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Abstract. ARMADILLO2 is the recommended variant of a multi-purpose cryptographic
primitive dedicated to hardware which has been proposed by Badel et al. in [1]. In this paper
we propose a meet-in-the-middle technique that allows us to invert the ARMADILLO2 func-
tion. Using this technique we are able to perform a key recovery attack on ARMADILLO2 in
FIL-MAC application mode. A variant of this attack can also be applied when ARMADILLO2
is used as a stream cipher in the PRNG application mode. Finally we propose a (second)
preimage attack on its hashing application mode. We have validated our attacks by imple-
menting cryptanalysis on scaled variants that match the theoretical predicted complexities.
All the cryptanalysis presented in this paper can be applied for any arbitrary bitwise per-
mutations σ0 and σ1 used in the internal permutation.
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1 Introduction

ARMADILLO is a multi-purpose cryptographic primitive dedicated to hardware which
has been proposed by Badel et al. in [1]. Two variants have been presented: ARMADILLO
and ARMADILLO2, the latter being the recommended version. In the following, the first
variant will be denoted ARMADILLO1 to distinguish it from ARMADILLO2. For both
variants, several applications are proposed: FIL-MAC, hash function and pseudo-random
generator. Both variants comprise several versions, each one associated to a different set of
parameters and to a different security level. In [1] a security analysis of ARMADILLO1 has
been given. In order to address security concerns, the authors have defined ARMADILLO2
and stated that it is the design choice to be preferred.

The ARMADILLO family uses a parametrized internal permutation as building block.
This internal permutation is based on two bitwise permutations σ0 and σ1. In [1] these
permutations are not specified, but some of the properties that they must satisfy are
given.

In this paper we provide the first cryptanalysis of ARMADILLO2, the recommended
variant. As the bitwise permutations σ0 and σ1 are not specified, we have performed our
analysis under the reasonable assumption that they behave like random permutations. As
a consequence the results of this paper are independent of the choice for σ0 and σ1.
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To perform our attack, we use a meet-in-the-middle approach and an evolved variant
of the parallel-matching algorithm introduced in [2] and generalized in [4]. Our methods
enable us to invert the building block of ARMADILLO2 for a chosen value of the public
part of the input, when a part of the output is known. We can use this step to build
key recovery attacks faster than exhaustive search on all versions of ARMADILLO2 used
in the FIL-MAC application mode. Besides, we propose several trade-offs for the time
and memory needed for these attacks. We also adapt the attack to recover the key when
ARMADILLO2 is used as a stream cipher in the PNRG application mode. We further
show how to build (second) preimage attacks faster than exhaustive search when using the
hashing mode, and propose again several time-memory trade-offs. We have implemented
the attacks on a scaled version of ARMADILLO2 and the experimental results validate
the theoretical formulas.

We briefly describe ARMADILLO2 in Section 2. In Section 3 our technique for invert-
ing the building block is presented. In Section 4, we explain how to apply this technique
for building a key recovery attack on the FIL-MAC application mode. We show briefly
how to adapt this attack to the stream cipher scenario in Section 4.2. The (second) preim-
age attack on the hashing mode is presented in Section 5. In Section 6 we present briefly
the experiments that we have done.

2 Description of ARMADILLO2

The core of ARMADILLO is based on the so-called data-dependent bit transpositions [3].
We recall the description of ARMADILLO2 given in [1] using the same notations.

2.1 Description

Let C be an initial value of size c and U be a message block of size m. The size of the
register (C‖U) is k = c + m. The ARMADILLO2 function transforms the value (C,U)
into (Vc, Vt) as described in Figure 1:

ARMADILLO2 : Fc2 × Fm2 → Fc2 × Fm2
(C,U) 7→ (Vc, Vt) = ARMADILLO2(C,U).

The function ARMADILLO2 relies on an internal bitwise parametrized permutation
denoted by Q which is defined by a parameter A of size a and is applied to a vector B of
size k:

Q : Fa2 × Fk2 → Fk2
(A,B) 7→ Q(A,B) = QA(B)

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [1], the permutations
are not defined but some criteria they should fulfil are given. As the attacks presented in
this paper are valid for any bitwise permutations, we do not describe these properties. We
just stress that in the following, when computing the complexities we assume that these
permutations behave like random ones. We denote by γ a constant of size k defined by
alternating 0’s and 1’s: γ = 1010 · · · 10.

