 2), where ~x = (x0, x1, . . . , xn−1) is a column
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vector of variables. Note that by construction A~z ≡ ~b (mod 2), so the system always has
at least one solution—if a unique solution is required, then the matrix A must be invertible
modulo 2. As an example, from the constraint graph in Figure 1 we obtain the matrix

A =









1 1 0 1
0 1 1 1
1 0 1 1
1 1 1 0









.

For a randomly chosen vector

~z =









1
0
1
1









we arrive at ~b =









0
0
1
0









and the equation system















x0 + x1 + x3 = 0
x1 + x2 + x3 = 0
x0 + x2 + x3 = 1
x0 + x1 + x2 = 0

(mod 2).

Finally, transform the system A~x ≡ ~b (mod 2) into a CNF formula by introducing for every
equation xj1 + xj2 + xj3 ≡ bi (mod 2) a set of four clauses that forbid the combinations of
truth values that violate the equation. For example, the equation x0 +x1 +x2 ≡ 0 (mod 2)
transforms into the clauses {x̄0, x̄1, x̄2}, {x̄0, x1, x2}, {x0, x̄1, x2}, and {x0, x1, x̄2}. For the
running example, the resulting regular XORSAT instance is

{{x̄0, x̄1, x̄3}, {x̄0, x1, x3}, {x0, x̄1, x3}, {x0, x1, x̄3},
{x̄1, x̄2, x̄3}, {x̄1, x2, x3}, {x1, x̄2, x3}, {x1, x2, x̄3},
{x̄0, x̄2, x3}, {x̄0, x2, x̄3}, {x0, x̄2, x̄3}, {x0, x2, x3},
{x̄0, x̄1, x̄2}, {x̄0, x1, x2}, {x0, x̄1, x2}, {x0, x1, x̄2}}.

3.2 Motivation for the Regular XORSAT Model

The idea of transforming a graph into a system of linear equations followed by clausification
dates back at least to Tseitin’s seminal work on resolution proof complexity [50]. Compared
with Tseitin’s construction, we employ a somewhat different transformation from a graph
into equations, and focus on satisfiable instances rather than the unsatisfiable instances
employed in proof complexity theory [10, 16, 51]. Recently, also satisfiable instances based
on clausification of linear equations have been examined in a complexity theoretic setting [3].

The two existing benchmark families most resembling ours are the random 3-XORSAT
instances [45] and the 3-XORSAT family described by Jia et al. [28] motivated by spin
glass models from statistical physics. Comparing regular XORSAT and random 3-XORSAT
(with forced satisfiability), our construction uses a random regular constraint graph whereas
in random 3-XORSAT the constraint graph is formed by associating independently and
uniformly a set of three variables with each of the m equations, m being an additional
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parameter. Thus, given n variables our construction produces exactly n equations with
exactly three occurrences of each variable, whereas in random 3-XORSAT the number
of occurrences of a variable is a binomially distributed random variable with expectation
3m/n. Comparing regular XORSAT and the spin glass 3-XORSAT family described by
Jia et al. [28], our construction selects the regular constraint graph uniformly at random
whereas Jia et al. associate with each (square) n a fixed regular constraint graph derived
from a

√
n ×√

n rhombic lattice with cyclic boundary.

Given this resemblance to existing benchmarks, it is not immediate why combining
regularity and random selection should yield results any different compared with existing
benchmarks. For example, the clauses-to-variables ratio commonly used to predict sat-
isfiability and computational difficulty in the context of random 3-SAT [18] and random
3-XORSAT [45] is equal to 4 for both regular XORSAT and the spin glass 3-XORSAT
instances: each linear equation with 3 variables clausifies to 4 clauses. Nevertheless the
experiments documented in Section 4 show that regular XORSAT instances exhibit more
rapid exponential scaling for state-of-the-art SAT solvers than the aforementioned bench-
marks. In what follows we motivate this observed difference by explaining why a DPLL-type
algorithm without learning could find regular XORSAT instances challenging.

