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Eksploratiivinen data-analyysi tarkoittaa oleellisen informaation löytämistä tie-
toaineistoista. Koneoppimismenetelmät automatisoivat tämän tavoitteen sovit-
tamalla dataan malleja. On oleellista, että kaikki taustatieto voidaan käyttää
kyseisten mallien rakentamiseen.

Pääkomponenttianalyysi on tyypillinen koneoppimismenetelmä eksplo-
ratiiviseen analyysiin. Viime aikoina sen probabilistiset tulkinnat ovat
osoittaneet menetelmän rajoittuneisuuden tietyn tyyppiseen dataan.
Pääkomponenttianalyysin laajennus eksponentiaaliperheen jakaumiin korjaa
tämän ongelman.

Työssä esitetään yleinen malliperhe, joka soveltuu usean aineiston analyysiin, rak-
entamalla pääkomponenttianalyysin eksponentiaaliperheen laajennuksen päälle.
Yhtenäinen viitekehys sisältää menetelmiä, jotka soveltuvat ohjattuun ja ohjaa-
mattomaan oppimiseen.

Aiemmista menetelmistä poiketen työssä käytetään Bayesilaista menetelmää suu-
rimman uskottavuuden menetelmän sijaan. Bayesilaisessa menetelmässä tausta-
tietoa voidaan esittää priorijakaumien muodossa. Työssä esitetään yleinen prior-
ijakauma, jolla voidaan ottaa jakaumille tyypilliset piirteet huomioon.

Työssä esitetään useita parannuksia mallintamiseen, mallien rakentamiseen, op-
pimiseen ja tulkintaan liittyen. Empiirisillä kokeilla osoitetaan, että esitetyt
menetelmät toimivat paremmin kuin perinteiset menetelmät.

Avainsanat: approksimatiivinen Bayesilainen inferenssi, Bayesilainen
mallintaminen, eksponentiaaliperhe, kanoninen korrelaatioana-
lyysi, ohjaamaton ja ohjattu oppiminen, pääkomponenttianalyysi
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Exploratory data analysis stands for extracting useful information from data sets.
Machine learning methods automate this process by fitting models to data. It is
essential to provide all available background knowledge for building such models.

Principal component analysis is a standard method for exploratory data analysis.
Recently its probabilistic interpretation has illustrated that it is only suitable for a
specific type of data. Extension of principal component analysis to the exponential
family removes this problem.

In this thesis a general model family suitable for the analysis of multiple data
sources is presented by building on the exponential family principal component
analysis. The unifying framework contains as special cases methods suitable for
unsupervised and supervised learning.

While earlier methods have mainly relied on maximum likelihood inference, in
this thesis Bayesian modeling is chosen. In Bayesian modeling background knowl-
edge is utilized in the form of prior distributions. In this thesis, a general prior
distribution is proposed that takes distribution-specific constraints into account.

Multiple contributions to modeling, inference and model interpretation are intro-
duced. With empirical experiments it is demonstrated how the proposed methods
outperform traditional methods.

Keywords: approximative Bayesian inference, Bayesian modeling, canonical cor-
relation analysis, exponential family, principal component analysis,
supervised and unsupervised learning
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1 Introduction

Modern computer science enables storing and processing large collections of data.
Such data collections include for example image data, gene expression measurements
or functional resonance imaging (fMRI) data, to name a few, with applications
ranging from image restoration to prediction of human brain activation patterns
for natural stimuli. Other exemplary application is movie recommendation system,
where the common task is to predict missing items based on observed relations. This
application is used throughout the introduction as an illustrating example. For all
those applications data analysis is needed for finding useful information.

Given data of movie ratings of users the aim is to build a system that can rec-
ommend movies. Of course, the users do not rate movies randomly, but instead
there is some process behind the data generation. The task in data analysis is to
uncover this process; however, the true data generating process may be too com-
plex. In practice, it suffices to make accurate predictions, hence good and useful
approximative models of reality are considered.

Machine learning aims to build models that learn from data. It is based on math-
ematical models that are designed for different tasks by making sets of assumptions.
Models have parameters which are fitted to data based on some criterion; this pro-
cess is also termed learning. After the model parameters are fitted, the model can
be used, for example, to make predictions and explain the data. The model has
learned relevant structure from the data if it can be used to explain the observed
data and to make good predictions. For example, an approximative model for the
data generating process can be used to predict future data and impute missing
values.

Principal component analysis (PCA) is a traditional, over a century old, machine
learning method suitable for finding structure in a data set (Jolliffe, 1986). The
N × D data matrix is denoted with X. In the movie recommendation application
the N rows of X correspond to the different users and the D columns correspond to
the different movies. The data matrix element xnd is the rating of user n for movie
d. The model for PCA can be written as

X = UVT + E or xnd =
∑K

k=1 unkvdk + εnd, (1)

where the N ×K matrix U is a row-wise collection of latent variables assigned for
each data point, D×K matrix V is a projection from latent variables to data, and E
is a noise matrix. The K is the rank of the decomposition. Essentially, PCA searches
for two matrices U and V that capture the relevant properties of the data. This
task is termed dimensionality reduction: describing the observed high-dimensional
data with fewer features assuming that K is much smaller than D. After finding
the parameters U and V, the missing items can be predicted or U can be analyzed,
for example, to see if users form groups.

Probabilistic modeling is one way of formulating models such as PCA. Data is
connected to the parameters through the likelihood function that represents condi-
tional probability of data given the parameters. Most common inference methods
for probabilistic modeling can be divided to two different approaches, Bayesian and
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maximum likelihood (ML) inference methods. Maximum likelihood seeks parame-
ter values that are most probable measured by the likelihood function. In Bayesian
inference, first a full joint probability model for data and parameters is built by set-
ting a prior distribution for the parameters. The parameters are then conditioned
on observed data; what is the distribution for the parameters after seeing the data.

Probabilistic interpretation of PCA provided by Tipping and Bishop (1999)
shows that PCA is only optimal for a specific type of data. Essentially, PCA assumes
that the noise, elements of E, and the latent variables follow Gaussian distribution.
The assumption for the noise is ultimately rather restricting.

In recent years one of the main directions in PCA extensions has been to relax the
Gaussianity assumption, to better suit domains with non-continuous-valued data.
The movie rating matrix is a suitable example as the entries of the data matrix are
discrete and typically range from 1 − 5. For such data the ’measurement noise’ is
not Gaussian. A true rating of 4 might correspond to 3 or 5 but definitely not, for
example, −0.52 or 6.98 that would be possible for the Gaussian noise. In addition
to ordinal data type, binary and integer data types also have practical applications.
For example, documents can be represented by binary features that indicate whether
a certain word appeared in the document, or by counts that tell how many times
the word appeared in the document. All the above discussed data types have an
interesting common property: they belong to the so-called exponential family.

The first exponential family variant of PCA (EPCA; Collins et al., 2002) intro-
duced the basic approach of taking the data distribution into account. Exponential
family is a collection of different probability distributions that share the same func-
tional form (see Bernardo and Smith (2000)).

EPCA still remains an active research area. Examples of recent advances in
EPCA family of models include a semi-parametric formulation applicable to even
more flexible distributions (Sajama and Orlitsky, 2004) and more efficient algorithms
guaranteed to converge to the global optimum (Guo and Schuurmans, 2008). Most
of the presented methods are limited to maximum likelihood inference, however,
Bayesian exponential family PCA (BEPCA) takes the approach to the next level
by including a full probability model for the data and the parameters. Mohamed
et al. (2009) made a straightforward assumption of Gaussian priors for the latent
variables.

In an abstract and compact form, the PCA problem is simply a matrix decom-
position. The EPCA makes the decomposition in the space of the so-called natural
parameters of element-wise exponential family distributions. That is, each element
of X is assumed to be generated independently from an exponential family distri-
bution with parameters collected into Θ, while Θ itself is factorized as Θ = UVT .

While EPCA focuses on decomposing a single data matrix, additional data about
users or movies could be used to improve recommendation accuracy. Supervised
PCA (both exponential family and standard; Yu et al. 2006; Guo 2009) are the
simplest generalizations of PCA suitable for the analysis of multiple data sets. Cat-
egory labels are a special case of additional data that represent especially interesting
properties. Instead of recommending movies to users it may be more interesting to
predict how well the movie is going to sell. Providing PCA with such label infor-
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mation results in supervised projections.

1.1 Contributions and contents

In this thesis two novel extensions of EPCA are presented for the analysis of two
(or more) co-occurring data sets, namely exponential family partial least squares
(EPLS) and exponential family canonical correlation analysis (ECCA). Let Y1 and
Y2 denote two data sets with dimensionalities N×D1 and N×D2. The samples co-
occur, meaning that the rows of Y1 and Y2 are paired. EPLS is used for prediction
tasks. For example, treating Y1 as label-information, it separates variation that
is shared between Y1 and Y2 from variation that is specific for Y2. Motivation
is that not all variation in Y2 is relevant for predicting Y1. While EPLS focuses
on prediction, ECCA can be used to find what is shared between the data sources.
Shared variation between Y1 and Y2 is captured by discarding set-specific aspects.
More intuitively, ECCA can be seen as a data fusion method assuming that only
commonalities between the two data sets are interesting.

It is demonstrated in this thesis how Bayesian exponential family variants of
supervised EPCA (Guo, 2009), partial least squares (PLS), and canonical correlation
analysis (CCA) can be obtained using the same basic formulation by providing a
unifying framework. The proposed methods extend naturally the recent literature
on probabilistic variants of these methods (PLS: Gustafsson, 2001; Nounou et al.,
2002, CCA: Bach and Jordan, 2005; Klami and Kaski, 2007), in the same way as
the EPCA approaches build on top of probabilistic PCA.

