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Abstract. Many attacks on iterated block ciphers rely on statistical
considerations using plaintext/ciphertext pairs to distinguish some part
of the cipher from a random permutation. We provide here a simple for-
mula for estimating the amount of plaintext/ciphertext pairs which is
needed for such distinguishers and which applies to a lot of different
scenarios (linear cryptanalysis, differential-linear cryptanalysis, differ-
ential/truncated differential/impossible differential cryptanalysis). The
asymptotic data complexities of all these attacks are then derived. More-
over, we give an efficient algorithm for computing the data complexity
accurately.

Keywords : statistical cryptanalysis, iterated block cipher, data com-
plexity.

1 Introduction

Distinguishing attacks against block ciphers aim at determining whether
a permutation corresponds to a permutation chosen uniformly at random
from the set of all permutations or one of the permutations specified
by a secret key. Any such attack against an iterated block cipher is a
serious threat since it can usually be transformed into a key-recovery
attack, e.g. by combining it with an exhaustive search for the last round
key. We focus here on the case where the attacker has a certain amount
of plaintext/ciphertext pairs from which he deduces N binary samples
whose sum follows a binomial distribution of parameters (N,p) in the
case of a random permutation and (N, p.) in the other case. Such attacks
are referred as non-adaptative iterated attacks by Vaudenay [Vau03]. The
problem addressed by all these attacks is to determine whether a sample
results from a binomial distribution of parameter p, or p.

The variety of statistical attacks covers a huge number of possibilities
for (p«, p). For instance, in linear cryptanalysis [TCG92,Mat93,Mat94], p.
is close to p = % while in differential cryptanalysis [BS91], p is small and
P« is quite larger than p. Explicit formulae for the data complexity are
well-known in both cases but there is a lack of such formulae for hybrid



cases, for instance for truncated differential attacks where both p and p,
are small and p/p. is close to one.

Sel¢uk sums up the problem in [Sel08]: to express error probabilities,
one has to calculate tails of binomial distributions which are not easy to
manipulate. It is desirable to use an approximation of them. Actually, in
differential cryptanalysis [LMMO91], the well-known formula for the data
complexity is obtained by using a Poisson approximation for binomial
law, leading to a number of chosen plaintexts n of the form:

But this approximation holds for small p, only. In linear cryptanalysis
[Mat93], a Gaussian approximation provides

1.1 Related work

Ideally, we would like to have an approximation that can be used on the
whole space of parameters. Actually, error probabilities vary with the
number of samples N as a product of a polynomial factor Q(N) and an
exponential factor 271V:

Q(N)2~IN,

The asymptotic behavior of the exponent has been exhibited by Baigneres,
Junod and Vaudenay [Jun03,BJV04,BV08] by applying some classical
results from statistics. However, for many statistical cryptanalyses, the
polynomial factor is non negligible. To our best knowledge, all previous
works give estimates of this value using a Gaussian approximation that
recovers the right polynomial factor but with an exponent which is only
valid in a small range. For instance, the deep analysis of the complexity of
linear attacks due to Junod [Jun01,Jun03,JV03] is based on a Gaussian
approximation and cannot be adapted directly to other scenarios, like the
different variants of differential cryptanalysis.

1.2 A practical instance: comparing truncated differential
and differential attacks

The initial problem we wanted to solve was to compare the data com-
plexity of a truncated differential attack and a differential attack. In a



truncated differential cryptanalysis the probabilities p, and p are slightly
larger than in a differential cryptanalysis but the ratio p,/p is closer to 1.
Hereafter we present both attacks on generalized Feistel network [Nyb96]
defined in Appendix A.1. As a toy example, we study a generalized Feistel
network with four S-boxes and ten rounds. The S-boxes are all the same
and defined in the field GF(2%) by the power permutation z — z7.
Definition 1. Let F' be a function with input space X and output space
Y. A truncated differential for F is a pair of subsets (A,B), A C X,
BcCY.
The probability of this truncated differential is the probability

Piex [F(z)+ F(x +a) € Bla € A].