A DPLL-type algorithm without conflict learning performs a systematic search for a
satisfying truth assignment for the given set of input clauses. In an abstract setting, it can
be seen as a depth-first traversal of a search tree whose every internal node is associated with
a split variable xj , and the two child nodes of such a node correspond to setting τ(xj) = 0
and τ(xj) = 1, respectively. Following each split, Boolean constraint propagation (BCP) is
applied to determine the values of additional variables based on the values assigned to the
split variables in the path from the current node to the root node of the tree. This can lead
to a satisfying truth assignment in which case the search can be stopped. However, if BCP
leads to a conflicting assignment for a variable, the algorithm backtracks to the nearest split
variable for which the other branch has not yet been explored and continues from there.

In what follows we consider the case where a DPLL type algorithm is working on a set of
clauses representing a system of linear equations. In this discussion it is convenient to look
at BCP on the level of linear equations rather than clauses. On this level BCP can be seen
as a procedure that computes the closure of the simple rule of finding an equation with only
one variable whose truth value has not been assigned and setting the truth value as dictated
by the equation. This connection is quite straightforward to establish because the steps in
BCP have clear counterparts on the level linear equations. On the level of clauses, BCP
can be seen as the application of the following rule until no new truth value assignments
can be derived: simplify the clause set given the current assignment of truth values and
then extend the assignment for the 1-clauses in the simplified clause set by setting τ(x) = 1
(respectively, τ(x) = 0) if the clause {x} ({x̄}) appears in the set. Indeed, considering a
set of clauses originating from linear equations, these steps can easily be traced back to
the linear equations. The operation of simplifying a set of clauses when setting τ(xi) = 1
(τ(xi) = 0) means on the level of clauses that we remove all clauses containing the literal
xi (x̄i) and all literals x̄i (xi) from the remaining clauses—the clauses that remain are
exactly the clausification of the linear equations with xi set to 1 (0). Similarly, a 1-clause
corresponds to an equation in which the truth value of all but one variable has been assigned.
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To generate a small instance based on linear equations that is empirically hard for
DPLL-type algorithms, essentially three properties are intuitively desirable.

(i) To keep the size of the resulting set of clauses small (without introducing additional
variables), each equation should contain as few variables as possible, 3 variables being
the smallest nontrivial number.

(ii) Each variable should occur in as few equations as possible to limit the implications of
setting the truth value of a variable. If instances with a unique solution are desired,
n equations are required for n variables, and thus each variable must occur on the
average in at least 3 equations. A 3-regular constraint graph forces each variable to
occur in exactly 3 equations.

(iii) The equation system should be “highly connected” to limit the effectiveness of BCP.

We proceed to discuss connectedness in more detail. Suggested in particular by the
proofs of hardness in [3, 10, 51] (see also [9]), the connectedness of an equation system can
be measured by the expansion properties of the underlying constraint graph. Here we focus
on edge expansion. For a graph G = (V, E) and a set U ⊆ V of vertices, let ∂GU be the set
of all edges in G that are incident with exactly one vertex in U . Call ∂GU the boundary of
U . The expansion coefficient of G—alternatively, the isoperimetric number of G—is defined
by

h(G) = min

{ |∂GU |
|U | : U ⊆ V, 1 ≤ |U | ≤ |V |

2

}

.

To provide an intuition why expansion is relevant in limiting the effectiveness of BCP, let
us derive an upper bound on the performance of BCP in terms of the expansion coefficient
h(G) of the constraint graph G underlying a regular XORSAT instance. Our interest is to
bound the number of determined variables based on the number of split variables and the
expansion coefficient.

In the present context of linear equations with exactly 3 variables each, BCP can be
seen as the application of the following rule until no more variables become determined:
letting S ⊆ X be the set of variables whose value has been determined so far, if the instance
contains an equation with 2 variables in S and 1 variable xj ∈ X \S, then we can insert xj

into S. We denote by S̄ the closure of S with respect to BCP. In each node of the DPLL
search tree, the set of determined variables can be seen as the BCP closure of the set of
split variables in the path from the current node to the root node. Recall that we write n
for the number of variables.

Theorem 1. If |S| ≤ (n − 2)h(G)/3, then |S̄| ≤ (3/(2h(G)) + 1/2)|S|.