Using these notations, we can defineQ which is involved in two parts of the ARMADILLO2
function. Let A be a parameter and B be the internal state, the parametrized permutation
Q (that we denote by QA when showing which is the parameter used is required) consists
in a = |A| simple steps. The i-th step of Q (reading A from its less significant bit to its
most significant one) is defined by:
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Fig. 1. ARMADILLO2.

– an elementary bitwise permutation: B ← σAi(B), that is
• if the i-th bit of A equals 0 we apply σ0 to the current state,
• otherwise (if the i-th bit of A equals 1) we apply σ1 to the current state,

– a constant addition (bitwise xor) of γ: B ← B ⊕ γ

Using the definition of the permutationQ, we can describe the function ARMADILLO2.
Let (C,U) be the input, then ARMADILLO2(C,U) is defined by:

– first compute X ← QU (C‖U),
– then compute Y ← QX(C‖U),
– then compute (Vc‖Vt)← Y ⊕X, the output is (VC , Vt).

Actually the variables c and m can take different values depending on the security
level aimed at. A summary of the sets of parameters proposed in [1] for the different
versions (A, B, C, D or E) is given in Tab. 1

Version k c m

A 128 80 48
B 192 128 64
C 240 160 80
D 288 192 96
E 384 256 128

Table 1. Sets of parameters for the different versions of ARMADILLO2.

2.2 Multi-purpose cryptographic primitive

The general-purpose cryptographic function ARMADILLO2 can be used for three types
of applications: FIL-MAC, hashing, and PRNG/PRF.



ARMADILLO2 in FIL-MAC mode. In this application the variable C is the secret and U
is a challenge which can be considered known by the attacker. The value Vt corresponds
to the response.

ARMADILLO2 in hashing mode. The hash mode of ARMADILLO2 uses a strengthened
Merkle-DamgArd construction, where Vc is the chaining value or the hash digest, and U
is the message block.

ARMADILLO2 in PRNG and PRF mode. The PRNG is obtained by taking the first
t bits of (Vc, Vt) after at least r iterations. For ARMADILLO2 the proposed values are
r = 1 and t = k [1, Sec. 6]. If we want to use it as a stream cipher, the secret key is C.
The keystream is then composed of k-bit frames and U is the index of the output frame,
that is a public value.

3 Inverting the ARMADILLO2 function

In this section we describe how to invert the ARMADILLO2 function when U is chosen
and some bits of the output (Vc, Vt) are known. Inverting means that we recover the C
part of the input.

For this purpose, we use a meet-in-the-middle approach which can be performed for
any arbitrary bit-wise permutations σ0 and σ1. To conduct our analysis we suppose that
they behave like random ones.

In [1] a sketch of a meet-in-the-middle (MITM) attack on the first variant of the prim-
itive, ARMADILLO1, is given by the authors to prove lower bounds for the complexity
and justify the choice of parameters.

Here, we first present a meet-in-the-middle technique applied to the recommended
version, ARMADILLO2, when only a part of the output is known (Vt, (Vc, Vt) or Vc). With
this technique, we obtain two lists of partial states in the middle of the permutation: one
computed in the forward direction and one in the backward direction. Next we propose a
method to find all the pairs formed by one element from each list that show consistency
in the middle of the permutation. Our method has lower complexity than exhaustive
search, contrary to the naive way that would cost as much. This second part is indeed
the bottleneck of the time complexity of inverting ARMADILLO2.

All the cryptanalyses that we present in further sections on the different applications
of ARMADILLO2 rely on the technique for recovering C presented in this section.

3.1 The Meet-in-the-Middle technique

Whatever mode ARMADILLO2 is embedded in, we use the fact that we can choose the
value U . Therefore, as U is known and the permutation QU is parametrized by U we
know m = |U | bits of X = QU (C‖U) and their positions. The number of bits of Y that
can also be considered as known depends on the application. We will denote it by y. To
summarize, on the one hand we have Y = QX(C‖U) and we know m bits of the input
(C‖U) of QX , and on the other hand, we know y bits of the output Y = (Vc‖Vt) ⊕ X.
Then we can use a meet-in-the middle technique to recover a consistent C.

