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Abstract

We show that a near resolvable 2-(2k + 1, k, k − 1) design exists if and only if a conference matrix
of order 2k + 2 does. A known result on conference matrices then allows us to conclude that a near
resolvable 2-(2k + 1, k, k − 1) design with even k can only exist if 2k + 1 is the sum of two squares.
In particular, neither a near resolvable 2-(21, 10, 9) design nor does a near resolvable 2-(33, 16, 15)

design exist. For k�14, we also enumerate the near resolvable 2-(2k + 1, k, k − 1) designs and the
corresponding conference matrices.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A conference matrix C of order n is a square (0, ±1) matrix of side n with exactly one 0
in every row and every column such that CC′ = (n−1)I , where I is the identity matrix and
C′ denotes the transpose of C. The only standard properties of conference matrices that we
need are that transposing C or pre- or post-multiplying C by a signed permutation matrix
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still yields a conference matrix. For a fuller compilation of results on conference matrices,
we refer the reader to Craigen’s survey [2].

A t-(v, k, �) design is a pair (P, B), where P is a set of v points and B is a multiset of
k-subsets of P—called blocks—such that every t-subset of P occurs in exactly � blocks as
a subset. A parallel class in a design is a set of blocks of the design that partitions the point
set. A near parallel class is a set of pairwise disjoint blocks whose union has cardinality
v − 1. A (near) resolution is a partition of the multiset of blocks of a design into (near)
parallel classes. A design is (near) resolvable if it has a (near) resolution. For more detailed
results on near resolvable designs, we refer the reader to [4].

This paper establishes the following connection between near resolvable designs and
conference matrices.

Theorem 1. A near resolvable 2-(2k +1, k, k −1) design exists if and only if a conference
matrix of order 2k + 2 exists.

By combining Theorems 1 with 2 below, we conclude the non-existence of near resolvable
designs with certain parameter values.

Theorem 2 (Craigen [2, §52.3.2]). For n ≡ 2 (mod 4), a conference matrix of order n can
exist only if n − 1 is the sum of two squares.

Geramita and Seberry state that Raghavarao [13] first proved Theorem 2, with another
proof given later by van Lint and Seidel [9]. Following Ryser’s suggestion, Geramita and
Seberry [5, Theorem 2.10] gave a proof based on Lagrange’s representation of n − 1 by 4
squares, followed by reduction using Witt cancellation; so existence implies that there is
a 2 × 2 rational matrix B such that BB ′ = (n − 1)I , from which the sum of two squares
criterion soon follows.

Corollary 3. For even k, a near resolvable 2-(2k + 1, k, k − 1) design can exist only if
2k + 1 is the sum of two squares.

In particular, neither a near resolvable 2-(21, 10, 9) design nor a near resolvable 2-(33,

16, 15) design exists.
Theorem 2 only applies when n ≡ 2 (mod 4), and the smallest non-prime power values

of n − 1 not excluded by Theorem 2 are n − 1 = 45, 65 and 85. A conference matrix of
order n does exist whenever n − 1 = 2k + 1 is an odd prime power—a near resolvable
2-(2k +1, k, k −1) design is given by taking a block of the non-zero squares in GF(2k +1)

and a block of the non-squares, and developing these two base blocks over GF(2k + 1).
Mathon [10] has constructed a conference matrix of order n = 46, so at least we know that
n − 1 ≡ 1 (mod 4) does not have to be a prime power.

2. Properties of a near resolvable 2-(2k + 1, k, k − 1) design

Every point in a 2-(v, k, �) design must appear in � blocks with every other point, so
every point must appear in r = �(v − 1)/(k − 1) blocks, and the total number of blocks
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must be b = vr/k. So, in a 2-(2k+1, k, k−1) design we have r = 2k and b = 4k+2. Next
we consider a near resolution of the design. We take some block and look at the number of
points that it has in common with the other blocks outside its near parallel class—we know
that it has no points in common with its near parallel classmate. Suppose it has i points in
common with ni other blocks outside its near parallel class. Counting blocks, incidences
and pairs, we have

∑
i

ni = b − 2,
∑

i

ini = k(r − 1),
∑

i

(
i

2

)
ni = (� − 1)