Proof. Initially, let U = S. We trace the operation of BCP in steps by enlarging the set
U . Each application of the BCP rule can be viewed in terms of the constraint graph G
and the set U as the following operation: if xj1 , xj2 , xj3 ∈ X are the 3 vertices adjacent
to y ∈ Y , and it holds that xj1 , xj2 ∈ U and xj3 ∈ X \ U , then the value of xj3 becomes
determined through BCP. When this happens, we enlarge U by inserting both xj3 and y
into U . Now observe the following invariant: the size of U grows by 2 as the BCP rule
is applied, but the boundary ∂GU either stays constant in size or shrinks. We apply this
invariant to bound the size of the BCP closure. Initially we have |∂GU | = 3|S|. Thus, by
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the invariant and the definition of the expansion coefficient h(G), we have (a) |U | > n or
(b) h(G) ≤ |∂GU |/|U | ≤ 3|S|/|U | at all times during BCP. Initially (a) is false, so (b) is true.
Because of the assumption |S| ≤ (n − 2)h(G)/3, by (b) we have |U | ≤ 3|S|/h(G) ≤ n − 2
at all times unless (a) becomes true. Every step of BCP enlarges U by 2, so (a) never
becomes true and (b) is true at all times. In particular, when BCP terminates, we have
|S̄| = (|U | − |S|)/2 + |S| ≤ (3/(2h(G)) + 1/2)|S|.

Assuming that h(G) has a constant nonzero lower bound as the number of variables n
increases, the previous theorem shows that the number of variables whose value is deter-
mined by BCP is linearly bounded by the number of split variables. Thus, assuming that
conflicts are infrequent until the value of a large number of variables is determined, the
previous theorem shows that many split variables are required and thus the DPLL search
tree will be large. Thus, hypothetically, the larger the expansion coefficient h(G), the larger
the search tree.

To motivate our choice of random regular graphs in this light, we first observe that
computing h(G) for a given graph G is NP-hard [12]. However, h(G) can be bounded for a
d-regular graph G in terms of λ2(G), the second largest eigenvalue of an adjacency matrix
of G, as follows [4, 5, 48]:

d − λ2(G)

2
≤ h(G) ≤

√

2d(d − λ2(G)). (1)

The construction of explicit infinite families of d-regular graphs with a constant nonzero
lower bound on h(G) is a nontrivial task; see [44] and the references therein for an account
of known explicit constructions. For example, the family of 3-regular constraint graphs
underlying the spin glass XORSAT instances in [28] is not expanding in this sense—it can
be checked that the expansion coefficient has an O(1/

√
n) upper bound. Fortunately, most

d-regular graphs have good expansion properties [13, 33], so perhaps the easiest and most
versatile way to obtain a d-regular graph with good expansion properties is to select one
uniformly at random. For our present purposes we require a 3-regular graph admitting a
fixed bipartition; also with this restriction it is possible to prove that most graphs admit
a constant nonzero lower bound on h(G). In practice experimentation suggests that the
standard uniform sampling procedure we use (see Section 4.1) produces graphs with λ2(G)
close to 2

√
2 ≈ 2.8284, which is the asymptotic optimum in terms of (1) for λ2(G) on

3-regular graphs [4, 39].

3.3 Schemes for Introducing Nonlinearity

A system of linear equations modulo 2 cannot in itself be considered hard; both the ex-
istence and nonexistence of a solution can easily be determined by Gaussian elimination.
However, DPLL itself does not include any special techniques for equivalence reasoning. As
linear substructures often occur in real-world application domains of DPLL solvers (such as
hardware verification), the gains from introducing equivalence reasoning into DPLL solvers
seem evident. Indeed, equivalence reasoning techniques are a recent development in DPLL-
based SAT solvers [6, 8, 25, 38, 43, 52]. To facilitate benchmarking of equivalence reasoning
techniques, we propose the following schemes for introducing nonlinearity into regular XOR-
SAT.
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Naive Scheme. Introduce three new variables x, y, z, and insert the literal x into each
original clause. Additionally, add 7 clauses that force x to 0 and y, z into unique truth
values.