Let T be a partition of GF(2%) into cosets of the subfield GF(2%). If
a is a generator of GF(2®) with minimal polynomial 28 4 z* 4+ 23 + 22 +1,
we define two cosets of GF(2%) by T) = o + GF(2%) and T, = GF(2%).
Let A= (Tl, O, 0, O, O, 0, O, 0) and B = (Tl, TQ, ?, ?, ?, ?, Tl, T2)

For ten rounds of this generalized Feistel network with good subkeys,
the probability of the truncated differential characterized by (A, B) is

pe =118 x 2716,

For a random permutation the probability function of the output is
independent from the input. Thus, the probability for the output to be
in B is : A

p=(2%/2%)" = 2716
The best differential cryptanalysis is derived from the same charac-

teristic but with 77 and 7T reduced to one element (77 = {a®} and
Ty = {0}). In this case, we have:

pe=1.53x 2727 and p=(1/2%)* =272

Notice that the probabilities given have been theoretically computed
and that they take into account all the differential pathes.

The problem is then to determine whether the data complexity of the
truncated differential cryptanalysis is lower than the data complexity of
the differential cryptanalysis or not.

1.3 Our contribution

In this paper we propose a general framework to compare the data com-
plexity of different statistical attacks.



Section 2 recalls the statistical framework of distinguishing attacks.
Section 3 compares the formula for binomial tails computation we use
(involving Kullback-Leibler divergence) to those classically used. Then,
Section 4 gives a general method to estimate the minimal pair thresh-
old/amount of data that fits with the attack requirements (i.e., that
achieves given error probabilities). Section 5 elaborates on results given
in Section 3 to provide a good estimate of the required amount of data
for some given error probabilities. This approximation is actually quite
close to the exact value and an upper bound on the relative error is given.
We deduce that comparing different statistical cryptanalyses reduces to
computing the corresponding Kullback-Leibler divergences.

Finally, in Section 6, we expand Kullback-Leibler divergence with a
Taylor series for some specific statistical cryptanalyses. We recover some
well-known behaviors and find some new ones.

2 Hypothesis testing

Many (non-adaptive) statistical attacks based on distinguishers can be
modeled in the following way. The attacker performs a guess on a subkey
K of the cipher and wishes to know whether this guess is correct or not.
There are two possibilities:

— Hgooq: “K is the correct guess”.
— Hyp,q: “K is not the correct guess”.

The attacker has a certain way of distinguishing the right subkey and
a certain amount of plaintext/ciphertext pairs from which he is able to
calculate N binary values X7, Xo,..., Xy which are independent and
identically distributed and satisfy

P(Xz = 1‘Hgood) = Dx,
P(X; = 1{Hpaa) = p.

From the samples X1, ..., Xy the attacker either decides that Hgyoq holds
or that Hyag is true. Two kind of errors are possible:

— Non-detection: It occurs if it is decided that there is a wrong sub-
key guess when Hg,oq holds. We denote by « the non-detection error
probability.

— False alarm: It occurs if one decides that K is the right subkey
when Hy,q holds. We denote by ( the false alarm error probability.



By using well known results about hypothesis testing it follows that
{X c{0;1}V, Sy = Zf\il X, > T} is an optimal acceptance region for
some integer 0 < T < N. The meaning of optimal is stated in the follow-
ing lemma.

Lemma 1. [CT91/Neyman-Pearson lemma :
If distinguishing between two hypotheses Hgooq and Hyaq with N samples
(X1,...,XN) using a test of the form :

P(Xl,. . .,XN|Hgood)
P(Xl, N ,XN’Hbad)

>t

gives error probabilities Pnq and Pyq, then no other test can improve both
non-detection and false alarm error probabilities.

A standard calculus (detailed in [CT91] for the Gaussian case) shows
that comparing the ratio of Lemma 1 with a real number ¢ is equivalent
to compare Sy = Zf\il X; with an integer 0 <T < N.

3 Approximating error probabilities

This section introduces and compares different ways of approximating
error probabilities. For the attacks we consider in this paper, computing
those error probabilities amounts to computing binomial tails. A par-
ticular quantity will play a fundamental role here, the Kullback-Leibler
divergence.

Definition 2. Kullback-Leibler divergence [CT91]
Let P and Q be two Bernoulli probability distributions of respective pa-
rameters p and q. The Kullback-Leibler divergence between P and Q is

defined by:
P 1—p
D =pl = 1—p)l — ).
(pllg) = plog, (q) + (1 —p) log, (1 _q)

We use the convention (based on continuity arguments) that 0log, 1% =
0 and plogy & = oco.

