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MULTIDIMENSIONAL LINEAR DISTINGUISHING
ATTACKS AND BOOLEAN FUNCTIONS

Miia Hermelin1 and Kaisa Nyberg1

Abstract. In this paper theoretical aspects of multidimensional
linear distinguishing attacks are investigated. Using known exam-
ples of highly nonlinear Boolean functions we demonstrate how
multidimensional linear approximations offer significant reduction
in data complexity in distinguishing attacks. We also get concrete
examples where one-dimensional linear approximations arenever
statistically independent.

1. Introduction

Linear cryptanalysis method was introduced by Matsui in [1]where
two statistical key-recovery attacks on the DES, Algorithm1 and Al-
gorithm 2, were presented. Later linear approximations have also been
used for distinguishing an output sequence of a key stream generator
from a truly random sequence.

Enhancements of the linear cryptanalysis method using multiple lin-
ear approximations were presented by Kaliski and Robshaw in[2] and
Biryukov, et al., in [3]. Truly multidimensional linear distinguishing at-
tack was presented by Englund and Maximov in [4], and the foundations
of the statistical analysis were presented by Baignères, et al., in [5].

The goal of this paper is to investigate theoretical aspectsof distin-
guishing attacks based on multidimensional linear approximation. For
this purpose, we interpret a linear approximation as a Boolean function,
and show that its strength can be measured using the`2-distance be-
tween the related probability distribution and the uniformdistribution.
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2 MIIA HERMELIN, KAISA NYBERG

We call this measure capacity due to its similarity to the notion of capac-
ity used by Biryukov, et al., in [3]. We show that the probability distribu-
tion of a multidimensional linear distinguisher can be determined based
on the one-dimensional linear approximations. This approach allows
us to select the strongest linear approximations and is computationally
more flexible compared to the approach of handling the full probability
distributions in [4].

We also explore the limits of multidimensional linear distinguishing
attacks. We show that the vector bent functions offer the best resistance,
but also that the gain of multidimensional approximations compared to
one-dimensional approximations is the largest for bent functions. We
investigate the probability distribution of the basic multidimensional lin-
ear distinguisher of the filter generator, see [6], and calculate its capac-
ity for some highly nonlinear filter functions. In all these examples, we
can observe significant reduction in data complexity compared to the
one-dimensional linear approximation. We also see concrete examples
where the assumption of statistical independence of linearapproxima-
tions, which is the basis of the theory in [2] and [3], does nothold.

Finally, we investigate how multidimensional linear approximations
can be chained for composition of independent cipher layersand how
the probability distribution of the chained approximationcan be deter-
mined. We present the multidimensional form of the Piling-up lemma
and prove an upper bound to the capacity of chained or parallel approx-
imations.

The outline of this paper is as follows. In Section 2 the basicconcepts
of vector Boolean functions and related probability distributions are in-
troduced. The theory of multidimensional linear distinguishing attacks
is presented in Section 3. The properties of highly nonlinear Boolean
functions are studied in Section 4, and they are examined further in the
context of a filter key stream generator in Section 5. The results on com-
positions of multidimensional approximations are presented in Section
6, and we conclude in Section 7.

2. Probability Distribution of a Boolean Function

We will denote the space ofn-dimensional binary vectors byVn. The
inner product is defined fora = (a1, . . . , an), b = (b1, . . . , bn) ∈ Vn as
a · b = a1b1 + · · · + anbn, where+ is sum modulo 2. If necessary,⊕m

i=1 ai is used to notate the suma1 + · · · + am modulo 2.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08



MULTIDIMENSIONAL DISTINGUISHING ATTACKS 3

A function f : Vn → V1 is called a Boolean function. A function
f : Vn→ Vm, f = ( f1, . . . , fm), where fi are Boolean functions is called
a vector Boolean function of dimensionm. A linear Boolean function
from Vn→ Vm is represented by anm× n binary matrixW. Them rows
of W are denoted byw1, . . . ,wm, where eachwi is a binary vector of
lengthn.