We divide X into two parts Xin and Xout such that X = (Xout‖Xin). Let us call
the division line between QXin and QXout the middle of QX . As previously mentioned,
m bits of X = QU (C‖U) are already known from U . We denote by min the number of
bits of U that are in Xin and by mout the number of bits of U that are in Xout. We have
mout + min = m. Therefore c = k − m bits of X remain unknown. We denote by `out



the number of unknown bits in Xout and by `in the number of unknown bits in Xin and
we have `out + `in = c. These bits come from some particular bits of C depending on the
permutation QU . The meet-in-the-middle attack is done by guessing the `in bits and the
`out bits independently.

The lower part Xin determines QXin , the first `in + min rounds of QX (from the
beginning to the middle). We can trace the `in guessed bits of these lower part back to C
with QU . Next, for each possible guess of the `in bits, we can trace these `in bits plus the
m ones from U to their positions in the middle computing forward QXin(C‖U). For each
one of the 2`in possibilities for these bits, we will obtain x = `in +m known bits at some
positions in the middle.

The upper part Xout determines QXout , the last `out +mout rounds of the permutation
QX (from the middle to the end). We assume that we know y bits of Y . We can trace
them back to the middle of QX for each possibility of these 2`out bits of the upper part,
that is computing Q−1

Xout
(Y ).

To describe the meet-in-the-middle attack we represent the vectors that we are trying
to match in the middle as ternary words whose cells can contain the values 0, 1 or nothing
(−). A cell is said to be active if it contains 0 or 1 and inactive otherwise. The weight of
a vector is the number of active cells it contains.

We deal with two lists Lin and Lout, of size 2`in and 2`out respectively, of elements
(vectors) in the middle of QX . The list Lin contains elements QXin(C‖U) coming from
the forward direction whose weights are x = `in + m. The list Lout contains elements
Q−1
Xout

(Y ) coming from the backwards direction whose weights are y.
The probability that, when considering one element from each list we find a match

will depend on the number of collisions on the active cells we will have in this pair of
elements.

Considering a binary vector of k bits A, of weight a, we will denote by P[k,a,b](i) the
probability over all the vectors B of weight b of having wt(A ·B) = i, where · denotes
the bitwise and. We have:

P[k,a,b](i) =

(
a
i

)(
k−a
b−i
)(

k
b

) =

(
b
i

)(
k−b
a−i
)(

k
a

) .

This notation will be used frequently throughout the rest of the paper.
Taking into account the probability of having active cells at the same positions in

a pair of elements from (Lin,Lout) and the probability that these active cells do have
the same value, we can compute the expected probability of finding a match for a pair of
elements, that we will denote 2−Ncoll . We have:

2−Ncoll =
y∑
i=0

2−iP[k,x,y](i).

This means that there will be a possible match with a probability of 2−Ncoll . In total
we will find 2`in+`out−Ncoll pairs of elements that pass this first test. Each pair of elements
defines a whole key. Next, we just have to test these keys to find the correct one.

The question now is what is the cost of checking which elements of the two lists Lin

and Lout pass the test. Let us remark that the active cells are at different positions in
each element, that an inactive cell can be associated to anything (0, 1, or (−)), and that
an active cell can be associated to its own value or to an inactive cell. This makes it
impossible to apply the approach of having an ordered list Lin and then checking for each
element in the list Lout if a match exists with a cost 1 per element, as is the case for



traditional MITM attacks. Even more, a priori, for each element in Lin we would have
to try if it matches each of the elements from Lout independently, which would yield the
complexity of exhaustive search.

For solving this problem we are going to use an adaptation of the algorithm described
in [4, Sec. 3] as parallel matching.

In our case, the application of this algorithm will be more complicated as the elements
are not uniformly distributed but have very specific distributions. That is, in previously
described parallel matching applications, all the potential elements for the lists Lin or
Lout had the same probability of occurring, which is not the case here.

3.2 Parallel matching with non-random elements

Translated to our study case, the parallel matching algorithm will consider the possible
matches for the α first cells, and in parallel the possible matches for the next β cells in
the lists Lin and Lout. This way we will find the elements that are a match for the (α+β)
first cells. If x and y are the number of known bits from below and above, resp., then the
collision probability on the first (α+ β) cells is

2−N
α+β
coll =

x∑
u=0

P[k,α+β,x](u) ·
y∑
v=0

P[k,α+β,y](v) ·
v∑

w=0

2−wP[α+β,v,u](w).