Later, we will denote by log the base 2 logarithm.

Our main tool is a theorem borrowed from [AG89] which captures
exactly the exponential behavior of the binomial tails together with the
right polynomial factor. Recall that Sy, = Zfil X; where the X;’s follow
a Bernoulli distribution of parame}cg{[ )p.

Writing f N 9 means ]\}gnoom = 1. The main result in [AG89] is

the following theorem:



Theorem 1. Let p, and p be two real numbers such that 0 < p < p, <1
and 0 < 7 < 1. Then,

P(Sy, > 7N) N " _p()l _er)]:[/(i _ T)TND(TH,,)’ (1)

and
*V ]- - _
P(Snp, <TN) ~ p T 9—ND(7lps) (2)
N—oo (p, — T)V2rNT

We are now going to compare these estimates with the ones classically
used.

In [BJV04,BV08], the aim of the authors is to derive an asymptotic
formula for the best distinguisher, that is the distinguisher that maximizes
|1 — a — ]. We denote by N the number of requests of the distinguisher.
The following result is used:

max(a, 3) = 2~ NC@P-p) (3)

where f(N) = g(N) means f(N) = g(N)e®),

In the general case where p, ¢ {0,1}, such a distinguisher has an
acceptance region of the form mentionned by Lemma 1 with ¢ equals to
1. In this setting, the value of the relative threshold 7 fulfills the equality
D (7]lps) = D (7||p). Actually, this value of the Kullback-Leibler diver-
gence is the Chernoff information C'(ps,p) used by Junod, Baignéres and
Vaudenay (see [CT91, Section 12.9]). The exponent in (1) and (2) is the
same that the one given by (3):

a = 9~ ND(7llps) = 9=NC(ps.p) and, (= 9—ND(7|lp) - 9=NC(psp)

In the case p, = 0 or p, = 1, in impossible or higher order differential
cryptanalysis for instance, the relative threshold 7 is equal to p, and
the non-detection error probability « vanishes. Thus, max(«, 8) = 3 =
2~ ND(p-llp) = 9-NC(p-:p) The last equality is directly derived from the
definition of the Kullback-Leibler divergence. So we also find the same
exponent as in [BV08] in this particular case.

In [BJV04], a polynomial factor is taken into account but it is only
suitable where the Gaussian approximation of binomial tails can be used.
For instance, this formula gives a bad estimate in the case of differential
cryptanalysis:
2.pi(agly

N D) @



where &~ is the inverse cumulative function of a Gaussian random vari-
able.

Hereafter we compare N (the required number of samples) to the esti-
mates obtained using (3) and (4). The value of log(/N) is obtained thanks
to Algorithm 1 presented in Section 4 with some refinement detailed in
Appendix A.5. The results are summed-up in Figure 1. An additional
column contains the estimate found using (1) and (2). Note that the cor-
responding estimate tends towards N as (3 goes to zero.

To sum-up this section, asymptotic studies on distinguishers as [BV0§]
neglect the polynomial factor when approximating error probabilities.
Obviously, such estimations overestimate the real complexity as shown in
Figure 1.

In [BJV04,BV08] the authors take a threshold 7 that maximize the
advantage |1 — a — ]. The maximum is obtained for two error probabil-
ities a and (8 which are roughly the same. However, the time complexity
of a cryptanalysis depends on (3. Therefore, it is often the case that this
probability is chosen to be much smaller than the non-detection proba-
bility.

We also observe that the approximation given in [BJV04] and Selguk’s
one [Sel08] are tight when the Gaussian approximation is suitable but
are rather poor everywhere else. In this paper, we fill this gap giving a
unique formula using a polynomial factor that can be used for all sets of
parameters p, and p.

log(N) | (1) & (2) | [BIV04] | [BVOS]

pe =05+149-2"22p =05

Linear o =01 B3—=01 47.57 47.88 47.57 49.58
. pe=05+149-2722 p=105
Linear o~ 0.001 5 = 0.001 50.10 50.13 50.10 | 51.17
. . pe = 1.87-2750 p =275
Differential o =01 5=01 56.30 56.77 54.44 57.71
— 556  _ 5064
Differential ~ P* — 187277 p=2 58.30 | 58.50 56.98 | 59.29

a=0.001 [ =0.001
Truncated pe = 1.18.2716 = 271F
differential a=0.001 [ =0.001

26.32 26.35 26.28 27.39

Fig. 1. Estimations of log(N) from [BJV04,BV08] and our work for some parameters.