(
k

2

)
. (1)

Substituting for b, r and � and rearranging give us

k∑
i=0

ni(i − �)(i − � − 1)/2 = 2k (� − (k − 1)/2) (� − (k − 2)/2) . (2)

Lemma 4. In any near resolvable 2-(2k + 1, k, k − 1) design, the pattern of intersection
sizes is the same for every block. The pattern is

01(t − 1)kt3k for even k = 2t; and (3)

01(t − 1)3ktk for odd k = 2t − 1. (4)

Proof. Substitute � = t − 1 into (2). Since � is an integer, every summand on the left-hand
side of (2) is non-negative, and as the right-hand side is zero, it follows that ni = 0 whenever
i �∈ {t − 1, t}. The result follows from solving nt−1 and nt from (1). �

Remark 5. Since a near resolvable 2-(2k + 1, k, k − 1) design has b = 4k + 2 blocks, and
every near parallel class contains two blocks, there are b/2 = 2k + 1 near parallel classes.
As each point appears in r = 2k near parallel classes, every point must miss (i.e., be the
hole for) exactly one near parallel class.

3. Proof of Theorem 1

A square (0, ±1) matrix M with side 2k + 1 is a matrix representation of a 2-(2k + 1, k,

k−1) near resolution if it can be obtained as follows. Label the points of the design arbitrarily
as i ∈ {1, 2, . . . , 2k+1}. Label the near parallel classes arbitrarily as j ∈ {1, 2, . . . , 2k+1}.
Within each near parallel class j, label the blocks arbitrarily as B−

j and B+
j . Now, let mij =

−1 if i ∈ B−
j , mij = 1 if i ∈ B+

j , and mij = 0 otherwise.
The general structure of the proof is as follows. In Lemma 6 it is shown that every matrix

that satisfies certain conditions is a matrix representation of a 2-(2k + 1, k, k − 1) near
resolution. In Lemma 7, it is shown that by removing a row and a column from a conference
matrix of order 2k + 2 in a certain manner one can obtain a matrix that satisfies these
conditions. In Lemma 8, it is shown that every matrix representation of a 2-(2k+1, k, k−1)

near resolution can be augmented to a conference matrix of order 2k + 2. Theorem 1 then
immediately follows from Lemmas 7 and 8.



706 Note / Journal of Combinatorial Theory, Series A 113 (2006) 703–711

Lemma 6 is an application of a theorem of Haanpää and Kaski [7], who consider an
analogous representation for near resolvable designs with v = qk + 1. We denote by J the
matrix of the appropriate size with all entries equal to one.

Lemma 6. If MM ′ = (2k + 1)I − J for a square (0, ±1) matrix M of side (2k + 1), then
M is the matrix representation of a 2-(2k + 1, k, k − 1) near resolution.

Proof. Because MM ′ = (2k +1)I −J , it follows that M has exactly one zero in every row
and, since the inner product of any pair of rows has an odd number of non-zero summands,
there is exactly one zero in every column. We know that M represents some near resolvable
design. We know that this design has the correct replication number and block count for a
near resolvable 2-(2k+1, k, k−1) design. It remains to show that the block size is constant
and equal to k, and that every pair of points occurs in k − 1 blocks.

Pre-multiplying MM ′ = (2k + 1)I − J by 1′ and post-multiplying by 1, we find that
(1′M)(1′M)′ = 0, so the vector (1′M) = 0′. So every column must contain one value 0, k
values of +1 and k values of −1, and thus the blocks represented by M all have size k.

Next, consider the inner product of any two distinct rows, Ri and Rj , of M. Let �ij be
the number of times Ri and Rj have the same element in a column. Then

RiR
′
j = 2 · 0 + (2k + 1 − �ij − 2)(−1) + �ij (+1) = 2�ij − (2k − 1). (5)

By hypothesis, RiR
′
j = −1, thus �ij = k − 1. In other words, every pair of distinct points,

i and j, appear in the same block k − 1 times in the design given by M. �

Lemma 7. If there exists a 2k + 2 conference matrix, then there exists a near resolvable
2-(2k + 1, k, k − 1) design.