This means that we will find 2c−N
α+β
coll partial solutions. For each pair passing the test we

will have to find next if the remaining k − α− β cells are verified.
We say that two j-cell elements (x1, . . . , xj) and (y1, . . . , yj) of {0, 1,−}j are associated

if their colliding active cells have the same values. In the following x = (x1, . . . , xk) will
represent k-cell vectors in the middle of the permutation obtained in the forward direction
and y = (y1, . . . , yk) will represent k-cell vectors in the middle of the permutation obtained
backwards. Then Lin will contain elements of type x and Lout elements of type y. We
define the probability for an element in Lout to have i active cells in its α first cells as
P[k,α,y](i), and the probability for an element in Lin to have i active cells in its next β
cells as P[k,β,x](i).

First we will build the following lists:

List LA, of all the elements of the form (xA1 , . . . , x
A
α , y

A
1 , . . . , y

A
α ) with (xA1 , . . . , x

A
α ) ∈

{0, 1,−}α and (yA1 , . . . , y
A
α ) being associated to (xA1 , . . . , x

A
α ). The size of LA is:

|LA| =
α∑
i=0

((
α

i

)
2i3α−i2i

)
= 7α.

List LB, of all the elements of the form (xB1 , . . . , x
B
β , y

B
1 , . . . , y

B
β ) with (xB1 , . . . , x

B
β ) ∈

{0, 1,−}β and (yB1 , . . . , y
B
β ) being associated to (xB1 , . . . , x

B
β ). The size of LB is:

|LB| =
β∑
i=0

((
β

i

)
2i3β−i2i

)
= 7β.

List L′B, containing for each element (xB1 , . . . , x
B
β , y

B
1 , . . . , y

B
β ) in LB all the elements x

from Lin such that (xα+1 . . . , xα+β) = (xB1 , . . . , x
B
β ). Elements in L′B are of the form

(yB1 , . . . , y
B
β , x1, . . . , xk) indexed5 by (yB1 . . . , y

B
β , x1, . . . , xα). The size of L′B is:

|L′B| =
β∑
i=0

(
β

i

)
2i3β−i2i2`in

P[k,β,x](i)

2i
(
β
i

) =
β∑
i=0

3β−i2i2`inP[k,β,x](i),

5We can use standard hash tables for storage and look up in constant time.



and the cots of building this list is < (|L′B|+ 3β), where 3β captures the cases where
no element in Lin is associated to the element in LB and is normally negligible.

Next, for each element (xA1 , . . . , x
A
α , y

A
1 , . . . , y

A
α ) in LA we consider the 2`out

P[k,α,y](i)

2i(αi)
ele-

ments y from Lout such that (y1, . . . , yα) = (yA1 , . . . , y
A
α ) and we check in L′B if elements

indexed by (yB1 . . . , y
B
β , x1, . . . , xα) = (yα+1, . . . , yα+β, x

A
1 , . . . , x

A
α ) exist, that is if there is

one index (yα+1, . . . , yα+β, x
A
1 , . . . , x

A
α ). If this is the case, we check if each found pair of

the form (x, y) verifies the remaining (k − α − β) cells. As we already noticed, we will
find about 2c−N

α+β
coll partial solutions for which we will have to check whether or not they

meet the remaining conditions.
The time complexity of this algorithm is:

O

(
2c−N

α+β
coll + 7α + 7β +

β∑
i=0

3β−i2i2`inP[k,β,x](i) +
α∑
i=0

3α−i2i2`outP[k,α,y](i)

)
.

The memory complexity is determined by 7α + 7β + |L′B|. We can notice that if∑β
i=0 3β−i2i2`inP[k,β,x](i) >

∑α
i=0 3α−i2i2`outP[k,α,y](i), we can change the roles of Lin and

Lout, so that the time complexity remains the same but the memory complexity will be
reduced. The memory complexity is:

7α + 7β + min

(
β∑
i=0

3β−i2i2`inP[k,β,x](i),
α∑
i=0

3α−i2i2`outP[k,α,y](i)

)
.

4 Meet in the Middle Key Recovery attacks

4.1 Key recovery attack in the FIL-MAC setting

In the FIL-MAC usage scenario, C is the secret key and U is the known part i.e. the
challenge. The response to the challenge is Vt. In order to minimize the complexity of our
attack, we want the number of known bits y from Y to be maximal. As Y = (Vc, Vt)⊕X,
X = QU (C‖U), and Vt is a m-bit size known vector, it means that we are interested in
having the maximum number of bits from U among the m less significant bits of X.