4 General method

In this section we use the previously defined notation. We are interested in
finding an accurate number of samples to reach given error probabilities.
Let Sy (resp. Snp,) be a random variable which follows a binomial
law of parameters N and p (resp. ps). The acceptance region is defined
by the threshold T, thus both error probabilities can be rewritten as
Phi = P(Snp, <T) and Pr, = P(Snyp > T). Let a and 8 be two given
real numbers (0 < «, 5 < 1). The problem is to find a number of samples
N and a threshold T such that the error probabilities are less than « and
B respectively. This is equivalent to find a solution (N, T') of the following
system:
P(Snp, <T)<a,
{ P(Snp>T) <.

In practice, using real numbers avoids some troubles coming from
the fact that the set of integers is discrete. Thus, we use estimates on
error probabilities that are functions with real entries N and 7 = T'/N
(relative threshold). Formulae from Theorem 1 can be used for those
estimates but one can use more accurate estimates using formulae given
in Appendix A.5.

We respectively denote by Gna(N,7) and G, (N, 7) the estimates for
non-detection and false alarm error probabilities.

In consequence, we want to find N and 7 such that

Gua(N,7) <a and Gg(N,7)<p5. (5)

For a given 7, Gpq and Gy, are essentially decreasing functions of N.
This means that for a given 7, we can compute Nyq(7) and Ng,(7) the
values such that :

Gud(Npa(7),7) =a  and  Ggp(Nwp(r),7) = 0.

One of those two values may be greater than the other one. In this case,
the threshold should be changed to balance N,gq and Ng,: for a fixed N,
decreasing T means accepting more candidates and so non-detection error
probability decreases while false alarm error probability increases.

Algorithm 1 then represents a method for computing the values of
N and 7 which correspond to balanced Ng, and N,g4. It is based on the
following lemma.

Lemma 2. Let Guq(N,7) and Gg (N, 7) be two functions of N and T,
defined on [0;+00] X [p;p«], with the following properties:



— for a fized T, both are decreasing functions of N;

— for a fired N, Gna(N,T) (resp. Gia(N, 7)) is increasing (resp. decreas-
ing) in T;

— lim Gpq(N,7) > 1, lim Gg(N >1;
]VHE}O nd( 77_) = 1, ]\/}EIO fa( 77—) - 4

— lim Gpq(N,7) = lim Gg(N,7)=0.
N—o0 N—oo

Let wus recall that for fixzed o, B in [0;1] and 7 in [p;p,
Gnd(Nna(7),7) = «a and Geu(Na(7),7) = 5.

We introduce N (1) = max(Npq(7), Nta(7)) which represents the min-
imal N such that (N,T) fulfils (5).

Then, for p < m < py,

if Npa(m) > Ngo(m), then, for all 7 > m, N(7) > N(m);

if Npa(m) < Ngo(m), then, for all 7 < m, N(1) > N(m).

Proof. Both proofs are similar, so we only prove the first statement. Since
Npa(m) > Ng(m), we have Gpa(N(m), m) = aand G (N(m),m) < B.
Using the increasing/decreasing properties of Gpq/Gr, we can say that
for 7 > m, Gua(N(m),7) > a and G, (N(m),7) < (. Then, since those
functions are decreasing with N, we deduce that N(7) > N(m).

O

Algorithm 1 Computation of the exact number of samples required for
a statistical attack (and the corresponding relative threshold).

Input:  Given error probabilities («, 3) and probabilities (p«,p).
Output: N and 7: the minimum number of samples and the corresponding relative
threshold to reach error probabilities less than («, 3).

Set Tmin to p and Tmaz tO Pax.
repeat

Set 7 to .
Compute Npq such that VN > Npa, Gua(N, 7) < a.
0.

Compute Ng, such that VN > Nia, Gea(N, 7) <
if Noq > N, then

Tmin + Tmaz

Tmaz = T
else

Tmin — T.
end if

until Nnd = Nfa.
Return N = Nyq = Ng, and 7.

Npq and N, can be found thanks to a dichotomic search but a more
efficient way of doing that is explained in Appendix A.4.