In Bayesian modeling prior distributions need to be assigned for the parameters
of the model. In this thesis, ways of postulating priors for (U,V) and for com-
puting with them are introduced. In general, the domain of natural parameters is
constrained. Assuming a Gaussian prior for the latent variables is not suitable, for
example, for exponential distribution where the natural parameters are restricted
to be positive. In this thesis, a novel regularizing prior is introduced, that removes
some of the problems of the Gaussianity assumption by constraining the values for
the Θ.

This thesis is structured as follows. In Section 2, probabilistic modeling is dis-
cussed introducing elementary Bayesian inference in more detail. In Section 3, first
exponential family distributions and some of their central properties are reviewed.
Secondly, standard PCA and its generalization to the exponential family are pre-
sented. One of the main contributions of this thesis is then presented in Section
4, where the assumptions that result in methods suitable for the interesting case
of two-view analysis of co-occurring data sources are introduced in detail. Then
in Section 5 novel ways of defining suitable priors for the models are presented,
and efficient inference algorithms are presented in Section 6. Finally in Section 7,
the models are demonstrated to outperform their rivals in a number of experiments
using both artificial and real data. Discussion is given in Section 8.
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2 Modeling background

Probabilistic models describe the generation of data by probability distributions. A
parametric generative probabilistic model defines a probability distribution

p(X|Θ),

where X denotes observed data and Θ is the collection of model parameters.

2.1 Bayesian inference

In Bayesian inference joint probability distribution is defined for observed and unob-
served quantities. This can be written applying the conditional probability formula
as

p(X,Θ) = p(X|Θ)p(Θ),

where p(Θ) is the prior distribution for parameters denoted with Θ, while p(X|Θ) is
the likelihood function. The likelihood function essentially measures how probable
it is to observe X if Θ are the parameters. Applying the conditional probability
formula one more time, the posterior distribution of the parameters is

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
,

where the normalization term p(X) is used to ensure that the posterior distribu-
tion is valid, i.e., integrates to one over the whole parameter space. The posterior
distribution measures how probable the values for the parameters are after seeing
the data X. This is the core of Bayesian inference, to condition parameters on ob-
served data. Instead of learning specific optimal values for the variables as done in
optimization-based learning frameworks , the Bayesian inference process considers
the full posterior distribution of these variables.

Many common probability distributions can be represented through summary
statistics. Mean value is one such quantity and it represents the expected value of
the distribution. The expectation of Θ (i.e. the mean) with respect to p(Θ|X) is
defined as

Ep(Θ|X)[Θ] =

∫
Θp(Θ|X)dΘ.

When there is no risk of confusion, the subscript of E[·] is dropped and assumed to
be the posterior distribution.

In order to express the posterior distribution analytically, the normalization con-
stant needs to be solved. The normalization term can be written, introducing the
relevant concept of marginalization, as

p(X) =

∫
p(X,Θ)dΘ

=

∫
p(X|Θ)p(Θ)dΘ. (2)
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In machine learning prediction of new samples is of ultimate interest. The prob-
ability for unobserved new data, x∗, is

p(x∗|X) =

∫
p(x∗|Θ)p(Θ|X)dΘ.

The distribution is called posterior predictive distribution. It can be used to gener-
ate new data. For example, the posterior predictive distribution is used to impute
the missing values in probabilistic matrix factorization. Integration over the pa-
rameter space for prediction results in optimal predictions as predictions based on
multiple different models are averaged using the correct weights as determined by
the posterior.

2.2 Point estimates

In the previous section the full Bayesian inference was discussed. However, this is
not the only option, for quick inference point estimates of the posterior distribution
can be sought. The most likely parameter values are given by the maximum a
posteriori estimate

ΘMAP = arg max
Θ

p(Θ|X) = arg max
Θ

p(X|Θ)p(Θ) (3)

by noting that the normalization term does not depend on Θ. The resulting es-
timate, ΘMAP , is the best one if only one has to be chosen. For computational
simplicity the logarithm is usually applied to the cost function (3). Logarithm is a
monotonic function and does not change the value of ΘMAP , and the log-posterior
is written as

LMAP = ln p(X|Θ) + ln p(Θ).

Unfortunately, the use of ΘMAP does not reveal the uncertainty of the posterior
distribution. The predictive distribution given a point estimate is

p(x∗|X) = p(x∗|ΘMAP ),

resulting in predictions that are best possible ones given just one value for Θ, yet
suboptimal compared to averaging over the whole posterior.

Computationally similar method to MAP is so-called maximum likelihood infer-
ence. In maximum likelihood the prior distribution p(Θ) that is used to constrain or
regularize the space of possible solutions is omitted. To justify this approach from
Bayesian point of view the prior is set uniform, that is, p(Θ) is constant.

Maximum likelihood inference for Θ can be written as

ΘML = arg max
Θ

p(X|Θ).

or in the log-domain as

ΘML = arg max
Θ
L = arg max

Θ
ln p(X|Θ). (4)



6

2.3 Approximate Bayesian inference

While the point estimates can be searched by optimization, the Bayesian inference
requires integration over the parameter space. In order to obtain the posterior
distribution, it is necessary to marginalize over Θ. At this point the seemingly
simple expression of Bayes formula turns out to be a rather tedious one. For many
non-trivial models the integral cannot be expressed in closed form resulting in a
posterior distribution of any known form. This does not prevent, however, from
using the model, since the marginal distribution and other relevant quantities can
be solved with approximative inference methods.

There are two common approximation methods to solve the complicated inte-
grals. One approach is to approximate the distributions such that exact integration
is viable (Bishop, 2006). This approach is called variational Bayes. In this thesis,
however, this kind of approximations are not discussed further. Instead, the focus is
on sampling methods (Gelman et al., 2004). The reason is that sampling methods
require minor changes in computations when the model structure is changed. For
variational techniques even minor modifications lead to elaborate computations.
However, sampling methods require usually considerably more computation time
than variational methods.

As mentioned in the previous section, the posterior predictive distribution is
defined as the integral

p(x∗|X) =

∫
p(x∗|Θ)p(Θ|X)dΘ. (5)

The idea in sampling methods is to approximate this with

p(x∗|X) =
1

S

S∑
s=1

p(x∗|Θ(s)),

where Θ(s) ∼ p(Θ|X) with s = 1, . . . , S are samples from the posterior. The
approach is possible because samples Θ(s) can be drawn even when p(X) is unknown.

Markov Chain Monte Carlo (MCMC) is an umbrella term for a myriad of meth-
ods that can be used to obtain samples from the posterior. The basis of MCMC is
the Metropolis-Hastings (MH) algorithm (Gelman et al., 2004). The sampler is con-
ceptually simple; it proceeds by proposing a shift to the current state Θc from the
(symmetric) proposal distribution q(·). Proposal distributions are typically speci-
fied separately for different variables in Θ. The proposed state, Θ∗, is drawn from
q(Θ|Θc) and accepted with probability

min
(
1,
p(Θ∗|X)q(Θc|Θ∗)
p(Θc|X)q(Θ∗|Θc)

)
. (6)

If the proposal is rejected the state does not change. The acceptance probability
simplifies to

min
(
1,
p(Θ∗|X)

p(Θc|X)

)
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for symmetric proposal distributions, q(Θc|Θ∗) = q(Θ∗|Θc). Computing the accep-
tance probability is possible because the normalization term cancels out:

p(Θ∗|X)

p(Θc|X)
=
p(X|Θ∗)p(Θ∗)p(X)

p(X|Θc)p(Θc)p(X)
=
p(X|Θ∗)p(Θ∗)
p(X|Θc)p(Θc)

.

Starting from some initial value of Θ and proposing infinitely many proposals
the method ultimately provides samples from the posterior distribution; when that
happens the sampler is said to be converged. However, it is not trivial to determine
convergence. Gelman et al. (2004) propose using a method they call the potential
scale reduction factor (PSRF) to assess convergence.

Gibbs sampling is another common MCMC method for Bayesian inference. It
is a special case of the MH algorithm. The conditional distributions of the pa-
rameters are used for proposals. The conditional distribution for Θi is defined as
p(Θi|X,Θ−i), where Θ−i denotes the set of all other parameters except Θi. The
method proceeds by updating the parameters sequentially, proposing for each a
new value using the corresponding conditional distribution. Rejections do not oc-
cur because of using conditional distributions (Gelman et al., 2004); the acceptance
probability is always one.

Typically, in modeling only a few parameters are of interest. The parameters
that are necessary for the model but not for the further analysis are called nuisance
parameters. Hence, the marginal posterior distributions, for instance, p(Θi|X) are
interesting. In sampling, marginalization of Θ−i can be performed by sampling all
of the parameters from the joint model, and simply discarding the values for Θ−i.

2.4 Model selection

Point estimation methods rely on using a single model instead of averaging over
multiple models as in Bayesian inference. The problem of model selection is choosing
one model from many possible alternative models. The decision can be done by
choosing the model that generalizes well to new data.

The training error is denoted as Jtrain and the error for future data as Jtest.
Demonstration of the model selection procedure is given in Figure 1. The model
complexity (usually measured by the number of the parameters in the model) needs
to be set suitably. Too complex model overfits, that is, it describes well training
data but does not generalize well. On the other hand, the model has underfitted if
both errors are large.

In principle, model complexity could be chosen based on Jtest but this quantity
is not known. By using a validation set we can approximate Jtest and determine
model complexity (Bishop, 2006). The available data are split in two sets and one
is used for training and the other for validation. When the model begins to describe
aspects of training data alone the prediction error increases or remains the same.
For MAP estimation the validation set can be used to set the parameters of the
prior as well.
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Figure 1: Demonstration of model selection. Low complexity models underfit and
both training and testing errors are large. On the other hand, too complex models
overfit and the test error is large. Suitable compromise of model complexity results
in best performance.