As we have m bits of freedom in U for choosing the permutation QU , we need the
probability of having i known bits (from U) among the m first ones (of X), P[k,m,m](i),
to be bigger than 2−m. Then to maximize the number of known bits in Y , we choose y
as follows:

y = max
0≤i≤m

{
i : P[k,m,m](i) > 2−m

}
. (1)

For instance for ARMADILLO2-A, we have y = 38 with a probability of 2−45.19 > 2−48.
Then, from now on, we will suppose that y among the m bits of the lower part of X

are known. As represented in Fig. 1, this means that y bits at the same positions of Y
are also known (as Vt is known as well).

Now, we can apply the meet-in-the-middle technique described in the previous section
which will allow us to recover the key. We have computed the optimal parameters for
the different versions of ARMADILLO2, with different trade-offs. The results appear in
Table 2.

For each version of ARMADILLO2 presented in Table 2, the first line corresponds to
the size of lists Lin and Lout for which the time complexity is the smallest. The second line
corresponds to the best parameters when the memory complexity is close to 245. In all



cases, the complexity is determined by the parallel matching part of the attack. The data
complexity of all the attacks is 1, that is, we only need one pair of plaintext/ciphertext
to succeed.

Version c m `out `in α β Time compl. Mem. compl.

ARMADILLO2-A 80 48
34 46 24 20 72.54 68.94
18 62 16 9 75.05 45

ARMADILLO2-B 128 64
58 70 35 35 117.97 108.87
38 90 2 16 125.15 45

ARMADILLO2-C 160 80
76 84 43 43 148.00 135.90
35 125 4 16 156.63 45

ARMADILLO2-D 192 96
92 100 50 50 177.98 160.44
29 163 11 12 187.86 45

ARMADILLO2-E 256 128
125 131 65 65 237.91 209.83
29 227 11 13 251.55 45

Table 2. log2 of the complexities of the meet-in-the-middle key recovery attack for ARMADILLO2 in the
FIL-MAC application (different trade-off)

4.2 Key recovery attack in the stream cipher setting

As presented in [1], ARMADILLO2 can be used as a PRNG by taking the t first bits of
(Vc, Vt) after at least r iterations. For ARMADILLO2, the authors stated in [1, Sc. 6] that
a possible parameter choice is r = 1 and t = k. If we want to use it as a stream cipher,
the secret key is C. The keystream is composed of k-bit frames and U is the index of the
output frame, that is a public value.

In this setting, we can perform a similar attack as the one described in the previous
section, but with different parameters. Indeed, we know y = m + `out bits of the output
of QX . Complexities of the key recovery attack are then lower, as the number of known
bits in the output of QX is bigger.

In general, the best time complexity will be obtained when `in = `out, as the number
of known bits in each side is now x = m + `in in the input and y = m + `out in the
output. In this context it also appears that the best time complexity occurs when α = β.
There might be a small difference between α and β when the leading term of the time
complexity is the first one.

We can see the best complexities for this attack in table 3. Other time-memory trade-
offs would be possible as in the previous section. In order to have an idea of the different
time-memory trade-offs, we have also computed the best parameters for a memory com-
plexity of 245.

5 (Second) Preimage Attack on the Hashing Applications

We now consider the hashing mode. We recall that the hash function built with ARMADILLO2
as a compression function uses a strengthened Merkle-DamgArd mode, where the padding
includes the message length. In this case C represents the input chaining value, U the
message block and Vc the generated new chaining value and the hash digest. In [1] the
authors state that (second) preimages are expected with a complexity of 2c, the one of
the generic attack. We show, in this section, how to build (second) preimage attacks with
a smaller complexity.



Version c m `out `in α β Time compl. Mem. compl.

ARMADILLO2-A 80 48
40 40 19 19 65.23 62.91
27 53 11 16 71.62 45

ARMADILLO2-B 128 64
64 64 31 32 104.71 101.75
29 99 9 16 119.69 45

ARMADILLO2-C 160 80
80 80 39 40 130.53 127.49
26 134 14 14 151.29 45

ARMADILLO2-D 192 96
96 96 47 48 156.35 153.23
30 162 8 16 184.37 45

ARMADILLO2-E 256 128
128 128 64 64 207.96 205.93
30 226 8 16 248.66 45

Table 3. log2 of the best time complexity and the corresponding memory complexity of the key recovery
attack for ARMADILLO2 in the PRNG mode.