Application. Our first motivation was to compare differential and trun-
cated differential cryptanalyses of a generalized Feistel network. For the
cipher described in Section 1 the results obtained with some fixed error
probabilities are given in Figure 2. We recall that in the case of differ-
ential cryptanalysis p = 2732 and p, = 1.53 x 2727 while for truncated
differential cryptanalysis, p = 2716 and p, = 1.18 x 2716,

This truncated differential cryptanalysis is thus an improvement of
this differential one.

a ‘ Jé; ‘log(N) (differential)‘log(N) (truncated differential)
0.5 0.001 27.35 24.31
0.5 107" 29.25 26.37
0.01 0.001 29.43 25.94
0.01 | 107%° 30.54 27.29

Fig. 2. Number of required samples N for differential and truncated-differential crypt-
analyses.

5 Asymptotic behavior

The aim of this section is to provide a simple criterion to compare two
different statistical attacks. Such attacks rely on the fact that some phe-
nomena are more likely to appear in the output of some secret key depen-
dent permutation than in a random permutation. So an attack is defined
by a pair (p«,p) of probabilities where p (resp. p.) is the probability of
the phenomenon to occur in the random permutation output (resp. in a
key dependent permutation output).

In order to simplify following calculus, we take a threshold 7 = p,
that gives a non-detection error probability P,y of order % In statistical
attacks, the time complexity is related to the false alarm probability (.
Thus, it is important to control this probability, that is why taking 7 = p,
is a natural way of simplifying the problem.

Then, we can use Theorem 1 to derive a sharp approximation of N
introduced in the following theorem.

Theorem 2. Let p. (resp. p) be the probability of the phenomenon to
occur in the key dependent permutation output (resp. the random per-
mutation output). For a relative threshold T = ps, a good approzimation
of the required number of samples N to distinguish between the key de-
pendent permutation and the random permutation with false alarm error



probability less or equal to B is

/__; o L og (— lo

N = Do) [I g( D(p*|p)) +0.5log (—1 g(Aﬁ))] ,  (6)
N/SNOOSN’[l%—W},

for

_ eV —p) Lo Jos08) N7
A (ie{y*m%umlg< D@MM)]'

Where N is the value obtained using Algorithm 1, (1) and (2).

Proof. See Appendix A.2. o
This approximation with N’ is tight : we estimated the data complexity of
some known attacks (see Figure 3) and observed €’s in the range |1;6.5].
Moreover, for 3 = 2732, observed values of 6’s were less than 2.

A simple comparison for statistical attacks

Equation (6) gives a simple way of roughly comparing the data complexity
of two statistical attacks. Indeed, N’ is essentially a decreasing function
of D (p«||p). Therefore, comparing the data complexity of two statistical
cryptanalyses boils down to comparing the Kullback-Leibler divergences
of those cryptanalyses. .

Moreover, it can be proved that log(21/7D (p«||p)) is a good estimate
of log(\). Thus, a good approximation of N’ is

n_ log(2y/7p)

N =D ®)

Experimental results given in Section 7 show that this estimation is quite
sharp and becomes better when 3 goes to 0.

To have a more accurate comparison between two attacks (for instance
in the case a # 0.5), Algorithm 1 may be used. Notice that the results we
give are estimations of the number of samples and not of the number of
plaintexts. In the case of linear cryptanalysis it remains the same but in
the case of differential, a sample is derived from a pair of plaintexts with a
given differential characteristic. Thus, the number of required plaintexts
is twice the number of samples. The estimate of the number of plaintexts
is a more specific issue we will not deal with.



6 Application on statistical attacks

Now that we have expressed N in terms of Kullback-Leibler divergence,
we see that the behavior of N is dominated by D (p,||p)~". Hereafter, we
estimates D (p*||p)_1 for many statistical cryptanalyses. We recover the
format of known results and give new results for truncated differential and
higher order differential cryptanalysis. Let us recall the Kullback-Leibler

divergence )
p* - p*
Dp*p:p*log<>+ 1—ps log< )
(p-llp) 2 ) + (1 poytog ( T2
In Appendix A.3, Lemma 3 gives an estimate of Kullback-Leibler di-
vergence

D (p«llp) = p« [log (i;) - p*p:p + 2](31:?1__]);;} +O(p« — p)°

Linear cryptanalysis. In the case of linear cryptanalysis, p. is close to

p = 1/2. Thus we get
1 1

~
~

D (psllp) — (p«—p)*
2

If we use the notation of linear cryptanalysis (p. —p = €), we recover £,
which is a well-known result due to Matsui [Mat93,Mat94].