Proof. Choose a zero in the conference matrix. We can pre- and post-multiply our confer-
ence matrix by signed permutation matrices so that our chosen zero is mapped to the top
left corner of the resulting conference matrix C, which we may write in the following form:

C =
(

0 x′
1 M

)
. (6)

Since

CC′ =
(

x′x x′M ′
Mx J + MM ′

)
(7)

and CC′ = (2k + 1)I , we have MM ′ = (2k + 1)I − J , and so M satisfies the condition
of Lemma 6, and hence M is the matrix representation of a 2-(2k + 1, k, k − 1) near
resolution. �

Lemma 8. If there exists a near resolvable 2-(2k + 1, k, k − 1) design, then there exists a
conference matrix C of order 2k + 2.

Proof. Let M be a (0, ±1) matrix representation of a near resolution of the design. First,
we note that every column of M contains exactly k values of +1, k values of −1 and one
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value of 0, so JM = 0. Also, the inner product of any two distinct rows of M, say Ri and
Rj , satisfies (5) and, since �ij = k − 1, we have RiR

′
j = −1. Thus MM ′ = (2k + 1)I −J .

Form C by augmenting M as in (6). Now, if we pick x as a (±1) vector, then C will be a
(0, ±1) matrix with exactly one zero in every row and column, and if we also have Mx = 0,
then (7) shows that CC′ = (2k + 1)I also holds and C will be a conference matrix.

We next show that X = (2k + 1)I − M ′M is a (±1) matrix. Consider two near parallel
classes, consisting of the blocks A and B, and C and D, and suppose A and C are the blocks
that contain the holes of the other near parallel class. We will consider the frequencies of
the possible row pairings using Lemma 4.

Column i 0 A A A B B
Column j C 0 C D C D

Frequency for k = 2t 1 1 t−1 t t t
Frequency for k = 2t−1 1 1 t−1 t−1 t−1 t

Now the value of the inner product depends on the parity of k and whether the signs
of A and C differ or not, but the only possible values for the inner product of distinct
columns of M are +1 and −1. Thus X is a (±1) matrix with +1’s on the diagonal. Also,
MX = (2k + 1)M −MM ′M = (2k + 1)M − ((2k + 1)I − J ) M = JM = 0. So we may
pick x as any column of X to form our conference matrix. �

There is an alternative proof of the fact that X = (2k + 1)I − M ′M is a (±1) matrix
which might be of interest. We rely on the fact that X is symmetric with unit diagonal, and
MX = 0. We find XX = (2k + 1)X by post-multiplying the defining equation for X by X.
Now X is symmetric and so has real eigenvalues, and post-multiplying XX = (2k+1)X by
an eigenvector shows that the eigenvalues are 0 and 2k + 1 with frequencies 2k and 1 (the
frequencies follow by considering the trace of X). So X has rank 1, and thus X has the form
yy′ (recalling the symmetry) and xii = y2

i (the alternative that X = −yy′ would imply
xii = −y2

i ). So every element of y is ±1, and by picking x as a column of X, we are either
picking x = y or x = −y. In either case, x is a (±1) vector and X = xx′.

4. Analogies with the Hadamard case

Our aim in this section is to correlate our work in the previous sections with some fairly
well-known results in the analogous Hadamard case. By pursuing this analogy, we are able
to obtain Theorem 9 below, an apparently new result.