5.1 Meet-in-the-Middle (Second) Preimage Attack

The principle of the attack is represented in Fig. 5.1. We first consider that the ARMADILLO2
compression function is invertible with a complexity 2q, given an output Vc and a mes-
sage block. In the preimage case, we choose and fix a length ` (number of blocks) for the
preimage (in the second preimage attack, we can just consider the length of the given
message). Then, given a hash value h:

In the backward direction:
– We invert the insertion of the last block Mpad, which corresponds to the padding

block including the message length. This step costs 2q in a preimage scenario and
1 in a second preimage one. We get the state ARMADILLO2−1(h,Mpad) = S′.

– From state S′, we can invert the compression function for 2b different blocks of mes-
sages Mb, obtaining 2b different intermediate states ARMADILLO2−1(S′,Mb) =
S′′

In the forward direction: From the initial chaining value, we insert 2a messagesM =
M1‖M2‖ . . . ‖M`−2 of length (` − 2) blocks, obtaining 2a intermediate states S. This
can be done with a complexity of O((`− 2)2a).

If we find a collision between the 2a states S and the 2b states S′′, we have obtained
a (second) preimage that is M‖Mb‖Mpad.
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Fig. 2. Representation of the meet-in-the-middle (second) preimage attack.

A collision occurs if a+b ≥ c. The complexity of this attack is 2a+(2q)+2b+q in time,
where the middle term appears only in the case of a preimage attack and is negligible. The



memory complexity is about 2b (plus the memory needed for inverting the compression
function). So if 2q < 2c, we can find a and b so that 2a + 2b+q < 2c.

5.2 Inverting the Compression Function

In the previous section we considered that inverting the compression function for a chosen
message block and for a given output can be done with a cost of 2q < 2c. In this section
we show how this complexity depends on the chosen block of message, as the inversion
can be seen as a key recovery similar to the one done in Section 4. In this case we know
U (the message block) and Vc, and we want to find C. When inverting the function with
the blocks Mb, we choose message blocks (U) that define permutations QU that put most
of the m bits from U among the c most significant bits of X. This will result on better
attacks, as the bits in Y known from U do not cost anything and this allows us more
freedom when choosing the parameters `in and `out.

As before, we have 2m possibilities for QU . We denote by n the number of bits of
U in the c most significant bits of X. The number of message blocks that verify this
condition is:

Nblock(n) = 2mP[k,c,m](n).

In fact we are interested in the values of n which are the greatest possible (to lower the
complexity) while letting enough message blocks available to invert in order to obtain S′′.
It means that these values belong to a set {ni} such that:∑

{ni}

Nblock(ni) ≥ 2b.

As the output is Vc, the `out bits guessed from X are also known bits from the output
of QX . The number of known bits of the output of QX is then defined by

y = min(c, `out + n)

Compared to the key recovery attack, the number of known bits at the end of the
permutation QX is significantly bigger, as we may know up to c bits, while in the previous
case the maximal number for y was y = maxi

{
i : P[k,m,m](i) > 2−m

}
.

To simplify the explanations, we concentrate on the case of ARMADILLO2-A, that
can be directly adapted to any of the other versions.

For n = 48 we have a probability of 2−44.171. This leaves us 248−44.171 = 23.829 message
blocks that allow us to know y = min(`out + 48, c) bits from the output of QX . As we
need to invert 2b message blocks, if b is bigger than 3.829, we have to consider next the
type of message blocks with n = 47, that allow us to know min(`out + 47, c), and so on.
For each n considered, the best time complexity (2qn) for inverting ARMADILLO2 might
be different, but in practice, with at most two consecutive values of n we have enough
message blocks for building the attack, and the complexity of inverting the compression
function for these two different types of messages is very similar.

For instance, in ARMADILLO2-A, we consider n = 48, 47, associated each to 23.829

and 29.96 possible message blocks respectively. The best time complexity for inverting the
compression function in both cases is 2q48 = 2q47 = 265.9, as we can see from Table 4. If we
want to find the best parameters for a and b in the preimage attack, we can consider that
a+b = c and 2b = 2b48 +2b47 , and we want that 2a = 2b48265.9+2b47265.9 = 265.9(2b48 +2b47),
as the complexity of the attack is O(2a+265.9(2b48 +2b47)). So if we choose the parameters
correctly, the best time complexity will be O(2a+1).