Let f , g : Vn → V be Boolean functions. The correlation betweenf
andg is c( f , g) = 2−n (#{ξ ∈ Vn | f (ξ) = g(ξ)} − #{ξ ∈ Vn | f (ξ) , g(ξ)}) .
If g = 0, thenc( f , 0) = c( f ) is called the correlation off .

Let f : Vn→ Vm. We will call the vectorp( f ) = (p0( f ), . . . , p2m−1( f )),
wherepη( f ) = 2−n#{ξ ∈ Vn| f (ξ) = η}, the probability distribution (p.d.)
of f . We may also denotepη( f ) by pη if the function f is clear from
the context. The vectorθm = 2−m(1, . . . , 1) ∈ R2m

is used to denote the
2m-valued uniform p.d.

Let φ : Vn → R be a real-valued function. The Walsh-Hadamard
transformφ̂ of φ is defined as

φ̂(u) =
∑

ξ∈Vn

φ(ξ)(−1)ξ·u, u ∈ Vn.

Then φ(ξ) = 2−n ˆ̂φ(ξ), ξ ∈ Vn, using the inverse of Walsh-Hadamard
transform. The convolution of two functionsφ : Vn → R andψ : Vn →
R is defined as

(φ ∗ ψ)(η) =
∑

ξ∈Vn

φ(ξ)ψ(ξ + η), η ∈ Vn.

It is straightforward to verify that then

̂(φ ∗ ψ)(u) = φ̂(u)ψ̂(u), u ∈ Vn. (1)

If φ(ξ) = (−1)f (ξ) for a Boolean functionf : Vn → V, then φ̂(u) is
denoted byf̂ (u). The set{ f̂ (u) |u ∈ Vm} is called the Walsh spectrum of
f . Parseval’s theorem states that 2n ∑

ξ φ(ξ)2
=

∑
u φ̂(u)2. For a Boolean

function f : Vn→ V it then follows that

2−2n
∑

u∈Vn

f̂ (u)2
=

∑

u∈Vn

c( f (ξ), u · ξ)2
= 1. (2)

For a ∈ Vm, we use notationρ(a) = c(a · f ). Then we have

ρ(a) = 2−n
∑

ξ∈Vn

(−1)a· f (ξ)
=

∑

η∈Vm

(−1)a·ηpη = p̂(a). (3)
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Using the inverse Walsh-Hadamard transform we get the following lemma.

Lemma 2.1. Suppose that f: Vn→ Vm is a Boolean function with p.d.
p and with one-dimensional correlationsρ(a) of a · f . Then

pη = 2−m
∑

a∈Vm

(−1)a·ηρ(a), for all η ∈ Vm.

3. Multidimensional Linear Distinguishing Attacks

Linear cryptanalysis can be significantly enhanced by usingmultiple
linear approximations as shown most notably in [2] and [3]. However,
these approaches are restricted by the assumption that the individual lin-
ear approximations are statistically independent. This assumption was
also studied by S. Murphy in [7]. Baignères, et al., developed the statisti-
cal theory of general multidimensional distinguishing [5]. Recently, we
presented in [8] a truly multidimensional generalisation of Matsui’s Al-
gorithm 1, which does not assume statistical independence of the linear
approximations and also performs in practice better than the algorithms
of [2] and [3]. In this section, we will give the theoretical foundations of
the multidimensional linear distinguishing attack. Firstwe will define
a multidimensional linear approximation as a vector Boolean function
and then consider the statistical properties of the p.d. of this Boolean
function.

3.1. Multidimensional Approximation of Boolean Functions

Let f : Vn → Vl be a vector Boolean function and binary vectors
wi ∈ Vl and ui ∈ Vn, i = 1, 2, . . . , ,m, be linear masks such that the
paired masks (ui ,wi) are linearly independent. Let us define functions
gi by

gi(ξ) B wi · f (ξ) + ui · ξ, (4)

and denote their correlations byρi = c(gi), i = 1, 2, . . . ,m. We will call
these correlations the base correlations, and the corresponding linear
approximations off the base approximations. We investigate the p.d. of
them-dimensional vector Boolean functiong(ξ) B W f(ξ) + Uξ, where
W = (w1, . . . ,wm),U = (u1, . . . , um) andg = (g1, . . . , gm). Let the p.d. of
g bep and that the componentsa·g have correlationsρ(a) = c(a·g), a ∈
Vm. If ei = (0 . . . 010. . . 0) with 1 at theith place, thenρ(ei) = ρi , i =
1, . . . ,m.Given the one-dimensional correlationsρ(a) = c(a·g), a ∈ Vm,

the probability distributionp(g) can be determined using Lemma 2.1.
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 5