Covering Scheme. Select a minimal set of variables such that every clause contains at
least one selected variable. For each selected variable, x, introduce a new variable, y, and
then substitute each occurrence of x (respectively, x̄) in the clauses with x∧y (respectively,
x ∧ y ≡ x̄∨ ȳ). After all the substitutions have been performed, expand any conjuncts inside
disjuncts to obtain a set of clauses.

The naive scheme is intended for benchmarking preprocessors with respect to their
ability to detect the clausal representation of a set of linear equations that is conditional on
a single variable x. The covering scheme is designed for benchmarking dynamic equivalence
reasoning techniques that are applied during search. Ideally, a solver should be able detect
and exploit the underlying linear substructure that is revealed when variables are assigned
truth values during search. Note that the number and the lengths of clauses are somewhat
affected by the schemes.

These two basic schemes can be extended as follows.

k-Nonlinear Covering Scheme. As an extension of the covering scheme, instead of
introducing one new variable y for each selected variable x, introduce k new variables
y1, . . . , yk for each such x. Substitute each occurrence of x (respectively, x̄) in the clauses
with x ∧ y1 ∧ · · · ∧ yk (respectively, x ∧ y1 ∧ · · · ∧ yk ≡ x̄ ∨ ȳ1 ∨ · · · ∨ ȳk), and expand any
resulting conjuncts to obtain clauses.

p-Covering Scheme. Select a minimal set of variables such that p% of the clauses contain
at least one selected variable. Apply the k-nonlinear covering scheme on these selected
variables only.

p-Mixed Covering/Naive Scheme. As in p-covering scheme, but additionally apply the
naive scheme for the remaining (100 − p)% clauses not containing any selected variables.

Note that these schemes can be adopted to other SAT benchmark classes based on linear
equations.

4. Experiments

In this section we report on experimental evaluation comparing regular XORSAT instances
with other well known families of hard satisfiable instances using both DPLL based and
local search state-of-the-art SAT solvers.

We submitted a benchmark collection based on regular XORSAT to the SAT Competi-
tion 2005 (see crafted/jarvisalo05). To the best of our knowledge, our benchmarks provided
the smallest guaranteed satisfiable instances that were not solved by any solver in the sec-
ond stage of the competition. The smallest such instance was based on a basic regular
XORSAT instance with 230 variables, which with the covering scheme had 322 variables.
There were smaller unsolved instances in the competition, in particular, those generated
with OKgenerator [34] but it is unclear whether they are satisfiable because the generation
method does not guarantee this.

Before discussing the experimental results, we now describe the implementation tech-
niques used for generating regular XORSAT instances.
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4.1 The Generator

We generate uniformly at random 3-regular graphs on 2n vertices admitting a fixed bi-
partition using a restricted version of the pairing model [53]. For a given n ≥ 3, let
X = {x0, x1, . . . , xn−1} and Y = {y0, y1, . . . , yn−1} define the fixed bipartition (X, Y ) and let
V = X∪Y be the vertex set. Select a permutation π : {0, 1, . . . , 3n−1} → {0, 1, . . . , 3n−1}
uniformly at random. For every i = 0, 1, . . . , 3n−1, introduce the edge {xi mod n, yπ(i) mod n}.
If there are repeated edges, reject the result and try again with a new permutation. It fol-
lows from a result of O’Neil [42, Theorem 2.3] (see also [53]) that the probability of no
repeated edges approaches exp(−2) ≈ 0.1353 as n goes to infinity. In practice, only a few
retries are required.

From a generated constraint graph we construct the matrix A as in Section 3.1. If
a unique satisfying truth assignment is desired, we use Gaussian elimination to filter out
instances in which the resulting matrix A is not invertible modulo 2. In practice it appears
that for n ≤ 1000 around one fourth of the generated matrices A are invertible, and most of
the remaining matrices have a kernel of dimension 1 or 2, implying that the resulting CNF
formula has at most four satisfying truth assignments.

When applying the covering scheme, a greedy approximation algorithm [30] for the set
cover problem is employed for finding an appropriate set of variables for substitution: each
variable vertex in the constraint graph covers the adjacent vertices associated with linear
equations.

The generator software and the instances submitted to the SAT Competition 2005 are
available at http://www.tcs.hut.fi/Software/.