An Hadamard matrix H of order n is a square (±1) matrix of side n such that HH ′ =
nI . If we apply a similar approach for resolvable 2-(2k, k, k − 1) designs, with a similar
representation by M, with the H (of order 2k) partitioned as H = (1 | M), then we obtain
some familiar results. The design has b = 4k − 2 blocks and r = 2k − 1. The block
intersection pattern for every block in the resolvable design is 01(k/2)2k−2; k must be
even if k > 1, and no resolvable 2-(2k, k, k − 1) design exists if k > 1 is odd—almost
correspondingly, the order of an Hadamard matrix must be 1, 2 or a multiple of 4. If we sign
the columns of H (equivalently, M) so that the first row is all +1, then, by row orthogonality,
we obtain more information than that any pair of rows (excluding the first row) of H have
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k identically signed columns: we actually have each of the 4 possible plus/minus patterns
occurring k/2 times. This is essentially the usual proof that if H has three or more rows, then
its order must be a multiple of 4. Now this extra information allows us to conclude that if we
remove the first row and column, then the pattern of +1’s, (J + H)/2, gives the incidence
matrix of a 2-(n − 1, n/2 − 1, n/4 − 1) design, and the pattern of −1’s, (J − H)/2, gives
the incidence matrix of a 2-(n − 1, n/2, n/4) design. Now the missing row 1 point from
these two designs occurs with every pair n/4 − 1 times from the +1 incidences, and the
signing that made row 1 special merely amounted to labelling the block containing row 1
as the first (i.e., +1 block) in every parallel class, and clearly we could relabel the blocks
within each parallel class arbitrarily, and so the property that a point occurs with every pair
n/4 − 1 times holds for all points and M actually represents a resolvable 3-(2k, k, k/2 − 1)

design, and so a resolvable 3-(2k, k, k/2 − 1) design and an Hadamard matrix of order 2k

co-exist.
Next, suppose we take a conference matrix C of order n and permute the rows so that the

zeros all fall on the diagonal, and then resign the rows and columns so that the off-diagonal
elements in the first column are all +1, and the off-diagonal elements in the first row are
constant. If we try to repeat the above argument for conference matrices, we have some
difficulty as we do not know what is in the rest of the column when we are considering the
zero in some row—the row orthogonality gives us no information here. However, we can
conclude that n must be even if n > 1, and that M must be symmetric if n ≡ 2 (mod 4) and
n > 2, and skew-symmetric (i.e., M ′ = −M) if n ≡ 0 (mod 4), and we can extend this to
the whole matrix C by the choice of sign for the first row, a result due to Delsarte et al. [3].

We can extend the Hadamard 3-design result to a corresponding result on conference
matrices, also with the best possible index.

Theorem 9. If a near resolvable 2-(2k + 1, k, k − 1) design exists, then a resolvable
2-(2k + 2, k + 1, 2k) design exists which is a 3-(2k + 2, k + 1, k − 1) design. Moreover, if
k is odd, then these indices may be halved.

Proof. The construction of the 2-design is to take one copy of the design and to adjoin a
new point, say {∞}, to every block. Clearly every finite pair will occur k − 1 times, and
the infinite point will appear with every finite point 2k times and, in fact, will appear with
every finite pair k − 1 times. For the second half of the design, we can adjoin the hole to
each block in its near resolution class which gives a 2-(2k + 1, k + 1, k + 1) design on the
finite points (see [4, Lemma 4.2.17]).

If the underlying conference matrix for the near resolvable design is written as in (6),
with M having a zero diagonal and x = 1, then the design on the finite points given by our
construction can be written in compressed form as (M + I |M − I ). The infinite point will
add an extra row (−1′|1′) to this matrix. Now, if the conference matrix of order 2k + 2 has
a zero diagonal with its off-diagonal elements in the first row and column constant, then
M will necessarily be symmetric if k is even, and skew if k is odd. If k is odd, then adding
a column of ones to each part of the augmented partition produces a pair of Hadamard
matrices, and our result follows directly in this case. If k is even, using the symmetry one
can compute the number of columns of (M + I |M − I ) which have a triple of same signed
elements. This computation is quite straightforward (but messy, so we will omit the details)
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and establishes that any triple of finite points occurs k − 1 times, and we have shown above
that the triples involving an infinite point also occur k − 1 times. �

Remark 10. We have not been able to determine whether conference matrices have been
used to construct 3-designs as in Theorem 9. The result for Hadamard matrices is well-
known (see e.g., [8, Remark 3.20]). If k is even and 2k + 1 is a prime power, then the
3-design is known [8, Table 3.31], but our result for k = 22, for example, appears to
be new.

5. Enumeration up to isomorphism

In this section, we enumerate the near resolvable 2-(2k + 1, k, k − 1) designs up to
isomorphism for k�14 and the corresponding conference matrices. We take advantage of
the connection between the designs and conference matrices.