3.2. Capacity of a Multidimensional Linear Distinguisher

The strength of a linear multidimensional approximation isdeter-
mined by the nonuniformity of its p.d., which is measured using its ca-
pacity to be defined next.

Definition 3.1. Let p = (p0, . . . , pM) andq = (q0, . . . , qM) be two p.d.’s.
Their (mutual) capacity is

C(p, q) =
M∑

η=0

(pη − qη)2

qη
.

If M = 2m − 1 andq = θm is uniform thenC(p, θm) = 2m ||p− θm||22
will be called the capacity ofp and we will denote it byC(p). It is also
called the Squared Euclidean Imbalance [5]. Ifp is the p.d. of a Boolean
functiong, then we setC(p) = C(g) and callC(g) the capacity ofg.

The following corollary of Lemma 2.1 is obtained using Parseval’s
theorem. An equivalent form of it can be found in [5], where the proof
was based on the inverse Walsh-Hadamard transform of the multidimen-
sional biasespη(g) − 2−m.

Corollary 3.2. Let g be a Boolean function with p.d. p. Then

C(g) =
∑

a,0

ρ(a)2.

A distinguishing attack can be described as a hypothesis testing prob-
lem. Null hypothesisH0 states that the empirical datazN of N words is
derived from p.d.p and the alternative hypothesisH1 states thatzN is
derived from p.d.q , p (see [9]).

The following theorem was proved in [5] where the log-likelihood-
ratio was used as the distinguisher of the multidimensionalhypothesis
testing problem. Note that the theorem makes no assumptionsabout
statistical independence of the base approximations.

Theorem 3.3. Assume that the p.d.’s p and q are close to each other:
|qη − pη| � qη, for all η ∈ Vm. Then the amount of data needed to
distinguish between H0 and H1 is

N =
γ

C(p, q)
, (5)

whereγ depends on the level and the power of the test.
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Hence, if we want to distinguish whetherzN comes from a cipher
with p.d. p or from a random source with uniform p.d., the amount of
data needed usingm linear approximations is

Nm =
γ

C(p)
=

γ∑
a,0 ρ(a)2

, (6)

whereγ depends on the level and the power of the test. In the one-
dimensional case, we have a linear approximation such as (4). Let ρ be
the correlation of the approximation. The number of bitsN1 needed to
distinguishzN from a random sequence isγ/ρ2.

We can see that multidimensional approximation offers significant
reduction in data complexity, in particular, for functionswith one-dimensional
linear approximations with uniformly small correlations.In Section 5,
we will see examples where all the correlationsρ(a) are equal or their
absolute values are equal. ThenNm = N1/(2m − 1).

4. Optimal and Near Optimal Capacity of Boolean Func-
tions

In this section, we determine the capacities of some known examples
of highly nonlinear vector Boolean functions, which offer strong resis-
tance against basic one-dimensional linear attacks. Firstwe will show
that vector bent functions are optimal against multidimensional linear
cryptanalysis and determine its capacity.

4.1. Bent Functions

Multidimensional Walsh transform was introduced in [10].

Definition 4.1. Let f : Vn→ Vm be a Boolean function. Then we define

W f+U(x) = 2−n
∑

ξ∈Vn

m∏

i=1

xfi (ξ)⊕ui ·ξ
i ,

where the sum is taken in the setZ[x1, . . . , xm]/〈x2
1 − 1, . . . , x2

m − 1〉 of
multivariate polynomials over integers where the indeterminatesxi sat-
isfy x2

i = 1. The transform that mapsf to the mappingU →W f+U(x),U =
(u1, . . . , um) ∈ Vm

n , is called the multi-Walsh transform.
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 7

Let the p.d. off bep. If U = 0, we can give the transform as follows:

W f (x) =
∑

η∈Vm

pη

m∏

i=1

xηi
i . (7)

The polynomialΘm(x) = 2−m∑
η∈Vm

∏
i xηi

i corresponds to the uniform
distributionθm. The following theorem is the multidimensional equiva-
lent of Parseval’s theorem, and its proof can be found in [10].