4.2 Hardness Comparison

We compare the empirical hardness of regular XORSAT to other known families for both
DPLL and local search. The following benchmark families are considered:

• 3-regular, unique: regular XORSAT with exactly one satisfying truth assignment,

• 3-regular, nonunique: regular XORSAT with at least one satisfying truth assignment,

• random 3-XORSAT: satisfiable random 3-XORSAT at the phase-transition point αx =
0.918 [45],

• Jia et al’s 3-XORSAT: Jia et al’s generator [28] motivated by a spin glass model [41]
on a rhombus with cyclic boundary conditions (satisfiable “spin glass formulas”),

• random 3-SAT: random 3-SAT at the phase transition point αs = 4.27 [18], and

• q-hidden: Jia et al’s generator for “deceptive q-hidden” satisfiable 3-SAT formulas [29]
at q = 0.3 and at the threshold q = 0.618 (q-hidden formulas).

In generating all XORSAT instances, linear equations are clausified exactly in the same
way as in regular XORSAT. The random 3-SAT instances are generated with makewff [46]
and the q-hidden instances with a generator obtained directly from the authors of [29]. In
the case of random 3-SAT we do not filter out unsatisfiable instances; approximately 50%
of the instances are unsatisfiable. We omit the hidden formulas reported in [2] and the
hgen2 generator [26] from consideration; it has been observed [29] that q-hidden formulas
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are more difficult than those in [2], while hgen2 does not generate instances with fewer than
250 variables.

4.2.1 Complete Search

Considering DPLL-based solvers, we compare the hardness of regular XORSAT instances
against random 3-XORSAT, Jia et al’s 3-XORSAT, random 3-SAT, and q-hidden instances.
The solvers used are SatEliteGTI (that is, the MiniSat solver [20, 21] with the SatElite

preprocessor [19]), zChaff [40, 54], and Satz [36, 37]. This choice is motivated by

(i) SatEliteGTI’s award-winning performance in the SAT Competition 2005,

(ii) zChaff’s use of conflict-driven learning and its position as one of the most widely and
successfully used solvers in recent years,

(iii) the fact that preliminary experiments on a wider array of solvers (namely, COMPSat,
HaifaSat, Jerusat, Satzoo, and Siege) suggest that these DPLL solvers perform
similarly to (or, sometimes, slightly worse than) zChaff on our instances, and

(iv) Satz being one of the most widely used solvers without conflict learning and substan-
tially different from zChaff.

Depending on the solver, we plot the number of decisions or the number of branches
as reported by the solver. In Figures 2, 3, and 4 we display for each number of variables
the median number of decisions/branches over 15 instances on a base-10 logarithmic scale.
Among the instance families, our generator gives the hardest instances for SatEliteGTI,
zChaff and Satz.

4.2.2 Local Search

We experiment with the local search solvers WalkSAT [46, 47] and AdaptiveNovelty+[27, 49].
While SP (survey propagation) [15] is extremely efficient in solving random k-SAT formulas,
it has been observed to exhibit very poor performance on XORSAT [28]; thus we do not
consider SP here.

We compare regular XORSAT to random 3-XORSAT, Jia et al’s 3-XORSAT, and q-
hidden instances. In Figures 5 and 6 we plot for each number of variables the base-10
logarithm of the median number of flips over 49 trials. These local search solvers do not
scale as well as DPLL solvers and, hence, the size of the instances studied is smaller than that
for DPLL solvers. Interestingly, while decreasing the value of q makes q-hidden instances
harder for local search [29], we do not observe the same effect for DPLL solvers. Regular
XORSAT appears to be the hardest of the considered families for local search, too.