2.5 Why Bayesian modeling?

The difference between maximum likelihood(ML) and Bayesian inference methods
is critical. For Bayesian inference the uncertainty is expressed in parameter values
in the form of prior distribution and the corresponding posterior distribution is
sought. ML assumes that the observed data set has unique true parameters and
the uncertainty is assumed only for the observed data, i.e., the observed data set
is one random realization of the true process. The solutions found by ML lie in
the space spanned by the observed data, making this approach well justified for
large data sets. For the Bayesian method the space of parameters is constrained
by the prior distribution. For example, in extreme cases the parameter value Θ0

with zero prior probability, p(Θ0) = 0, results in posterior with zero probability,
p(X|Θ0)p(Θ0) = 0.

Predictive quality of ML for machine learning methods depends on the number
of training samples. Simple illustration of this effect is demonstrated by classical
coin tossing example. If a coin has been tossed two times and both tosses landed
heads, ML deducts that all future tosses are also heads. ML is overly confident in
its predictions. In Bayesian inference a prior favoring a fair coin is used, and the
posterior distribution after the two tosses contains the prior knowledge resulting in
rational inference for the future outcomes.

Briefly put, ML overfits to small data sets while computationally heavy Bayesian
methods flourish. However, this does not mean that Bayesian inference would be
limited to only small data sets. For example, Salakhutdinov and Mnih (2008 (b)).
apply Bayesian matrix factorization to a very large matrix.
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3 Exponential family projection models

In the previous section the basic concepts of Bayesian modeling were discussed. In
this section concrete models are introduced: Principal component analysis (PCA)
and its extension to the exponential family. The section starts with explanation
of the exponential family and then the PCA and its extensions are explained. In
the end of this section, a brief review on related methods is given. The focus in
this section is on ML inference, whereas Bayesian inference solutions for this kind
of models are presented in Section 6.2.

3.1 Exponential family distribution

Exponential family is a collection of distributions that can be used to approximate
all relevant and common distributions usually encountered in machine learning and
modeling in general (Bernardo and Smith, 2000; Bishop, 2006; Gelman et al., 2004).

A univariate random variable x ∈ X ⊆ R (where X is a suitable subset of the
real-space, such as Z or R+) in the exponential family follows the distribution

p(x|θ) = exp(s(x)θ + lnh(x)− g(θ)), (7)

where θ ∈ K ⊆ R represents the natural parameters of the distribution, g(·) is the
log cumulant function that normalizes p(x|θ) to be a valid distribution, s(·) are the
sufficient statistics, and h(·) is a function of the data alone.

To be more specific, (7) can be written as

p(x|θ) =
h(x) exp(s(x)θ)∫

x∈X h(x) exp(s(x)θ)dx
,

where

g(θ) = ln

∫
x∈X

h(x) exp(s(x)θ)dx

is the normalization term. In this thesis distributions are confined to the natural
exponential family by assuming s(x) = x. An additional assumption is that the
exponential family is regular, that is, the function h(·) does not depend on θ. Oth-
erwise the family is said to be non-regular. Different choices of g(·) lead to different
exponential family distributions including Gaussian with known variance, Bernoulli,
Poisson, and exponential. The functional form of g(·) depends on the data domain
X and h(·).

The function g(θ) has interesting properties. By differentiating it with respect
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to the parameters one obtains

d

dθ
g(θ) = g′(θ)

=
d

dθ
ln

∫
x∈X

h(x) exp(xθ)dx

=

∫
x∈X xh(x) exp(xθ)dx∫
x∈X h(x) exp(xθ)dx

=

∫
x∈X

xh(x) exp(xθ − g(θ))dx

= Ep(x|θ)[x] = µ.

That is, the derivative of g(θ) defines the expectation of x. Similarly the nth order
cumulants can be calculated by differentiating g(θ) n times.

Exponential family distributions can also be expressed in an alternative parametriza-
tion. Above the natural parametrization was presented, while the mean value
parametrization, p(x|µ), is more commonly known. Some examples of the exponen-
tial family distributions are collected in Table 1 presenting details of the different
parametrizations and of the domains of the data and the parameter. For example,
it can be seen that for the Gaussian data the two different parameterizations are
equivalent.

As a concrete example, for X = {0, 1} and h(x) = 1 the log cumulant function
can be written by replacing integration by summation as

g(θ) = ln(1 + exp(θ)).

These assumptions lead to the Bernoulli distribution that belongs to the exponential
family. Using the identity exp(ln f(x)) = f(x) and writing the logarithm of Bernoulli
density function one obtains

ln p(x|µ) = x lnµ+ (1− x) ln(1− µ) = x ln
µ

1− µ
+ ln(1− µ) (8)

and parameterizes

θ = ln
µ

1− µ
(9)

to obtain inverse mapping

µ =
1

1 + exp(−θ)
. (10)

Finally inserting (9) and (10) to (8) gives (7) with lnh(x) = 0.

3.1.1 Conjugate priors

Exponential families have many interesting properties. One property is that for ev-
ery member of exponential family there exists a so-called conjugate prior distribution
for θ:

p(θ) ∝ exp
(
λθ − νg(θ)

)
. (11)
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Table 1: Examples of distributions in the exponential family. Symbol dom() is
used to denote the domain of the argument. The derivative of g(·) is the so called
link function that is needed to transform natural parameter to the data space. In
Section 3.3.1 it is shown how the link function arises naturally in exponential family
projections.

Gaussian, σ2 = 1 Bernoulli Poisson Exponential

p(x|µ) exp(−1/2(x−µ)2)√
2π

µx(1− µ)1−x exp(−µ)µ
x

x!
µ exp(−µx)

dom(x) R {0, 1} {0, 1, 2, . . . } R+

dom(µ) R [0, 1] R++ R++

θ µ ln µ
1−µ lnµ −µ

dom(θ) R R R R−−
g(θ) 1

2
θ2 ln(1 + exp(θ)) exp(θ) − ln(−θ)

g′(θ) θ (1 + exp(−θ))−1 exp(θ) −θ−1

lnh(x) −1
2
(x2 + ln 2π) 0 − lnx! 0

A prior is defined to be conjugate if the corresponding posterior distribution is of
the same form as the prior. The posterior distribution can be written

p(θ|x) ∝ p(x|θ)p(θ) = exp
(
(x+ λ)θ − (1 + ν)g(θ)

)
and it is indeed of the same form as (11). The main motivation for using such priors
is that the posterior distributions can be derived analytically. The prior parameters
control the strength of the prior. Values near 0 for λ and ν correspond to weakly
informative prior, resulting to p(θ|x) ∝ p(x|θ). The corresponding conjugate priors
for some of the distributions in Table 1 are presented in Table 2.

Table 2: The conjugate priors with alternative parametrization. For example,
Bernoulli-beta denotes that the beta distribution is the conjugate prior for the
Bernoulli distribution. The normalization term Z(·), as g(·) in (7), depends on
the values of the parameters of the distribution.

Gaussian-Gaussian Bernoulli-beta Poisson-gamma
p(µ) 1

Z(µ0,σ2)
exp(− 1

2σ2 (µ− µ0)
2) 1

Z(α,β)
µα(1− µ)β 1

Z(α,β)
µα−1 exp(−µ/β)

µ0 ∈ R, σ2 > 0 α, β > 0, 0 < µ < 1 α, β > 0, µ ≥ 0
λ µ0/σ

2 α α− 1
ν 1/(2σ2) β + α 1/β



12

3.2 Principal component analysis

As described briefly in Section 1, PCA is a frequently used dimensionality reduc-
tion method (See Jolliffe, 1986). The purpose of PCA is to find a low-dimensional
representation of data that can be used, for example, for data compression or visu-
alization.

There are two common ways to derive PCA. The first is possibly more common,
while the latter provides a deeper understanding of the method. In the first way
the PCA can be seen as a method that seeks for projections that capture maximal
variance in the projected space (Hotelling, 1933). The other way is to search for low-
rank structure of the data by minimizing the reconstruction error between the low-
rank approximation and the original data (Pearson, 1901). Below both approaches
are presented, omitting unnecessary details that can be found from any reasonable
textbook account on machine learning, such as (Bishop, 2006).

For the remainder of this thesis it is assumed that N observed realizations of
D-dimensional random variable x ∈ RD are collected in the matrix

X =
(

x1 x2 . . . xN
)T ∈ RN×D.

PCA seeks components, vi ∈ RD, i = 1, . . . , K that capture maximal variance of the
projected data vTx under the constraint that different components are orthogonal,
that is, vTi vj = Iij, where I is a K × K identity matrix. The components are
demonstrated in Figure 2 for simulated data. The components correspond to the
first K leading eigenvectors of the sample covariance matrix

C =
1

N

N∑
n=1

(xn − µ̂)(xn − µ̂)T ,

where µ̂ = 1
N

∑N
n=1 xn is the sample data mean. The eigenvectors of C, denoted

by the columns of W̃ ∈ RD×D, correspond to the solutions of the linear system,
CW̃ = W̃Λ, where Λ is a diagonal matrix with eigenvalues λi, i = 1, . . . , D, on its
diagonal sorted as λ1 ≥ λ2 ≥ · · · ≥ λD, and W̃ is an orthonormal matrix satisfying
W̃TW̃ = W̃W̃T = I.

Choosing the K first eigenvectors of W̃ in the columns of V ∈ RD×K the pro-
jection of data to the so-called latent variables is defined as

un = VT (xn − µ̂).

Collecting latent variables in matrix U =
(

u1 u2 . . . uN
)T

and by denoting

x̃n = xn − µ̂ the projection can be written as U = X̃V. For K = D, VVT = I and
X̃ = UVT . For K < D the equality does not hold, assuming that the rank of X
is D, but the approximation X̃ ≈ UVT is still optimal in some sense. Specifically
Pearson (1901) proves, that the PCA solution is the one that minimizes the cost
function J written as

J =
N∑
n=1

||xn − x̂n||2 =
N∑
n=1

||xn −Vun − µ||2, (12)
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Figure 2: Illustration of PCA. The two PCA projections are plotted for the simulated
2-dimensional data. The first projection captures maximal variance while the second
is constrained to be orthogonal to the first. The lengths of the arrows are scaled
according to the captured variance.

where the approximation x̂ of the original data x is constrained to be low-rank.
In order to proceed towards probabilistic modeling, it is next shown how the cost

function J of (12) stems from assuming a probabilistic model for x.