Theorem 4.2.For any vector-valued Boolean function f: Vn→ Vm the
following holds:

∑

U∈Vm
n

W2
f+U(x) = 2(m−1)n (

1+ (2n − 1)Θm(x)
)
.

In the one-dimensional case, bent functions are defined as functions
which have equally small correlations, in absolute value, to all linear
functions, see (2). Analogically, the multi-bent functions are defined as
functions with uniform multi-Walsh spectrum as follows.

Definition 4.3. A vector valued Boolean functionf : Vn→ Vm is multi-
bent if

W2
f+U (x) = 2−n(1+ (2n − 1)Θm(x))

for all U ∈ Vm
n .

It was shown in [10] thatf is multi-bent if and only if it is bent in
the classical sense (i.e., its componentsa · f (x), a , 0, are bent). Hence,
f is multi-bent if and only ifW ◦ f ◦ T + U is multi-bent for all linear
transformationsW andU and linear bijectionsT. We have the following
theorem considering the capacity of bent functions.

Theorem 4.4. The capacity of a multi-bent Boolean function f: Vn →
Vm satisfies

C( f ) = 2m−n − 2−n. (8)

Proof. By (7), it is straightforward to verify that the polynomialW2
f (x)

corresponds to the p.d.p ∗ p. The constant term in the polynomial is∑
η p2

η = 2−n(1+ (2n − 1)2−m). By Definition 3.1C( f ) = 2m ||p− θm||22 =
2m∑

η p2
η − 1, from where the claim follows. �

If f is multi-bent, thenf + U is multi-bent andC( f + U) = 2m−n −
2−n, for all U : Vn → Vm linear. It follows that multi-bent functions
are optimal against multidimensional linear cryptanalysis. It is an open
question whether there are functions other than multi-bentthat satisfy
(8).
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4.2. Other Examples

4.2.1. The Function x−1

Function x−1 in F2n is an important example. Forn = 8 its affine
transform is the S-box of the AES, which therefore has the same lin-
earity properties. Its one-dimensional components have complex Walsh
spectra with absolute values bounded from above by 2−n/2+1. We will
now study then-dimensional linear approximations, that is, we will
study the functionf (x) = Wx−1

+ Ux, whereW is invertible. We re-
strict to the case whereUx = ux, for someu ∈ F2n.

Theorem 4.5. If u , 0, the function f(x) = x−1
+ ux has capacity

C( f ) =


1− 21−n ≈ 1, for n even

1, for n odd,

which does not depend on u. If u= 0 the capacity is zero.

Increasing dimensionn will make x−1 more resistant against one-
dimensional linear attacks. However, the same does not holdfor the
multidimensional case: the capacity does not depend onn and the resis-
tance against multidimensional linear cryptanalysis is the same for all
n > 1.

Proof. We will use Corollary 3.2 and write the correlationsρ(a) using
the one-dimensional Walsh transform. Hence,

C( f ) = 2−2n
∑

a,0

∑

x,y

(−1)a·( f (x)+ f (y))

= −1+ 2−2n
∑

a

∑

x,y

(−1)a·( f (x)+ f (x+y))

= 2−n#{(x, y)| f (x) + f (x+ y) = 0, y , 0}.

We make the following observation:y = 1√
u
⇔ (x = 0 or x = y) . As-

sume now thaty , 1√
u
. Since we also assumey , 0, we can calculate as

follows:

f (x) + f (x+ y) = 0⇔ uyx2
+ uy2x+ y = 0⇔

(
x
y

)2

+
x
y
+

1

uy2
= 0.