Recall that two conference matrices are considered equivalent if one can be mapped to the
other by pre- and post-multiplying by a signed permutation matrix. The following theorem
is from Delsarte et al. [3].

Theorem 11. Every conference matrix C of order 2k + 2 is equivalent to a symmetric
(C = C′) or a skew (C = −C′) one according to whether k is even or odd.

Two matrix representations of 2-(2k + 1, k, k − 1) near resolutions are equivalent if one
can be obtained from the other by pre-multiplying with an unsigned permutation matrix—
corresponding to a permutation of the points in the design—and by post-multiplying with a
signed permutation matrix—corresponding to the arbitrary labelling of near parallel classes
in the near resolution and the blocks within them. Unlike conference matrices, here negation
of individual rows is not allowed. Nevertheless, an analogue of Theorem 11 holds for matrix
representations of 2-(2k + 1, k, k − 1) near resolutions:

Lemma 12. Every matrix representation of a 2-(2k + 1, k, k − 1) near resolution is equiv-
alent to a symmetric or a skew one according to whether k is even or odd.

Proof. Let M be a matrix representation of a 2-(2k + 1, k, k − 1) near resolution. We may
extend M to a conference matrix C as in the proof of Lemma 8. By Theorem 11, C is
equivalent to a symmetric or skew conference matrix under pre- and post-multiplication
by a signed permutation matrix. For any signed permutation matrix S, SC is symmetric
(respectively, skew) if and only if CS is, so it suffices here to consider post-multiplication
only, and CS is symmetric or skew for some signed permutation matrix S. Now S must
preserve the location of the first column, and by removing the first row and column from
S we obtain another signed permutation matrix T such that MT is symmetric or skew as
appropriate. �

We use an orderly algorithm analogous to [7] to enumerate the near resolvable 2-(2k +
1, k, k − 1) designs. We construct square (0, ±1) matrices of side 2k + 1 row by row, and
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require that the matrices be symmetric or skew according to the parity of k, that the number
of +1’s and −1’s in every row be exactly k, and that the inner product of any two distinct
rows be −1. As a technical detail, to guarantee that the lexicographically minimum partial
matrix being constructed has zeroes on the diagonal we order the possible matrix rows
primarily by the location of the zero and secondarily by their usual lexicographical order.
The isomorph rejection in our backtrack search only considers matching permutations of
rows and columns; these form a subgroup of the group formed by the actual equivalence
operations of matrix representations, since negating columns is also allowed. Consequently,
the backtrack search may generate isomorphic matrix representations. We therefore encode
the designs obtained by our search as graphs and use nauty [11] for isomorph elimination.

For k�8 the near resolvable 2-(2k + 1, k, k − 1) design is unique up to isomorphism,
and for k = 9, 10, . . . , 14 there are 2, 0, 19, 8, 374, 21 pairwise nonisomorphic designs,
respectively. Our results agree with the results reported by Morales et al. [12] for k�13.

As a consistency check, we can use Lemmas 7 and 8 to enumerate the conference ma-
trices based on our designs and again obtain the designs from the conference matrices. For
k�8 the conference matrix of order 2k + 2 is unique, while for k = 9, 10, . . . , 14 there
are 2, 0, 9, 4, 41, 6 pairwise inequivalent conference matrices, respectively. As a further
consistency check, each matrix M constructed by our backtrack search can be interpreted
as the adjacency matrix A of a particular class of graphs by letting A = (M +J − I )/2. For
symmetric M, A is the adjacency matrix of a class of strongly regular graphs known as con-
ference graphs, and for skew M, A is the adjacency matrix of a doubly regular tournament.
For k = 2, 4, . . . , 14 there are, respectively, 1, 1, 1, 1, 0, 15, 41 pairwise non-isomorphic
conference graphs on 2k + 1 vertices, which agrees with the results quoted by Brouwer [1].
For k = 1, 3, . . . , 13 there are, respectively, 1, 1, 1, 2, 2, 37, 722 pairwise non-isomorphic
doubly regular tournaments on 2k + 1 vertices. This agrees with the enumeration of certain
equivalent structures based on skew Hadamard matrices (Spence’s D(n)) by Spence [14].
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