3.2.1 Maximum likelihood principal component analysis

If the matrix elements are assumed to be conditionally independent and exchange-
able given the parameters , the probabilistic model for the data can be written
as

p(x1, . . . .xN |θ1, . . . ,θN) = p(X|Θ) =
N∏
n=1

p(xn|θn) =
N∏
n=1

D∏
d=1

p(xnd|θnd). (13)

The assumption of conditional independence can be justified if Θ is flexible enough
to capture the dependencies in x. The PCA model is obtained by constraining Θ =(
θ1 θ2 . . . θN

)T
, where θn = Vun +µ, and assuming that p(x|θ) corresponds

to the Gaussian distribution with known variance.
Following ML inference, the complete data log-likelihood is written as

L = ln p(X|Θ) =
N∑
n=1

ln p(xn|θn) =
N∑
n=1

D∑
d=1

ln p(xnd|θnd)

=
N∑
n=1

D∑
d=1

− ln
√

2πσ2 − 1

2σ2
(xnd − θnd)2

= −ND ln
√

2πσ2 − 1

2σ2

N∑
n=1

||xn −Vun − µ||2.

It can be shown that the log-likelihood corresponds to the cost function of the PCA
model, L = −J , omitting terms that do not depend on the parameters and assuming
σ2 = 1/2.
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3.3 Exponential family principal component analysis

The immediate extension of PCA to the exponential family is given by noting that
the Gaussian distribution belongs to the exponential family. The generalization of
PCA to the exponential family (EPCA) retains from PCA the property that the
parameters of the distribution are represented as θ = Vu + µ, while the likelihood
function p(xnd|θnd) changes according to different assumptions on the noise model
(Section 3.1). EPCA provides a unified framework for PCA for different data types.
The only difference in the likelihood function between different distributions in ex-
ponential family is the function g(·), because h(·) does not depend on parameters.

An important difference between different assumptions for p(x|θ) is in predic-
tions. Wrong assumptions for p(x|θ) can lead to predictions out of the domain of
data. For example, in missing value imputation task for binary data the Gaussian
assumption leads to predictions in R, while all the values should be exactly 0 or 1.
If data is known to be binary it is recommended to make the assumption that the
likelihood corresponds to the Bernoulli distribution, because then the only kind of
noise possible is bit flips, i.e., 1 changes to 0 or vice versa.

3.3.1 Maximum likelihood inference for exponential family principal
component analysis

To find the maximum likelihood estimates for U and V for an observed data matrix
X, the data log likelihood needs to be maximized. To simplify the notation denote
U :=

(
U 1

)
and V :=

(
V µ

)
, incorporating the mean parameter in UVT .

Maximization of the log likelihood, written in vector-matrix form,

L = Tr[X(UVT )T ]−
∑
nd

g(UVT ) (14)

can be performed by finding a point satisfying ∇L = 0. Above Tr[C] =
∑

i Cii is
used to denote the trace of the square matrix C. The notation for g(C) (also for
g′(C)) is overloaded, for a matrix argument it corresponds to element-wise applica-
tion. Local optima of (14) are defined as points that satisfy the condition, ∇Ll = 0.
However, there may exist a better solution corresponding to the global maximum
L∗ with the property L∗ ≥ Ll ∀l.

The gradient of (14) with respect to the latent variables can be written as

∇UL =
(
X− g′(UVT )

)
V,

and with respect to the projection matrix as

∇VL = UT
(
X− g′(UVT )

)
.

Maximum likelihood inference for EPCA thus results in matrix factorization written
as X ≈ g′(UVT ). For suitably large K the approximation becomes the equivalence
X = g′(UVT ). The derivative of the log cumulant function g(·) hence provides a
link between the data and the natural parameter space. For classical PCA with
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Gaussian likelihood the parameter space and the data space are equivalent (Section
3.1) and hence X ≈ UV. That is, the parameters and data have linear relationship
and inference can be carried out by solving linear systems (Section 3.2). In the
general case the relationship between the parameters and the data is not linear and
iterative optimization methods need to be applied (discussed in Section 6.1).

3.4 Probabilistic principal component analysis

Despite the use of p(x|θ) to define the PCA cost function, it does not provide full
probabilistic model as the variance term was assumed known. Next it is shown how
PCA can be interpreted as a a full probabilistic model. Even though the presented
details apply only for the Gaussian model, EPCA has essentially the same properties.
This section gives more detailed view of the PCA model, essentially, answering
questions like what kind of dependencies PCA can capture and to what kind of data
it is suitable to apply for.

In Section 3.1 only univariate exponential family distributions were presented
in detail. Details for the multivariate distributions such as multinomial, Gaussian
with unknown variance parameter, and multivariate Gaussian, that do belong to
the exponential family, were omitted but can be found from (Bernardo and Smith,
2000). For now on N (µ,Σ) is used to denote the multivariate Gaussian density
with mean parameter µ and covariance matrix Σ.

The PCA model can be written as

x = Vu + µ+ ε, (15)

where ε ∼ N(0, σ2I) is a noise term, and the subscripts used for different data points
are removed for clarity. Essentially, θ = Vu+µ is assumed to be a noiseless version
of the observed noisy data point x.

By assuming that the latent points follow the prior distribution p(u) = N (0, I),
one can write the mean of x under the model assumptions with known V and µ as

E[x] = E[Vu + µ+ ε] = µ, (16)

because E[u] = E[ε] = 0, and because expectation is a linear operator. The covari-
ance of x can be written as

E[(x− E[x])(x− E[x])T ] = E[(x− µ)(x− µ)T ] (17)

= E[(Vu + ε)(Vu + ε)T ] (18)

= E[VuuTVT + VuεT + εuTVT + εεT ] (19)

= VVT + σ2I, (20)

because the noise and the latent variables are assumed to be independent, E[uεT ] =
E[εuT ] = 0, E[uuT ] = I, and E[εεT ] = σ2I. It can be seen how V captures
the covariances of x. By the assumption of Gaussian noise and latent variables it
can be shown (Bishop, 2006) that the marginal likelihood, or equivalently the data
distribution, is another Gaussian distribution written as

x|V,µ, σ2 ∼ N (µ,VVT + σ2I). (21)
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This is directly obtained by solving

p(x|V,µ, σ2) =

∫
p(x|u,V,µ, σ2)p(u)du. (22)

Tipping and Bishop (1999) show that maximizing the marginal likelihood with
respect to the parameters, µ, V and σ2, leads to the PCA solution. The maximum
likelihood estimates are

µ̂ =
1

N

N∑
n=1

xn (23)

V̂ = WK(ΛK − σ̂2I)1/2R (24)

σ̂2 =
1

D −K

D∑
n=K+1

λn, (25)

where WK corresponds to K leading eigenvectors of C and R is an arbitrary K×K
orthogonal matrix. The parametrization of the projection matrix is defined up to a
rotation of the PCA solution, as can be seen by writing

V̂V̂T = VRRTVT = VVT ,

since RRT = I. However, the actual PCA projections can be solved up to a sign
change by replacing the sample covariance matrix with V̂V̂T + σ̂2I for the PCA
algorithm in Section 3.2.

The model is named probabilistic PCA (PPCA) and it is called generative be-
cause new data can be generated from it. This is important property, and illustra-
tions of it are given in Section 3.1.

Tipping and Bishop (1999) further show that the predictive distribution is yet
another Gaussian distribution,

p(u∗|x∗) = N(u∗|M−1VT (x∗ − µ), σ2M),

where M = VTV + σ2I. The mean of the distribution is equivalent to the PCA
subspace, up to rotation R.

Comparing PPCA to PCA, the most significant difference is the global noise
term, σ2. Further, it was shown above that traditional PCA makes tacit assumption
of Gaussian data and latent variables.

3.5 Demonstrations

For the PPCA model exact marginalization of the latent variables can be done, lead-
ing to the multivariate Gaussian distribution (21). However, for the other members
of the exponential family this marginalization cannot be performed in closed form.

For demonstration, different data sets are drawn from the EPCA model for
various data types, and visualized in Figure 3 retaining the assumption that u ∼
N (0, I). From Figure 3 it can be seen how the distributional assumptions completely
change the shape of the data.
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Gaussian Poisson
(a) (b)

Exponential Bernoulli
(c) (d)

Figure 3: Data generated from the EPCA model with K = 1. Gaussian noise corre-
sponds to (a), (b) corresponds to Poisson and (c) to exponentially distributed noise.
In figure (d) there is a 50-dimensional binary data matrix plotted to represent the
dependencies because two-dimensional binary data has only 4 different combinations
and would not be interesting. It can be seen that the generated data is very different
for the different members of the exponential family. For the Poisson distribution
we see examples of rare events and exponentially distributed variables often obtain
large values.
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3.6 Related methods

The likelihood p(x|θ), where θ is low-rank, is used in many other famous machine
learning methods for matrix factorization. The methods differ in multiple ways: in
the form of the likelihood function as shown above, the factorization of θ, or the
constraints and prior distributions set for the low-rank decompositions.

In this thesis, linear factorization of θ is considered. However, non-linearities
can be taken into account as well. The problem is then how to define these non-
linearities. Lawrence (2005) considers extension of PCA to Gaussian processes.
Instead of marginalizing the latent variables, marginalization of V is performed
assuming a column-wise Gaussian prior. Further, the kernel trick is used to make
the model non-linear. Another non-linear Bayesian approach is given by Lian (2009);
non-linear dimensionality reduction is achieved by applying in the latent space local
projections that are smoothed with a Markov Random Field-type prior.