But the last equation has, for eachy , 0, 1√
u
, two solutions if and only if

the Tr( 1
uy2 ) = 0, and else no solutions. Here Tr(α) = α+α2

+ · · ·+α2n−1
,
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for α ∈ F2n is the trace. We also note that ify = 1√
u

then Tr( 1
uy2 ) = Tr(1),

which is zero if and only ifn is even. Hence, ifn is even, the sets

A = {y , 0 | ∃x : f (x+ y) + f (x) = 0} (9)

andB = {y , 0 | Tr( 1
uy2 ) = 0} are equal. Ifn is odd, thenA = B∪ { 1√

u
}.

Sincey−2 is a bijection inF2n \ {0}, we have #B = 2n−1−1 and the claim
follows.

If u = 0, then f (x) = x−1 is a bijection. In particular, fromf (x) +
f (x+y) = 0 it follows thaty = 0 so that the setA defined in (9) is empty.
Hence, the capacity is zero. �

4.2.2. The Function x3

Theorem 4.6. Let f(x) = x3
+ ux. If u , 0, the capacity of f does not

depend on u and is given by

C( f ) =


1− 21−n ≈ 1, for n even

1, for n odd.

Moreover, if u= 0 then C( f ) = 2− 21−n for even n and zero otherwise.

Proof. Proceeding as before, we get thatC( f ) = 21−n#A, whereA is
defined as in (9). Lety , 0 be fixed. Thenf (x) + f (x + y) = 0 is
equivalent to (

x
y

)2

+
x
y
+ 1+

u

y2
= 0, (10)

which, for a fixedy ∈ F2n, has two solutions if and only if Tr(1+ u
y2 ) = 0.

Trace is a linear function and Tr(1)= 0 if and only if n is even. This
means that ifn is even, (10) has exactly two solutions if Tr(u/y2) =
0 and no solutions otherwise. Sincey−2 is a bijection fory , 0, we
have #A = 2n−1 − 1. If n is odd, then (10) has exactly two solutions if
Tr(u/y2) = 1 and no solutions otherwise. Since the value zero that the
functionu/y2 never takes, gives Tr(0)= 0 , 1 we have that #A = 2n−1,

which completes the proof. �

5. Capacities of Distributions from Simple Filter Genera-
tors

Let us study a simple example of a key stream generator (k.s.g.) con-
sisting of an LFSR withk state blocks of sizel bits each, and a filter

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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function f : Vn → Vm, wheren is a multiple ofl andm ≤ n. Let the
LFSR recursion be

⊕k
j=0 b j st+ j = 0, whereb j ∈ V andb0 = bk = 1.

At time t, let zt = f (St), where the inputSt is some fixed subset of the
LFSR state blocks. Then

⊕k
j=0 b jSt+ j = 0. Our goal is to determine the

distribution ofz =
⊕k

j=0 b jzt+ j . Let the indices of the non-zero coeffi-
cientsb j be 0= j1 ≤ · · · ≤ jd = k, whered is the number of non-zero

coefficients. Denotexi = St+ ji . Then
⊕d

i=1 xi = 0. Assumex1, . . . , xd−1

are statistically independent and uniformly distributed.Given a one-
dimensional maskw ∈ Vm, then the correlationc(w) betweenw · zand 0
can be calculated by

c(w) = c(w ·
k⊕

j=0

b jzt+ j ) = c

w · (
d−1⊕

i=1

f (xi) + f (
d−1⊕

i=1

xi))



= 2−(d−1)n
∑

x1,...,xd−1∈Vn

(−1)w·( f (x1)+···+ f (xd−1)+ f (x1+···+xd−1)) (11)

= 2−dn
∑

x1,...,xd∈Vn

(−1)w·( f (x1)+···+ f (xd))
∑

u∈Vn

(−1)u·(x1+···+xd)

= 2−dn
∑

u∈Vn

ŵ · f (u)d. (12)

Formula (12) was proved in [6]. It can also be considered as a varia-
tion of general correlation theorems given in [11]. The one-dimensional
maskswi will be used to construct anm×m mask matrixW. Using the
Boolean function

(x1, . . . , xd−1)→W ·


d−1⊕

i=1

f (xi) + f (
d−1⊕

i=1

xi)

 (13)

one can launch a distinguishing attack, where the data complexity is
inversely proportional to the capacity of this key stream approximation.