Differential cryptanalysis. In this case, both p, and p are small but
the difference p, — p is dominated by px.

1 1

D (p.llp) ~ pelog(pe/p) — ps’ X
This result is slightly different from the commonly used result, e.g. —

*
in [LMMO91] because it involves log(p./p). However, the commonly used
result requires some restrictions on the ratio p./p so it is natural that
such a dependency appears.

Differential-linear cryptanalysis. This attack presented in [LH94]
combines a 3-round differential characteristic of probability 1 with a 3-
round linear approximation. This gives p = 0.5 and p, = 0.576. This case
is very similar to linear cryptanalysis since we observe a linear behavior
in the output. Thus, as it is written in [LH94], the asymptotic behavior
of the number of samples is

11
D (p«llp) ~ (p« —p)?*




Truncated differential cryptanalysis. In the case of truncated dif-
ferential cryptanalysis, p, and p are small but close to each other. This
leads to
| -
D (plp) — (px —p)*

Impossible differential. This case is a particular one. The impossi-
ble differential cryptanalysis [BBS99] relies on the fact that some event
cannot occur in the output of the key dependent permutation. We have al-
ways assumed that p, > p but in this case it is not true anymore (p, = 0).
However, the formula holds in this case too:

1 1
—_— = log_1 <> ~p L
D (0]|p) 1-p

Higher order differential. This attack introduced in [Knu94] is a gen-
eralization of differential cryptanalysis. It exploits the fact that a k-th
order differential of the cipher is constant (i.e independent from the plain-
text and the key). A typical case is when k = deg(F + 1)), any k-th order
differential of F' vanishes. Therefore, for this attack, we have p, = 1.
Moreover, p = (2™ — 1)~! where m is the block size so p is small.

1 1
_= logf1 () = —1/log(p).

D ]p) p) =71/ 1s®)
An important remark here, is that in a cryptanalysis of order &, a sample
corresponds to 2¥ chosen plaintexts.

7 Experimental results

Here we present some results found with Algorithm 1 to show the accuracy
of the estimate given by Theorem 2.

Let us denote by N the exact number of required samples, we want
to compare it to both estimates. Let us write again both approximations
of N given in Section 5, namely:

1 o A
N = D (p«||p) [l g< D (p«||p)

N// — 1Og(2ﬁ/3)

D (p«|Ip)

> 05108 (— log(Ad))



In Figure 3, N is given with two decimal digits precision. This table
compares the values of N’ and N” to the real value N for some parame-
ters.

In statistical cryptanalysis, we extract the key of the cipher in a list
of candidates for the good key. The smaller the false alarm probability is,
the smaller the list of candidates will be. And we can see in Figure 3 that
when 3 goes to 0, N/ and N” tend to .

P = log(N) log(N') log(N")
L 05 05+1.19-27* 42.32  42.00 (—0.32)  42.60
=2"%| DL 05 0541.73-276 11.26  11.15 (=0.11)  11.52
D 2764 1.87.277¢ 54.57 54.68 (+0.11)  54.82
Dgfn 2732 1.53.27%7 27.14  26.80 (—0.34)  26.94
TDgfn 27'¢ 1.18-2716 23.85 23.66 (—0.19)  24.13
P = log(N) log(N') log(N")
L 0.5 0541.19-272 43.62  43.54 (—0.08)  43.79
=271 DL 05 0.541.73-27 12.54 12,52 (—0.02)  12.71
D 2764 1.87-2756 55.85  55.94 (+0.09)  56.02
Dgfn 2732 1.53.27%7 28.27 28.05 (—0.22) 28.14
TDgfn 27'¢ 1.18.2716 25.15 2511 (—0.04)  25.33
P Px log(NN) log(N') log(N")
L 0.5 054+1.19.-272 44.78  44.76 (—0.02)  44.88
=2"%%| DL 05 0541.73.27° 13.70  13.69 (—0.01)  13.80
D 2764 1.87-2756 56.98  57.06 (+0.08)  57.11
Dgfn 2732 1.53-27%7 29.13  29.17 (+0.04)  29.23
TDgfn 2716 1.18-2716 26.31 26.30 (—0.01)  26.42

Fig. 3. Some experiments for some values of parameters 3, p and p..