Version c m `out `in n log2(Nblock(n)) α β Time compl. Mem. compl.

ARMADILLO2-A 80 48

35 45 47 9.95 22 16 65.90 63.08
35 45 48 3.83 22 16 65.90 63.08

20 60 47 9.95 16 8 71.36 45
27 53 48 3.83 11 16 71.62 45

ARMADILLO2-B 128 64
62 66 64 15.89 33 30 104.67 102.35
33 95 64 15.89 6 16 120.41 45

ARMADILLO2-C 160 80
78 82 80 19.82 41 38 130.48 128.08
26 134 80 19.82 11 16 152.24 45

ARMADILLO2-D 192 96
94 98 96 23.74 49 46 156.31 153.82
30 162 96 23.74 8 16 184.37 45

ARMADILLO2-E 256 128
126 130 128 31.58 65 62 207.96 205.30
34 222 128 31.58 5 16 249.47 45

Table 4. log2 of the complexities for inverting the compression function.

In this particular case the time complexity for n = 48 and for n = 47 is the same one, so
finding the best b and a can be simplified by b = c−q

2 and a = c− b. We obtain b = 7.275,
a = 72.95. We see that we do not have enough elements with n = 48 for inverting 2b

blocks, but we have enough with n = 47 alone. As the complexities are the same in both
cases, we can just consider b = b47. The best time complexity for the preimage attack
that we can obtain is then 273.95, with a memory complexity of 263.08. Other trade-offs
are possible by using other parameters for inverting the function, as shown in table 5.

For the other versions of ARMADILLO2, the number of message blocks associated to
y = m is big enough for performing the 2b inversions, so we do not consider other n’s for
computing the (second) preimage complexity. Then, b = bm = c−q{n=m}

2 and a = c− bm.
The best complexities for preimage attacks on the different versions of ARMADILLO2

are given in table 5, where we can see two different complexities with different trade offs
for each version.

Best time Time-memory trade-off

Version c m Time Memory Time Memory

ARMADILLO2-A 80 48 73.95 63.08 76.81 45

ARMADILLO2-B 128 64 117.34 102.35 125.21 45

ARMADILLO2-C 160 80 146.24 128.08 157.12 45

ARMADILLO2-D 192 96 175.16 153.82 191.19 45

ARMADILLO2-E 256 128 232.98 205.30 253.74 45

Table 5. log2 of the complexities of the (second) preimages attacks on ARMADILLO2.

6 Experimental Verifications

To verify the above theoretical results, we implemented the proposed key recovery attacks
in the FIL-MAC and stream cipher settings against a scaled version of ARMADILLO2
that uses a 30-bit key and processes 18-bit messages, i.e. c = 30 andm = 18. We performed
the attack 10 times for both the FIL-MAC and the PRNG settings where at each time we



chose random permutations for both σ0 and σ1 and random messages U (in the FIL-MAC
case U was chosen so that we got y bits from U among the m least significant bits of X).

Table 6 shows that the average of the implementation results is very close to the
theoretical estimations. In fact, all measurements were extremely close to the average.
Thus, the implementation seems to confirm the above results.

c m `out `in α β y log2 |L′A| log2 |L′B | log2(M)

FIL-MAC
Impl. 30 18 12 18 8 6 14 23.477 25.002 27.537

Theory 30 18 12 18 8 6 14 23.475 25.003 27.538

PRNG
Impl. 30 18 14 16 7 6 32 22.530 23.160 24.728

Theory 30 18 14 16 7 6 32 22.530 23.160 24.735

Table 6. Key recovery attacks against a scaled version of ARMADILLO2 in the FIL-MAC and PRNG
modes, where M ≡ the number of partial matches.

7 Conclusion

In this paper we have presented the first cryptanalysis of ARMADILLO2, the recom-
mended variant of the ARMADILLO family. We propose a key recovery attack on all
its versions for the FIL-MAC and the stream cipher mode, which works for any bitwise
permutations σ0 and σ1. We give several time-memory trade-offs for its complexity. We
also show how to build (second) preimage attacks when using the hashing mode.

We believe that our attack could be countered if the permutation QC was used instead
of the permutation QU , i.e. a permutation taking C as parameter instead of U .

Besides the results on ARMADILLO2, we have shown the first example of how to
extend the application of the parallel matching technique in the case where the lists to
merge do not have random elements.
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