We are going to study three examples:f (x) = x−1, f (x) = x3 and f is
any bent function. Formula (12) is not useful for functions with complex
Walsh spectrum. Therefore, we will use (11) directly, and restrict to the
special case whered = 3 for the first two examples. Then the recursion
equation becomesst + st+i + sk = 0, for some 0< i < k. We will denote
x1 andx2 by x andy, respectively. Then (11) becomes

c(w) = 2−2n
∑

x,y∈Vn

(−1)w·( f (x)+ f (y)+ f (x+y))) . (14)

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08



MULTIDIMENSIONAL DISTINGUISHING ATTACKS 11

5.1. Filter Function based on the S-box of AES

As noted in Section 4.2.1, it is sufficient to studyx−1 instead of the
actual S-box.

Theorem 5.1. Let f : Vn → Vm be the filter function of the k.s.g. de-
scribed above obtained from the function x−1 in F2n by truncating its
output to m bits. Then the correlations c(w) are the same for all w, 0.
Moreover, for any invertible m×m output mask W, the capacity of dis-
tinguisher(13) is

C =


(2m − 1)24−2n, if n even

(2m − 1)22−2n, if n odd.

Proof. We extendw ∈ Vm to Vn by appending zeros to it if necessary.
We can write (14) as 22nc(w) =

∑
η(−1)w·ηNη, where Nη = #{(x, y)|

x−1
+ y−1

+ (x + y)−1
= η}. We divide the sum overη to two parts

depending on whetherη = 0 or η , 0. Let us calculateN0 first. If x = 0
or y = 0 or x+ y = 0 thenη = 0. Hence, assume thatx , 0, y , 0 and
x+ y , 0. Then the following equivalences hold:

η = 0⇔ 1
x
+

1
y
+

1
x+ y

= 0⇔
(
x
y

)2

+
x
y
+ 1 = 0.

The last equation has either 0 or 2 solutionsx, for everyy , 0, and it
has two solutions if and only if Tr(1)= 0 that is, whenn is even. Hence,

N̂0 = #{(x, y)|x , 0, y , 0, x+ y , 0, η = 0} =

2(2n − 1), if n even

0, otherwise.

ThenN0 is given by

N0 = #{(x, y)|x = 0, η = 0} + #{(x, y)|x , 0, y = 0, η = 0}
+ #{(x, y)|x, y , 0, x = y, η = 0} + N̂0

=


5 · 2n − 4, if n even

3 · 2n − 2, otherwise.

Now we calculate theNη for η , 0. Thenx , 0, y , 0 andx , y, and
consequently,y , 1

η
. We have thatf (x)+ f (y)+ f (x+y) = η if and only if

(
x
y

)2
+

x
y +

1
1+ηy = 0. This has two solutionsx for eachy , 0 if and only if

Tr( 1
1+ηy) = 0. Note that the solutions must also satisfyx , 0 andx , y.

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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The functiony 7→ 1/(1 + ηy) defined fromF2n \ {η−1, 0} → F2n \ {0, 1}
is a bijection. Trace is a linear mapping so #{y|Tr(y) = 0} = 2n−1. We
obtain 1

2Nη = #{y , 0, y , η−1 | Tr(1/(1+ ηy)) = 0}.
If n is odd, thenNη = 2n−2, since the function Tr(1/(1+ηy)) , 0 for

y = η−1. If n is even, then both values which this function never takes,
have trace equal to zero, and we obtainNη = 2n − 4.

Combining the results we get that the correlation for all non-zero
one-dimensional output masksw is c(w) = 22−n, if n is even andc(w) =
21−n, if n is odd. The claim follows now from Corollary 3.2. �

By choosing anyn linearly independent one-dimensional masks, for
example,ei , i = 1, . . . , n, as the base masks, we can make an opti-
mal multidimensional distinguisher. This example also shows that the
assumption about statistically independent base approximations cannot
hold even though the selected masks (ei) are linearly independent. This
follows since the combination correlations are of the same magnitude as
the base correlations.