For EPCA the relationship between the parameters and the data is expressed
with a non-linear function. Using suitable non-linearities while still assuming Gaus-
sian data can be seen as heuristic approach for taking correct noise type into account
(see for example (Salakhutdinov and Mnih, 2008; Ma et al., 2008)). Suitable non-
linearities are readily proposed by g′(·). Mathematically this can be written as the
following observation equation

x = f(Vu) + ε,

where ε ∼ N(0, σ2I) and f(·) is a non-linear function. Incorporation of non-
linearities to the squared loss function complicates inference by introducing local
minima (Gordon, 2002).

By changing the prior distribution of the latent variables to Dirichlet or multi-
nomial the task of dimensionality reduction is turned into clustering, for example
(Heller et al., 2008). Bingham et al. (2009) compare two different priors for the
latent variables, continuous and constrained, concluding that by constraining the
latent variables they become competitive and in the other case they work in col-
laboration. This affects the interpretation of components. In non-negative matrix
factorization the components of θ are constrained to be positive (Lee and Seung,
2001).

In general, determining the noise distribution can be challenging. Guo and Schu-
urmans (2008) proposed a more flexible framework where the function g(·) is solved
by the sample-based approximation

g(θ) ≈ ln

(
1

N

N∑
i=1

exp(xiθ)

)
.

The observed data hence determines the distribution in question. Guo (2009) also
incorporates this approximation. Another approach would be to use some model
selection procedure to choose the most likely distribution for the data.



19

4 Models for paired data

The methods considered so far are suitable for the analysis of a single data matrix.
One of the main contributions of this thesis is to present how multi-source learning
methods arise as special cases of the EPCA model.

Two random variables, y1 ∈ KD1 and y2 ∈ KD2 , are paired if the samples in the
two co-occur. Co-occurring samples are generated in pairs of items, y1 and y2. By
concatenating the two sources as xT =

(
yT1 yT2

)
several projection methods for

paired data sources can be written as EPCA of x, that is, as factorizations of the
form θ = Vu.

Different kinds of models are obtained by specifying different constraints on V.
Many of the decisions in practical modeling, such as the choice of prior distributions
and inference algorithm, are independent of such restrictions imposed on V, and
hence the unified framework helps in developing practical algorithms for various
paired data analysis tools.

Below only the likelihood functions for the proposed models are presented, while
the corresponding prior distributions are presented in Section 5, as these are shared
between all the methods.

4.1 Supervised exponential family principal component anal-
ysis

Supervised PCA (SPCA) is the simplest model for paired data. One of the sources,
say y1, is treated as a target variable, and the task is to find a low-dimensional
representation of y2 that helps in predicting the target.

The task is termed as supervised dimensionality reduction. Instead of finding
a latent variable description of y2, the lower dimensional manifold is obtained for
prediction of y1. EPCA as preprocessing for y2 alone would not take the target
information into account, and hence would not necessarily produce latent variables
predictive of y1.

The original SPCA formulation (Yu et al., 2006) as well as the supervised EPCA
(Guo, 2009; SEPCA) follow this idea, the crucial difference being that the latter
makes the correct distribution assumption for the target variables. If y1 with D1 = 1
is continuous the task is called regression and if binary the task is classification. For
the regression a typical assumption for y1 is a Gaussian distribution while for binary
classification Bernoulli distribution is a more justified choice. For D1 > 1 multi-
regression or multi-classification tasks arise that can be defined as special cases of
multi-task learning (Caruana, 1997): multiple prediction tasks share the same input,
the latent variables.

Due to the assumption of conditional independence between y1 and y2, given
the parameters, the SEPCA likelihood can be written as

p(x|u,V,µ) =p(y1|u,V1,µ1)p(y2|u,V2,µ2)

or, more clearly, to clarify the dependence between data and parameters, as

p(x|θ) = p(y1|θ1)p(y2|θ2).
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where θ =

(
θ1

θ2

)
= Vu + µ,

µ =

(
µ1

µ2

)
and

V =

(
V1

V2

)
so that the columns are split according to the features in x.

Briefly put, SEPCA is EPCA of x. The features are treated equally and hence
this approach provides weak supervision as the model aims to capture all depen-
dencies between the elements of x. The predictive performance of such a model
improves if one does not attempt to model y2 perfectly; after all, the ultimate task
is to predict y1 and the covariates should be modeled only to the degree they help in
that task. Rish et al. (2008) proposed an approach to weight the generative parts,
resulting in the model likelihood

p(x|θ) = p(y1|θ1)p(y2|θ2)
α, (26)

where α controls the relative importance of modeling the two sources. When small
values are chosen for α less modeling power is spent on the covariates, resulting in
increased predictive performance.

Instead of treating α as an arbitrary control parameter, it can be interpreted as
a fixed variance parameter in the general exponential family formulation (Gelman
et al., 2004). Dropping the assumption of identical variance for all features, (7) can
be written as

p(x|θ) =
D∏
d=1

exp

(
wi
(
xiθi + lnh(xi)− g(θi)

))
,

where w is a vector consisting of ones for y1 and α’s for y2,

wT =
(

1 . . . 1 α . . . α
)
.

The interpretation has close relationship to maximum likelihood factor analysis (FA)
(Bishop, 2006). In FA the noise follows ε ∼ N (0,Σ), where Σ is diagonal matrix
with separate elements on its diagonal, while PCA assumes that all elements are
equal. For Gaussian data the w parameter can be recognized as an inverse variance
parameter. However, even this formulation does not provide easy ways of infer-
ring α from data, since changing it would affect the normalization constant of the
distribution p(x|θ).

4.1.1 Applications of supervised exponential family principal compo-
nent analysis

In general SEPCA can be used in data integration, combining multiple sources of
information to improve prediction accuracy. Williamson and Ghahramani (2008)
and Ma et al. (2008) considered joint models for data combination in recommender
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systems assuming Gaussian data, while Singh and Gordon (2008) present more
general framework performing modeling in the exponential family.

Recommender systems aim to suggest for users movies they would like to see
based on the movie ratings of other users. This is a missing value imputation prob-
lem. Incorporating auxiliary data of users and/or movies may improve prediction
accuracy. Ma et al. (2008) considered fusion of social network data of users to
improve movie recommendation accuracy. Motivation is that friends usually have
similar taste and they recommend movies to each others.

SEPCA can also be seen as incorporating ’background knowledge’ to EPCA
matrix factorization. Typically the latent variables are assumed some simple prior
distribution p(u). Recent approach of Bo and Schmisesku (2009) introduce so-called
supervised latent variables, that is, the latent variables depend on y2. Mathemat-
ically the assumption can be written as p(u|y2). However, the two approaches are
equivalent. This can be seen by writing

p(y1|u)p(y2|u)p(u) = p(y1|u)
p(u|y2)p(y2)

p(u)
p(u) = p(y1|u)p(u|y2)p(y2).

4.2 Exponential family partial least squares

An alternative way of improving the predictive performance in supervised learning
tasks is to allow the covariates to have structured noise that is independent of the
target variable. This leads naturally to a classical linear supervised dimensional-
ity reduction method of partial least squares (PLS) and its probabilistic variants
(Gustafsson, 2001; Nounou et al., 2002). These models are restricted to Gaussian
data. In this thesis, the correct data type is taken into account, introducing the
exponential family partial least squares (EPLS).

The key idea in PLS is that not all variation in y2 is relevant for predicting y1.
A novel way incorporating that knowledge is proposed in the model by restricting
some of the components to only model y2. By factoring uT =

(
uTS uT2

)
and V as

V =

(
VS1 0
VS2 V2

)
,

where S indicates variables shared between the data sources, the model can still be
written as θ = Vu + µ. The model complexity is governed by fixing the ranks of
the various parts. Denoting the rank of uS by KS and the rank of u2 by K2, the
zeros in V make sure the last K2 columns of u will have no effect on y1. In more
intuitive terms, the parameters can equivalently be written as

θ1 = VS1uS + µ1

θ2 = VS2uS + V2u2,+µ2. (27)

which makes explicit the assumption that all variation in the target variable must
come from the shared latent sources, while the covariates are created as an additive
sum of the shared and source-specific variation.
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(a) (b)

Figure 4: In (a) the Gaussian covariate data with D2 = 2 and the binary target
data with D1 = 1 is generated from the SEPCA model with D1 = 1 and K = 1.
Different symbols and colors indicate binary y1. Clear structure can be seen from the
covariate data; the classes are separated. In (b) the data is created from the EPLS
model by adding structured noise to y2 (K2 = 1). Due to the addition of the noise,
the class structure is not anymore visible, while (b) contains the same information
as (a). The example demonstrates the need for more advanced exploratory data
analysis methods. In the experiments (Section 7.1) it is demonstrated how EPLS
can find the correct shared subspace, while SEPCA fails.

In the experiments (Section 7.1) it will be shown how this modeling assumption
reduces the number of shared components needed for predicting y1 better than the
exponent α in SEPCA. This improves the interpretability of the results. Besides
making good predictions, the actual projections can be used to infer what aspects
of y2 are predictive of the target variable.

In figure 4 the difference between SEPCA and EPLS models is demonstrated by
generating data from the models. See the caption for more detailed explanation.

4.2.1 Special case for Gaussian data

If Gaussian data is assumed and if the latent variables follow u ∼ N (0, I), marginal-
ization of the latent variables, as in (22), results in

x|V,µ ∼ N (µ,VVT + σ2I),

where

VVT =

(
VS1V

T
S1 VS1V

T
S2

VS2V
T
S1 VS2V

T
S2 + V2V

T
2

)
. (28)

Now it can easily be seen how the dependencies between y1 and y2 are modeled
only with the shared components. From the structure of the covariance matrix it
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can be deduced that K2 should be set high enough in order to prevent the shared
components to capture covariate-specific variation. The structure of covariance ma-
trix for the PCA model is identical to (28), except for omitting V2V

T
2 . This means

that PCA captures all dependencies, ignoring whether they are shared or not.
For distributions other than Gaussian, marginalization of the latent variables

can no longer be performed in closed form, but the presented model properties
remain: the dependencies between y1 and y2 are still captured in VS1 and VS2.
The covariate-specific variables can be seen as nuisance parameters that usually are
not of interest but necessary to extract the correct components.