— L : DES linear cryptanalysis recovering 26 key bits [Mat94].

— DL : DES differential-linear cryptanalysis [LH94].

D : DES differential cryptanalysis [BS93].

Dgfn/TDgfn : Generalized Feistel networks (truncated) differential
cryptanalysis presented in this paper.



8 Conclusion

Attack Asymptotic behavior | Asymptotic behavior Known or
of the of the chosen plaintexts
number of samples | number of plaintexts (CP/KP)
1 1
Linear — — KP
(p+ —p) (p« —»)
. . 1 2
Differential CcP
P« 1og(p«/p) — p- P« 10g(p+/p) — p-
. s 1 2
Differential-linear — — CcP
(p« —p) (p« —»)
Truncated P Py
differential (ps — p)? (px —p)2’ l<v<2 cP
Irppossfple 1 2 CcP
differential D p
k
k.—th ord.er 1 2 cp
differential logp logp

Fig. 4. Asymptotic data complexity for some statistical attacks.

In this paper, we give a general framework to estimate the number of
samples that are required to perform a statistical cryptanalysis. We use
this framework to provide a simple algorithm which accurately computes
the number of samples which is required for achieving some given error
probabilities. Furthermore, we provide an explicit formula (Theorem 2)
which gives a good estimate of the number of required samples (bounds
on relative error are given). A further simplification of this formula (2)
is a decreasing function of D (p*Hp)*l. This implies that comparing the
data complexity of different statistical cryptanalyses boils down to com-
puting the corresponding Kullback-Leibler divergences. Actually, the be-
havior of the number of samples is dominated by D (p.||p) ™. We show
that D (p,||p)~" gives the same order of magnitude as known results ex-
cepted in differential cryptanalysis where a dependency on log(p./p) is
emphasized. We also extend these results to other block cipher statistical
cryptanalyses, for instance, truncated differential cryptanalysis. To con-



clude, Figure 4 sums up the behaviors of the number of required samples
for some known statistical cryptanalyses. Some experimental results are
given in Section 7 to compare estimates found in Section 5 to the real
value of N. These results show the accuracy of the estimates given in
Section 5 in the settings of actual cryptanalyses.
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A  Appendix

A.1 Generalized Feistel networks

A generalized Feistel network [Nyb96] is an iterated block cipher whose
round function is defined in Definition 3.

Definition 3. In a generalized Feistel network with block size 2dn, the
plaintext X is split into 2n blocks of size d. It uses n S-boxes of dimen-
sion d X d denoted by Si, ..., S, and the round function (X, ..., Xop) +—
(Y1, ...,Yay) is defined by:

Zni1—i = Xpp1-i © Si(Xiyn © K;) fori=1,..,n
Zi=X; fori=n+1,..2n
Yi=Z;—1 fori#1
Y1 = Zon

where @ 1s the modulo 2 addition.

A.2 Proof of Theorem 2

Proof. Recall that 7 = p, so that non-detection error probability is
around % We want to control false alarm error probability that we fix to
3. Equation (1) in Theorem 1 gives

__log(ABV'N)
N D ) )

where \ = %ﬁj}%ﬂ*). Formula (9) suggests to bring in the function

(
f which has a contraction property: f(x) = —%.



Applying f iteratively with first term Ny = 1 gives a sequence (N;);>0
which can be shown to have a limit N, which is the required
number of samples. Since f is decreasing, consecutive terms satisfy
No; < Ny < Ngitq. Function f can be written as

f(x) =a—blog(x) Witha:—M and b = !

D (p«|Ip) 2D (ps|lp)’
It is worth noticing that a corresponds to the second term, N7, of the
sequence. Now, we want to show that the third term, No, provides a good
approximation of No. As No < Ny < Ng, it is desirable to express N3
in terms of Ns.
N3 == N1 — blOg(Nl) + blog (Nl/NQ)

= Ny + blog (N1 /N>)

log (A !
Let us define 0 = [1 + Wl(/\ﬁ) log (—Do(gp(*’fp))ﬂ , as in Equation (7)
in Theorem 2. Then,
Ny " blog(a) log(a)
Ny a 2log(A\3)

The bound on N, becomes:
blog(0)

No < Ny < No |1+ —2271.
2 X Neo < 2[4- N2:|

in order to show that Ny is a good approximation of N, we focus on
blog(6)/N2 and compare it with 1. As No/b = a/b — log(a), we try to
bound a/b. We have 6Ny = N; implying a/b = 6log(a)/(6 — 1). Since f
is a decreasing function, N1 > N3 leading to Na/b > log(N2)/(6 — 1).