5.2. Function x3 as a Filter Function

Theorem 5.2. Let f : Vn → Vm be the filter function of the k.s.g. de-
scribed above obtained from function x3 in F2n by truncating its output
to m bits. Then the correlations c(w) are the same for all w, 0 and the
capacity of the distinguisher(13) is C = (2m−1)22−2n for any invertible
mask W.

Proof. We extendw ∈ Vm to Vn by appending zeroes to it if necessary.
Using (14) we get

c(w) = 2−2n
∑

x,y

(−1)w·(x
2y+y2x)

= 2−n
+ 2−2n

∑

y,0

∑

x

(−1)w·(x
2y+y2x).

For all y , 0, x2y + y2x is linear. It goes twice through the values of
an n − 1-dimensional vector subspaceVn−1(y) B {x2y + y2x|x ∈ Vn}.
SinceVn−1(y) is a vector subspace, there existsc , 0, such thatc⊥z
for all z ∈ Vn−1(y). Moreover, ify1 , y2, thenc1 , c2. Then for any
w , 0 there exists a uniqueyw such thatw · (x2yw + y2

wx) = 0. If y , yw,
w · (x2y+ y2x) takes the values 0 and 1 equally many times. Hence,

c(w) = 2−n
+2−2n


∑

y=yw

∑

x

(−1)w·(x
2y+y2x)

+

∑

y,yw,0

∑

x

(−1)w·(x
2y+y2x)

 = 21−n.

By Corollary 3.2, we get the claim. �
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5.3. A Bent Function as a Filter Function

In this case we can study the general case of an LFSR withd ≥ 3.
Suppose thatf : Vn→ Vm is bent.

Theorem 5.3. Let f(x) be a bent filter function of the k.s.g. described
above. Then, for any fixed even d≥ 4, the correlations c(w) are the
same, for all w, 0, and for any fixed odd d≥ 3 the absolute values of
the correlations|c(w)| are the same, for all w, 0. The capacity of the
distinguisher(13) is C =

∑
a,0 2−2n

= (2m − 1)2−2n for any invertible
mask W.

Proof. Denote the right hand side of (11) bycd. If d = 3, then using
(14) we get

c3 = 2−2n
∑

x

(−1)w· f (x)
∑

y

(−1)w·( f (y)+ f (x+y)) .

Since f is bent we know that the sum overy is 2n if x = 0 and zero
otherwise. Hence,c3 = 2−n(−1)w· f (0). If d = 4, we obtain similarly that
c4 = 2−n ∑

x(−1)w·( f (x)+ f (x))
= 2−n. Finally, for d ≥ 5, we get

cd = 2−(d−1)n
∑

x1,...,xd−2

(−1)w·( f (x1)+···+ f (xd−2))
∑

xd−1

(−1)w·( f (xd−1)+ f (x1+···+xd−1))

= 2−(d−2)n
∑

x1,...,xd−3

(−1)w·( f (x1)+···+ f (xd−3)+ f (x1+···+xd−3))
= cd−2.

Therefore,cd = (−1)w· f (0)2−n, if d is odd and 2−n if d is even. Since
c(w)2

= c2
d = 2−2n for all w , 0, we get the claim. �

In all three examples, the amount of data needed for the attack is
approximately 22n−m. If n = 2m, a multidimensional distinguishing
attack takes 23m words of data whereas the one-dimensional attack needs
24m words of data.

6. Constructing Multidimensional Linear Approximations

One approach to constructing multidimensional linear approxima-
tions is to search for strong one-dimensional linear approximations over
the whole system and use Lemma 2.1 to construct the multidimensional
approximations. Since many linear distinguishing attackshave already
concentrated on finding the best one-dimensional mask, thiscan be seen
as a practical way to apply the theory, in particular, when several approx-
imations about equally large correlation have been found, see e.g. [8].
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A second approach, taken in [4], is to consider p.d. of linearapproxi-
mation of each part of the system separately and then use convolution to
obtain the p.d. of the entire linear approximation.

We say that two Boolean functions are statistically independent if
they do not share common inputs. The generalisation of the Piling-up
lemma can be stated as follows:

Lemma 6.1. Suppose that g and h are statistically independent. Then
p(g+ h) = p(g) ∗ p(h).