4.3 Exponential family data fusion

Going beyond mere prediction problems, a common task in analysis of paired data
is finding what is shared between the two data sources. This is a kind of data fusion
task: compress two data sources into a representation that captures the common-
alities between the two. Alternatively, one can further represent the source-specific
variation present in each of the sources separately, independent of the other source.
The problem is traditionally solved by canonical correlation analysis (Hotelling,
1936), or its kernelized variant (Bach and Jordan, 2002), that have been applied
to a range of practical problems such as extracting shared semantics of document
translations (Vinokourov et al., 2003) and discovering dependencies between images
and associated text to be used as preprocessing for classification (Farquhar et al.,
2006).

PCA seeks projections that capture maximal variance in the projected space,
whereas CCA can be seen as a method seeking for two projections maximizing
correlation between the projected data. Similarly to PPCA presented in Section 2,
it can be shown that probabilistic CCA assumes Gaussian latent variables and is
equivalent to assuming a certain Gaussian model for the data (Bach and Jordan,
2005). In this thesis this assumption is removed presenting a novel generalization
of CCA to the exponential family, termed ECCA for brevity. This is necessary, for
example, for text analysis with the generative approach, since text documents are
naturally described as binary collections of word occurrences or as count data.

First the CCA model and the corresponding probabilistic interpretation are ex-
plained. Secondly ECCA is presented. Finally the combination of EPLS and ECCA
models is presented that result in supervised ECCA (SECCA). Both ECCA and
SECCA are novel contributions of this thesis.

4.3.1 Canonical correlation analysis

CCA aims to find linear transformations for the two random variables, y1 and y2,
with N realizations collected in matrices Y1 and Y2 such that the projected data,
ỹ1 = Y1w1 and ỹ2 = Y2w2, is maximally correlated. We denote the sample covari-
ance matrix of X =

(
Y1 Y2

)
as

C =
1

N

(
YT

1 Y1 YT
1 Y2

YT
2 Y1 YT

2 Y2

)
=

(
Σ11 Σ12

Σ21 Σ22

)
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assuming that the data sets are centered. Correlation for the projected data can be
written as

ρ =
ỹT1 ỹ2√

ỹT1 ỹ1

√
ỹT2 ỹT2

=
wT

1 YT
1 Y2w2√

wT
1 YT

1 Y1w1

√
wT

2 YT
2 Y2w2

=
NwT

1 Σ12w2√
NwT

1 Σ11w1

√
NwT

2 Σ22w2

=
wT

1 Σ12w2√
wT

1 Σ11w1

√
wT

2 Σ22w2

. (29)

Maximization of (29) can be done by constraining wT
1 Σ11w

T
1 = wT

2 Σ22w
T
2 = 1 and

applying the technique of constrained optimization. Multiple projections w1i and
w2i with i ≤ min(D1, D2) are constrained to be uncorrelated, wT

1iΣ11w
T
1j = Iij, and

similarly for w2i. The solution for K vectors, collected as columns in W1 and W2,
corresponds to the K first leading eigenvectors of the generalized eigenvalue problem(

0 Σ12

Σ21 0

)(
w1

w2

)
= ρ

(
Σ11 0
0 Σ22

)(
w1

w2

)
.

Proof and details of the constrained optimization are omitted, but can be found
from (Shawe-Taylor and Cristianini, 2004).

4.3.2 Probabilistic canonical correlation analysis

CCA can be interpreted as a maximum likelihood solution of a certain probabilistic
model. Latent variables are defined as uT =

(
uTS uT1 uT2

)
and

V =

(
VS1 V1 0
VS2 0 V2

)
for the model

x|u,V,µ ∼ N (Vu + µ, σ2I) (30)

following the presentation of Archambeau and Bach (2009).
Assuming that latent variables follow u ∼ N (0, I), marginalization of the latent

variables results in
x|V,µ ∼ N (µ,VVT + σ2I), (31)

where

VVT =

(
VS1V

T
S1 + V1V

T
1 VS1V

T
S2

VS2V
T
S1 VS2V

T
S2 + V2V

T
2

)
.

For the above model Bach and Jordan (2005), denoting Ψ1 = V1V
T
1 + σ2I and

Ψ2 = V2V
T
2 +σ2I, show the connection to standard CCA. More precisely, maximum

likelihood estimate of (31) corresponds to the projections found by traditional CCA,
up to rotation and scaling.
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According to Theorem 2 by Bach and Jordan (2005), the maximum likelihood
estimates for the parameters of the model in (31) are

V̂S1 = Σ11W1M1

V̂S2 = Σ22W2M2

Ψ̂1 = Σ11 − V̂S1V̂S1

T

Ψ̂2 = Σ22 − V̂S2V̂S2

T

µ̂1 = µ1

µ̂2 = µ2,

where W1 and W2 are the CCA projection matrices, M1 and M2 are arbitrary
matrices such that M1M2 = P and the spectral norms are smaller than one and
P is diagonal matrix with canonical correlations. The µ corresponds to the sample
mean. It is further shown that the posterior expectations of the latent variables lie
in the space spanned by the CCA solution.

If M1 = M2 = M = P1/2R, where R is rotation matrix of size K, it can be seen
that the probabilistic solution does not in general correspond to the actual projec-
tions of CCA. In standard CCA the projections are ordered by the correlation thus
identifying the projections up to a sign change. However, Archambeau et al. (2006)
provide a method identifying the actual subspace of CCA also for the probabilistic
solution.

4.3.3 Exponential family canonical correlation analysis

Generalization of CCA to the exponential family is defined as model p(x|θ), where

θ1 = VS1uS + V1u1 + µ1

θ2 = VS2uS + V2u2 + µ2.

The notation is equivalent to Klami and Kaski (2008). The full model is illustrated
in Figure 5, to clarify the role of the various parts of V.

4.3.4 Supervised exponential family canonical correlation analysis

Above it was described how ECCA can be used to extract mutual dependencies be-
tween two data sets. Besides interpretation tasks, Tripathi et al. (2008) explore how
the shared subspace extracted by CCA can be used for classification. They propose
to use CCA as a preprocessing method. The method they consider can be seen
as supervised CCA where the target information depends only on the shared latent
variables. By combining EPLS and ECCA, model for supervised shared components
can be built. The novel algorithm is termed supervised ECCA (SECCA).

In the general case for M data sets, where y1 as in SEPCA (Section 4.1) is used
to denote targets, the data vector can be written as

xT =
(

yT1 yT2 . . . yTM
)
.
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Figure 5: Graphical model for ECCA. Shared variables uS, VS1 and VS2 capture
only mutual dependencies between y1 and y2 while set-specific variation for y1 is
modeled with specific variables u1 and V1, similarly for y2. K denotes the ranks of
various parts and N refers to the number of observed samples.

The model structure is still written as θ = Vu + µ, where

uT =
(

uTS uT2 . . . uTM
)
.

and

V =


VS1 0 0 . . . 0
VS2 V2 0 . . . 0
VS3 0 V3 0

...
...

. . .
...

VSM 0 0 . . . VM


In SECCA the target-specific variation is left out similarly as in EPLS in order to
capture shared predictive features of y1. To simplify modeling the covariance, the
trick of Rish et al. (2008) can be incorporated. That is, different values of w can be
used to determine whether modeling power should be focused on prediction or not.
By dropping y1 the model becomes ECCA for multiple views.
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5 Priors for exponential family projections

Previously the likelihood functions for EPCA (Section 3) and its various extensions
(Section 4) were presented. Following Bayesian inference prior distributions need to
be considered defining full joint probability model for the data and the parameters.
Setting prior distributions for the parameters is a challenging part of Bayesian mod-
eling and is an active research area. Typically, the choice of prior distribution is a
compromise between complex and more realistic priors leading to complicated infer-
ence, and simple priors chosen to guarantee efficient computation. Caution must be
taken when placing priors to make sure that the resulting posterior is proper, that
is, the integral p(X) in (2) does not diverge to infinity.

Most of the research on EPCA-type models has focused solely on ML-solutions
or retained prior distributions from the Gaussian Bayesian models. In this thesis,
instead, a general prior formulation that takes distribution-specific constraints for
the natural parameters into account is proposed.

5.1 Background

The first step of Bayesian modeling (see Section 2) is to write down the full prob-
ability model for observed and unobserved variables, which in the case of EPCA
results in

p(u,V,µ,x|Θ) = p(x|u,V,µ)p(u,V,µ|Θ),

where Θ denotes the collection of all the hyperparameters, that is, the parameters
of the priors.

The values for Θ need to set to some suitable values before conditioning on
data. However, setting these values is in general hard and one would like to set
these values automatically, i.e., learn the values for Θ from data. One possibility
is to treat Θ as random variables and place so-called hyperprior distribution for Θ.
This kind of prior structure is also called hierarchical prior distribution (Gelman
et al., 2004). Bayesian inference results in averaging over multiple models that have
different Θ weighted by the hyperprior distribution, although, Θ can alternatively
be determined with cross-validation, as discussed in Section 2.4.

5.2 Joint prior

In this thesis a family of prior distributions is presented that incorporates certain
common choices as special cases, while being an efficient way of altering the com-
promise between conjugacy and flexibility in practical models.