4.3 Equivalence Reasoning: A Solver Comparison

To investigate how well current equivalence reasoning techniques manage when nonlinearity
is introduced, we compare the behavior of DPLL solvers on our basic regular XORSAT
instances, on instances with the naive scheme added, and on instances with the covering
scheme. Note that (i) with the naive scheme, the effective number of variables is 7 more
than the original number of variables, while (ii) with the covering scheme, the number of
added variables depends on the set cover. Applying the covering scheme, the number of
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 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300

m
ed

ia
n 

nu
m

be
r 

of
 d

ec
is

io
ns

number of variables

SatEliteGTI

3-regular, unique
3-regular, nonunique
Jia et al’s 3-XORSAT

random 3-XORSAT
0.618-hidden

0.3-hidden
random 3-SAT

Figure 2. Hard instance families for DPLL-based solvers: median of number of decisions as
reported by SatEliteGTI.
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reported by Satz.

variables increases 35% to 50% in the instances used in the experiments. For instances with
200 or more variables prior to applying the covering scheme, this percentage is close to 40.
For example, in the instances with 250 variables prior to applying the covering scheme,
the maximum number of variables is 357 with the covering scheme. In other words, by
applying the covering scheme we do not drastically increase the number of variables. The
number and the lengths of clauses are also somewhat increased by the schemes. However,
this is unproblematic in practise because current state-of-the-art solvers should be designed
to handle variable length clauses which are very common in practical applications, too.

In addition to SatEliteGTI, zChaff and Satz, we use the solvers march dl [24, 25] and
EqSatz [36, 38], both of which incorporate equivalence reasoning techniques. The results
are shown in Figure 7. For each number of variables, we plot both the median running time
(right) and the number of decisions (left) over 15 instances on a base-10 logarithmic scale.

The experiments illustrate the following differences in march dl and EqSatz. Figure 7
(top) indicates that the equivalence reasoning techniques in march dl are more complete
in the sense that march dl can solve purely linear problems very efficiently while EqSatz is
able to do this only up to a certain size after which it scales exponentially. The results in
Figure 7 (middle) imply that the techniques in march dl are somewhat fragile: efficiency is
lost when a minor amount of nonlinearity is introduced. On the other hand, the techniques
in EqSatz are more robust as EqSatz maintains almost the same efficiency in the new
setting. Figure 7 (bottom) demonstrates that equivalence reasoning techniques in EqSatz

lose a substantial amount of efficiency when more nonlinearity is introduced. However, we
observe that march dl is competitive with SatEliteGTI on these benchmarks.

Another interesting observation concerns the ratio between the number of decisions and
the running times in solvers using learning techniques, SatEliteGTI and zChaff. For ex-

39



H. Haanpää et al.
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ample, Figure 7 (top and middle) shows that while the number of decisions for SatEliteGTI
and zChaff are nearly equal, SatEliteGTI is an order of magnitude faster. As the main
difference between SatEliteGTI and zChaff is the way in which clauses are learned and
learned clauses are maintained, this result suggests that subtleties in these techniques are
behind the substantial difference in the running times.

5. Conclusions

We propose a novel family of SAT instances—(random) regular XORSAT—derived from lin-
ear equations based on random regular graphs. Experimental evaluation shows that regular
XORSAT instances appear to scale exponentially for both complete and incomplete state-
of-the-art clausal SAT solvers. Compared with other well-known families of hard benchmark
instances with guaranteed satisfiability, regular XORSAT instances are among the hardest.
The proposed schemes for introducing nonlinearity make the instances especially suitable
for benchmarking equivalence reasoning techniques.

To keep the instance size small in relation to the number of variables, in the present study
we have considered only instances in which the underlying constraint graph is d-regular with
d = 3. A topic for further study is to investigate instances with d > 3.

Here we have focused only on instances with guaranteed satisfiability. Although also
unsatisfiable instances can be easily obtained by selecting a matrix A that is not invertible
modulo 2 and choosing ~b outside the column span of A, we consider it likely that such
unsatisfiable instances are easier to solve than, for example, the unsatisfiable instances
obtained from Tseitin’s construction [50, 51]. A detailed empirical comparison remains to
be conducted.

From a theoretical perspective one topic for further research is to carry out a more
rigorous analytical study of regular XORSAT, in particular in the context of local search.
One way to motivate empirical hardness for local search is through the existence of many
local minima surrounded by “potential barriers” that make escaping from such minima diffi-
cult [28]. We consider it possible that the expansion properties of the underlying constraint
graph could be used to motivate hardness in this setting as well.

Our experiments suggest that there is room for further research in equivalence reasoning
techniques. As structured real-world problem instances often contain linear substructure,
we raise this as an important aspect of solver development.
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