In the one-dimensional case, the capacity of the convolution is the
product of the original capacities. Unfortunately, this useful fact cannot
be generalised to multiple dimensions, where only the following result
holds in general.

Theorem 6.2. Let g and h be statistically independent. Then

C(g+ h) ≤ C(g)C(h). (15)

Proof. Denote the correlationρ(a) = c(a · g) corresponding to function
g by ρg(a). Using (3) and (1) we getρg+h(a) = ρg(a)ρh(a), for all a , 0.
To compute the capacity ofg+ h we use Corollary 3.2 to get

C(g+ h) =
∑

a,0

ρg+h(a)2 ≤
∑

a,0

ρg(a)2
∑

a,0

ρh(a)2
= C(g)C(h).

�

If the inputs of the two functions to be combined are statistically
independent, we can use them-dimensional Piling-up lemma 6.1 to cal-
culate the p.d. over the whole system. The inputs are often assumed to
be statistically independent, for example, when combiningrounds of a
block cipher. However, due to the linear hull effect [12], this is just an
approximation. In the following theorem, we give the distribution of a
linear approximation over a composition of two Boolean functions f1
and f2 in terms of the distributions of the linear approximations of f1
and f2, thus generalising the basic correlation formula of [13].

Theorem 6.3(Correlation theorem). Let f1 : Vl → Vn, f2 : Vn → Vk

and let gV = V f1 + U and hV = W f2 + V, where U∈ Vm
l , V ∈ Vm

n and
W ∈ Vm

k . Let f =W( f2 ◦ f1) + U. Then for all matrices U and W

p( f ) = 2−mn+n
∑

V∈Vm
n

p(gV) ∗ p(hV) − (2n − 1)θm. (16)
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Proof. Let us start by studying the sum overV using the multi-Walsh
transform as follows:
∑

V∈Vm
n

WgV (x)WhV (x) = 2−n−l
∑

ξ∈Vl

∑

ζ∈Vn

∏

i

xui ·ξ⊕wi · f2(ζ)
i

∑

V∈Vm
n

∏

i

xvi ·( f1(ξ)⊕ζ)
i .

The sum is now divided to two parts,S1 andS2, whereS1 is the sum
with ζ = f1(ξ) and S2 is the sum whereζ , f1(ξ). If a = 0, then∑

V∈Vm
n

∏
i xvi ·a

i = 2nm. On the other hand, ifa , 0, then the sum is
2nm
Θm(x). Using this we get

S1 = 2−n−l
∑

ξ

∏

i

xui ·ξ⊕wi · f2( f1(ξ))
i 2nm

= 2−n+mnW f (x)

S2 = 2−n−l
∑

ξ

∑

ζ, f1(ξ)

∏

i

xui ·ξ⊕wi · f2(ζ)
i 2nm

Θm(x) = 2nm−n (
2n − 1

)
Θm(x).

SolvingW f (x) from these equations and using (7) gives the desired
result. �

Similarly to the proof of Theorem 6.2, by using (16), we can prove
that

C( f ) ≤ 2−2mn+2n+m
∑

V∈Vm
n

C(gV)C(hV). (17)

In Sections 4 and 5 we saw that functions that are considered strong
against one-dimensional cryptanalysis can actually be quite weak against
multidimensional cryptanalysis. On the other hand, we do not know how
much the capacities are weakened when such strong multidimensional
approximations are combined over multiple rounds as (15) and (17) give
just upper bounds.

7. Conclusions

We investigated theoretical aspects of multidimensional linear dis-
tinguishing attacks on concrete examples of Boolean functions. First,
we showed how the probability distribution of a multidimensional lin-
ear approximation can be determined based on the correlations of the
one-dimensional linear approximations. Secondly, we saw that signif-
icant reduction in data complexity compared to one-dimensional linear
distinguishers can be achieved. Thirdly, we presented a number of con-
crete, albeit theoretical examples where one cannot find even a single
pair of statistically independent one-dimensional linearapproximations,
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which shows that the presumptions adopted in [2], [3] and [7]are not
valid in general.
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