Finally, N3 < N, [1 + W] and
(0-1) log(H)]
log(Ng)

where Ny is equal to the value of N’ in Theorem 2. O

A.3 Taylor expansion of the Kullback-Leibler divergence

Lemma 3. Let 0 < p < p. < 1. Then,

p=\ p—p  (p«—p)° 3
D * = P« lo — - + +O *
(p<|lp) = »p { g ( p) o 51— o) (p« =)




Proof.
Using the Taylor theorem, we get

(1 —p«)log (11__12:> =p—p«+ %—FO@—IM)S.

D+ 1—p.
D (p« =p.log| — ) +(1—p«)lo ( )
(p«llp) = p g(p) (1 —p«)log =

(P_p*)2 2
=p.lo + st o+ 0 (p—pn
=p g(p) PPt oG, (p— )

p=\ p«—p  (p«—p)° 3
- [log<p) b op —p*)] +Olp. — ) 0

A.4 Discussion on Algorithm 1: Finding N,q and Ng,

A more efficient technique than dichotomic search can be used to find
Npq and Ng, in Algorithm 1. If we fix P4 to «, (2) can be rewritten as:

1 log < P/ 1 —1T >
D (7||ps) a(ps — T)V2rNT

Using the same fixed point argument as in Appendix A.2, we can find
Npq by iterating the function with a first point g = D (7]|ps)*. The
same thing can be done with (1) in order to find Ng,.

N ~

A.5 Discussion on Algorithm 1: Accurate computation of
error probabilities

To accurately estimate error probabilities, we use Stirling approximation
of the binomial coefficient :

()= "

If Sy, follows a binomial distribution of parameters N and p.,

P =T-1) = . .
(SN.ps ) P N—_—T+1

P(Snp. =T).

- _ (1-p.) T (1—p.)*-T(T - 1)
P(Swp. <T) = P(Sxp. =T) [p*-(NfTJrl)+p§A(N7T+1)(N7T+2)

B B S N (N —T)!
—P(SN,p*_T)';( Ds ) (T =) (N =T +1)!

_(N) 7 Nor e [1—p ' T (N —T)!
_<T>p*(1_p*) Z( D+ ) (T — ) (N =T+

i=1




From (10), we estimate the probability :

N _
P(Snp. =T) = ()p*l—p* T

l N-T

T 10e(% /p)+(1- 5 log((1-5)/(1-p.))

[ 2—ND NHP*

2~ NP(x ) ND(Flpx) 1—ps T! (N -T)!
P(Snp. <T) T ( ) (T =)l (N =T +3)! (1D

The key is to notice that the dominant term is the last one. So, we
begin to sum with this term and then add the others until it reaches a
given precision. This estimate is tight when N and T are big enough.
When T is small, one can use the exact formula of binomial probability
since the complexity comes from the size of T. The same thing can be

done for false alarm error probability.

We would like to use this estimation in Algorithm 1 to compute a
very good estimate of V. Algorithm 1 uses a formula of error probabilies
with relative threshold 7 because of its continuity. We have to extend
(11) to real numbers. For a relative threshold 7, we want a formula for
P(Snp, < TN) that corresponds to (11) when 7N is an integer and that
is continous. Let T3, be the value [7N]. Then such an estimate is the
following :

(SNP*<TN)N
o= ND(FElp+) [
1 - (1,

Tu - L Ty (N =Typ)!
N2 p( P« ) (Tupii)! (NfTupii)!

2r(1 — e2y1,

We can derive from it an expression with contraction properties to com-
pute Npnq in Algorithm 1. Error made on the estimation can be bounded
because the error on Stirling approximation is well-known and the error
when not summing until T, can be roughly bounded using:

P(Sw.p. —i—j) < 1= i Y p(sw,. = i)
Np. =1—]) > D N_—it+1 N,px = 1)-

cdot All this work can be done for false alarm probability.