Mohamed et al. (2009) extended the EPCA to a full Bayesian model, specifying
prior distributions directly for u and V. This approach is conceptually simple and
straightforward, but it is hard to determine which distributions to use. Mohamed
et al. (2009) borrowed the assumption of normally distributed latent variables u
from the Gaussian case, while taking V conjugate to the specific exponential family.
The latent variables are assumed to be independent in the prior. Mathematically,
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the prior is written as

p(U,V,µ|λ, ν,m,S, α0, β0) ∝ p(V|λ, ν)p(U|µ,Σ)p(µ|m,S)p(Σ|α0, β0), (32)

where, starting from right to left,

Σii ∼ iG(α0, β0), i = 1, . . . , K (Σ is a diagonal matrix) (33)

µ ∼ N (m,S) (34)

un ∼ N (µ,Σ), n = 1, . . . , N (35)

vk ∼ Conj(λ, ν), k = 1, . . . , K, (36)

where Conj denotes conjugate distribution and iG denotes the inverse-Gamma dis-
tribution. The convenient property of (33) is that fixing the number of latent vari-
ables, K, is not anymore that critical since unnecessary elements can be driven to
zero, that is, Σkk ≈ 0 with suitable values for α0 and β0. Such a prior is generally
termed automatic relevance determination (ARD) prior and it is an example of a
hierarchical prior (Bishop, 2006).

Unfortunately, (35) is a notoriously bad choice for some exponential family dis-
tributions. For example, for the exponential distribution the domain of the natural
parameters is the set of strictly positive real numbers, which does not comply with
normally distributed u.

In this thesis an alternative novel solution is proposed by imposing the prior on
the product of the two variables, instead of formulating separate priors for each.
For θn = Vun + µ it is easy to choose a prior conjugate to the specific exponential
family, which takes the correct distribution into account and makes the estimation
of θ easy:

θn ∼ Conj(λ,ν), n = 1, . . . , N.

However, at the same time the connection to the actual factorization is lost;
while the model is still parameterized through the low-rank matrices U and V, the
U and V are unidentifiable. In practice, this kind of model can still be useful: If
the goal is not to analyze the actual components, but merely to find a low-rank
approximation of x (which is sufficient for example for reconstructing the original
data from a compressed version), then it is feasible to place the prior directly on θ.

To combine the advantages of the two formulations, (i) separate priors and (ii)
the prior for the product, the general prior is introduced

p(u,V|Θ, β) =
1

Z
a(Vu)βb(u)1−βc(V)1−β, (37)

where β ∈ [0, 1]. For clarity, the prior for µ is dropped from the notation and it
is taken to follow N(0, σ2

µI) with large σ2
µ. The functions a(·), b(·), and c(·) can

be arbitrary non-negative functions over the domain of the parameters. The entire
normalization is done with Z, and hence the functions a(·), b(·) and c(·) need not be
normalized. In practice, however, one would typically use standard distributions of
the kind used in the above simpler prior assumptions. Then β = 0 and β = 1 reduce
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the prior into the simpler alternatives, while other values of β produce combinations
of the two:

p(u,V|Θ, β = 0) ∝ b(u)c(V) (38)

p(u,V|Θ, β = 1) ∝ a(Vu). (39)

A useful property of the prior is that if a(·) is set so that it gives zero for
values outside the domain of θ, then already a small β will be sufficient to restrict
the product of individually specified priors for u and V to be a legal distribution.
This solves the problems of the prior distribution of Mohamed et al. (2009). More
generally, the compromise can be thought of as regularization, making the model less
sensitive for the specific choices of b(u) and c(V). That considerably simplifies the
choice of the distributions, and in practice simple component-wise Gaussian priors,

b(u) =
K∏
k=1

N(0, σ2
U) (40)

c(V) =
K∏
k=1

D∏
d=1

N(0, σ2
V ), (41)

are used for both, which would not work in general without the regularizing a(Vu)
term. The capabilities of the joint prior are demonstrated in Figure 6 for binary
data for which the conjugate distribution is the beta distribution. See the caption
for more details.

A practical challenge with this kind of a prior is that it is in general known only up
to the normalization constant Z. This does not pose technical problems with MAP-
or MCMC-based inference, since the normalization term cancels out. However, it
makes inference on possible hyper-parameters, such as σ2

U and σ2
V above, of the prior

difficult. A sampling proposal for the hyper-parameters in the joint prior will need
to evaluate the normalization term

Z(Θ) =

∫
p(U,V|Θ, β)dΘ,

that, in general, cannot be computed analytically. In this thesis, a simple approach
is used; the hyperparameters of a(Vu) are chosen for β = 1 and for b(u) and c(V) for
β = 0 using a validation set. In the experiments it is shown that already this simple
approach leads to a better generalization ability than using either of the extremes.
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β = 0 β = 0.33 β = 0.66 β = 1

Figure 6: Illustration of the joint prior. The two axes correspond to univariate
u and v and the contours plot the probability of θ = uv under the joint prior,
ln p(u, v) ∝ β

(
λuv − g(uv)

)
−
(
1− β

)(
1/2u2 + 1/2v2

)
, where g(x) = ln(1 + exp(x))

with ln a(θ) = λθ− g(θ). That is, the prior correspond to the beta distribution that
is conjugate to the Bernoulli distribution. Additionally we set ln b(x) = ln c(x) =
−x2/(2σ2) with σ2 = 1. The upper row corresponds to values λ = 10 and ν = 2λ
and the lower to values λ = 0 and ν = 10. In the lower row negative values for θ
are ruled out with suitably large value for β. With β = 1 the prior is improper.
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6 Inference

After discussing both the likelihood functions and the prior distributions, the next
step of Bayesian modeling is to derive the posterior distributions for all of the pa-
rameters. Unfortunately, exact inference for the EPCA models is not possible. Two
different Markov Chain Monte Carlo (MCMC) sampling methods are discussed that
suit different scenarios, but a brief detour on point estimation is first given; while
full posterior inference is informative, it may be overkill in some applications.

6.1 Point estimates

Point estimates for the model parameters can be inferred from data by maximizing
the total log likelihood L as in (14). Gradient based optimization in the parameter
space is adopted to find stationary point of the likelihood, ∇L = 0, by updating the
parameters in the direction of the gradient. MAP estimation is conceptually equally
simple; the priors only result in additive terms in L.

The optimization problem in the general case is large, because of the number
of variables, and difficult since it is not convex in both arguments. There have
been many different proposals for finding point estimates. For Gaussian assumption
the latent variables can be marginalized out, significantly decreasing the number of
parameters, and the resulting marginal likelihood is maximized (Roweis and Ghahra-
mani, 1999; Tipping and Bishop, 1999).

Guo and Schuurmans (2008) proposed a convex optimization algorithm for the
maximum-likelihood case of general exponential family PCA, while MAP estima-
tion requires more generic optimization algorithms. While convex optimization al-
gorithms converge to global optimum, they may be computationally demanding.
Collins et al. (2002) present a simple alternating optimization, while Gordon (2002)
applies sequential Newton updates. Rish et al. (2008), Schein et al. (2003) and Tip-
ping (2001) use auxiliary functions that are limited to a subset of exponential family
distributions, typically Gaussian and Bernoulli distributions. The aim of the auxil-
iary updates is to make an approximation of the cost function in the neighborhood
of the current point such that the gradient of this approximation can be presented in
closed form. In this thesis despite all the different optimization methods, conjugate
gradients are used following Srebro and Jaakkola (2003). In the experiments the
method has turned out to be sufficiently robust algorithm for sensible priors.

6.2 Advanced Markov Chain Monte Carlo methods

In Section 2.3 two MCMC algorithms, MH-algorithm and Gibbs sampler were dis-
cussed. In this section two efficient samplers suitable for the general exponential
family projection models are presented. These are Hybrid Monte Carlo (HMC) and
extended Gibbs sampler.
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6.2.1 Hybrid Monte Carlo sampler

For full Bayesian analysis one can use Hybrid Monte Carlo (HMC) sampler, fol-
lowing Mohamed et al. (2009). Compared to standard MCMC, the Hybrid Monte
Carlo (HMC) typically converges faster in large state spaces due to utilizing the gra-
dient information. The EPCA factorization typically has a very large state space,
especially in the case of coupled data models where there are separate shared and
source-specific latent variables, making HMC a good choice here.

HMC has been applied for large systems such as neural networks (Neal, 1996) and
Gaussian processes (Barber and Williams, 1997), and is well described in many text
books, see for example (MacKay, 2002). The idea behind HMC is to use molecular
dynamic simulation for proposal distribution in the basic MH-algorithm.

HMC is an auxiliary variable sampler. Instead of drawing samples directly from
the posterior distribution, the samples are drawn from an augmented distribution
p(ψ, t) where t is an auxiliary variable and p(ψ) is used to denote the distribution
from which one wishes to sample. To obtain marginal samples from the augmented
distribution, the values for the auxiliary variables t are ignored. In HMC, t cor-
responds to momemtum variables and the extended target density can be written
as

p(ψ, t) = p(ψ)N(t|0, I).

HMC first draws the momentum variable t from a Gaussian distribution. Then
L ’frog steps’ are taken in ψ and t with step size τ . The values of ψ and t after
the last step, L, are the proposal candidates for the Metropolis-Hastings acceptance
step. Pseudo-code for HMC is presented in Algorithm 1, where the frog steps are
specified.

The sampler has two parameters, L and τ . In the experiments L = 10 and τ is
drawn for each sample from the exponential distribution, following (Neal, 1993). If
the step size is too small the simulations are precise but the convergence towards
the real posterior distribution can be slow. On the other hand, with large step size
more proposals are rejected and hence the chain does not proceed optimally. As τ is
drawn from the exponential distribution τ is occasionally large, enabling large shifts
in the state space, yet most of the time the steps will be small.

6.2.2 Identification of components for interpretation

The sampler provides posterior samples for the parameters Θ, and one is typically
interested in obtaining marginal distributions of the whole joint posterior, for ex-
ample for V. As presented in Section 2.3, marginalization can be performed by
discarding all other variables that are not of interest. However, there remain severe
unidentifiability problems with the proposed models; the marginal expectations of
posterior samples are useless. The natural parameters of the models can be repre-
sented with {U,V,µ} in many different ways,

ÛV̂T = (URS)(S−1RTVT ) = UVT ,

where R is a unitary rotation matrix and S is a diagonal scaling matrix. Hence, U
or V cannot be averaged over the samples, making marginal posterior distributions
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Algorithm 1 Hybrid Monte Carlo
L and µ0 are parameters of the algorithm. U[0,1] denotes the uniform distribution
on interval [0, 1] and Exp(λ) the exponential distribution with parameter λ. The
output consists of samples ψ(s), s = 1, . . . , S.

1. Initialize ψ(0)

2. For s = 0 to S − 1
3. Sample a ∼ U[0,1], t

∗ ∼ N (0, I) and ε ∼ Exp(µ0)

4. Let ψ0 = ψ(s) and t0 = t∗ + ε∇p(ψ0)/2
5. For l = 1 to L take L frog steps

ψl = ψl−1 + εtl−1

tl = tl−1 + εl∇p(ψl)
where εl = ε for l < L and εL = ε/2

6. If a < min

(
1, p(ψL)

p(ψ(s))
exp(−1

2

(
tTLtL − t∗T t∗

))
ψ(s+1) = ψL

t(s+1) = tL
else

ψ(s+1) = ψ(s)

t(s+1) = t∗

difficult to obtain. However, this commonly acknowledged identification problem,
also noted by Mohamed et al. (2009) is solved in the following. It should also be
kept in mind that even though the components of the product do not identify, the
product UVT itself does, and UVT is already sufficient for predictions. Hence, this
unidentifiability issue is a problem only for interpretation of the components.

Denote Θ = UVT + 1µT as the matrix of natural parameters. Decompose Θ
with PCA (Sect. 3.2). Mathematically the decomposition can also be written as

Θ = ÛΣV̂T ,

where Σ = diag(µ2
1 . . . µ

2
D) and V̂ =

(
v̂1 . . . vD

)
define the eigenvalues and

eigenvectors of ΘTΘv̂i = µ2
i v̂i. Defining Û = ΘV̂Σ−1 it can be further verified

that Θ = ÛΣV̂T = ΘV̂Σ−1ΣV̂T = Θ.
One can average over the decomposed matrices made for S posterior samples

Θ(s) = Û(s)Σ(s)V̂(s)T , where s = 1, . . . , S and use a simple method to correct for
the sign unidentifiability, i.e. UVT = (−U)(−VT ), of PCA. Collect the ith column

of Û(s), denoted as Û
(s)
i ∈ RN , in a matrix A =

(
U

(1)
i U

(2)
i . . . U

(S)
i

)T
. For

the matrix A run K-means clustering algorithm (Bishop, 2006) setting K = 2. This
is a very simple clustering task as the two cluster centers are c and −c. Finally,
change the sign of samples in either cluster. The process is repeated for i = 1, . . . , D.
Similar process is performed for the columns of V̂. Unfortunately, in the case of any
µi = µj for i 6= j the vectors v̂i and v̂j cannot be determined. See Figure 7 for an
intuitive explanation.
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Figure 7: The directions of two eigenvectors cannot be determined if the correspond-
ing eigenvalues are equivalent. The differently dashed pairs of vectors correspond
to the possible eigenvectors. The sphere illustrates a 2-dimensional subspace where
the eigenvalues are equivalent. The direction of the first vector is random while the
second has to be orthogonal to the first one.

An alternative, computationally less demanding method, is to average first over
different Θ(s) obtaining Θ̂ = 1

S

∑S
s=1 Θ(s) and decompose the resulting single matrix.

This method is suitable for visualization applications since it suffices to plot the
posterior means.

For Bayesian EPLS (BEPLS) and Bayesian ECCA (BECCA) one is usually only
interested in the shared components. Hence, only ΘS = USVS corresponding to
the shared components is decomposed.

In principle, it is also possible to add constraints, such as UTU = I, as in classical
PCA, in the sampler. Hoff (2007) showed that sampling with such constraints for
U and V is possible, but points out that sampling can be painfully slow.

6.2.3 Extended Gibbs sampler

For the Gaussian Bayesian CCA (Klami and Kaski, 2007) analytic marginalization
of the source-specific variables is possible and the rotational ambiguity can be solved
revealing the true canonical projections and the corresponding correlations (Section
4.3). In ECCA, however, it is hard to make sure the modeling power is divided
correctly between the uS, u1, and u2. In principle the sampler explores the space of
solutions correctly, but the convergence may be slow and the sampler may not mix
well.

In this thesis, a novel sampler that utilizes the more efficient solutions for the
Gaussian models as part of the sampler for the general exponential family is intro-
duced. The practical sampling algorithm, coined GiBECCA, proceeds by alternating
two separate sampling steps. The algorithmic approach, explained next, is similar
to how Hoff (2007) made inference for binary PCA. The intuitive idea is to alternate
between two sampling stages. In one stage, the Θ is treated as data that a priori
follows normal distribution, and learn a factorization Θ = UVT for that. The other
stage then updates Θ, taking into account the exponential family likelihood and the
actual data X.

After initialization (the first step of Algorithm 2), new values for the parameters
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Algorithm 2 GiBECCA
Hyperparameters for the initialization need to be set. iG denotes inverse-gamma dis-
tribution and iW denotes inverse-Wishart distribution. Notation θ̃ denotes centered
variables.
1. Initialization, i = 1, . . . , K and n = 1, . . . , N

vi ∼ N (0, γiI)
γi ∼ iG(α0, γ0)
Ψ1,Ψ2 ∼ iW(S0, ν0)
µ ∼ N (0, σ2I)
un ∼ N (0, I)

θn ∼ N (µ+ Vun,Ψ), where Ψ =

(
Ψ1 0
0 Ψ2

)
2. For s = 0 to S − 1

3. Sample parameters
γi|vi ∼ iG(1

2
D + α0,

1
2
vTi vi + γ0)

Ψj| Θ̃j,VSj,U ∼ iW(S0 + S, ν0 +N),

where S =
∑

n(θ̃jn −VSjun)(θ̃jn −VSjun)T

µ|Θ,Ψ,U ∼ N (Σ(Ψ + VVT )−1
∑

n θn,Σ),
where Σ−1 = N(Ψ + VVT )−1 + 1

σ2 I

vk|Θ̃,V−k,U,Ψ, γk ∼ N (Ψ−1Σ
∑

j Ukj(θ̃j −V−kU−kj),Σ)

where Σ =
∑

j U2
kjΨ

−1 + 1
γk

I

un|θ̃n,V,Ψ ∼ N (VTΣθ̃n, I−VTΣV),
where Σ−1 = VVT + Ψ

4. Sample
θ∗n| ∼ N (Vun + µ,Ψ)

accept Θ∗ij with probability min
(
1,

p(Xij |Θ∗
ij)

p(Xij |Θij)

)

are drawn using the Gibbs sampler for the Gaussian BCCA (Klami and Kaski, 2007)
treating Θ as data (step 3 of Algorithm 2). Next, given the actual data X and the
current values for the parameters, the natural parameter matrix Θ∗ is sampled using
the Metropolis-Hastings applying the predictive distribution of Gaussian BCCA
as the proposal distribution (step 4 of Algorithm 2). The algorithm proceeds by
alternating steps 3 and 4 until convergence.

The sampler is efficient but approximative; as evident from the procedure, it
requires β = 0 (in Equation (37)) and Gaussian priors for both u and V. Explicit
normality assumption for θ may violate distribution-specific assumptions for the
natural parameters as can be seen from the Table 1. Such restrictions apply, for
example, for the exponential distribution; additional parameter transformation for
θ or adjustment of the priors may be needed. In the experiments it is studied how
restrictive the normality assumption for the natural parameters is in practice.
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7 Experiments and results

The experimental section consists of four separate experiments. First, supervised ex-
ponential family principal component analysis (SEPCA) is compared to exponential
family partial least squares (EPLS) in prediction tasks, where the covariate infor-
mation is known to contain source-specific noise components. Second, the effect of
the proposed joint prior for the EPCA model is studied in missing value imputation
task.

The two remaining experiments proceed with Bayesian exponential family canon-
ical correlation analysis (BECCA). In the first experiment it is demonstrated why
the correct data type needs to be taken into account by showing that the correct
assumption leads to better accuracy in a classification task. Additionally the pro-
posed sampling algorithms are compared. Finally, a demonstration of BECCA for
analyzing the shared dependencies between movie genres and descriptions is given
by visualizing the posterior distributions of the first two canonical projections.

7.1 Supervised dimensionality reduction

The first empirical experiment shows the importance of separately modeling the
data-specific noise in supervised learning. Using artificial toy data, the difference
between supervised EPCA (SEPCA) and the exponential family PLS (EPLS) is
demonstrated.

Binary data is created from the model (27) with KS = 1, K2 = 5 and D1 = 1
and D2 = 20. 50 samples are used for training and 950 for testing. The inference is
performed with conjugate gradient method (Section 6.1) and the models are com-
pared in the task of predicting y1 for the left-out testing samples, using prediction
error, the proportion of misclassified samples, as the performance measure. The
results are averaged over 80 realizations of randomly generated data sets.

As the shared source is only one-dimensional, it is possible to reach maximal
prediction accuracy already with one component. However, SEPCA with just one
component does not find the true solution as it is confused by the noise specific
to y2. The model will still reach the optimal prediction accuracy, but requires 6
components to do it (Figure 8). The trick of Rish et al. (2008) in (26), lowering the
importance of modeling y2, helps by improving the predictive performance for a low
number of components, but for optimal performance still as many components are
needed.

EPLS, however, finds the true solution of one-dimensional shared space, while
modeling all the source-specific noise with separate components. Hence, it achieves
the same predictive performance already with a single component. The difference
in performance is statistically significant for 1 − 5 components (p < 0.05 t-test
with Bonferroni correction). It is worth noting that the computational load of
the complexities sufficient for optimal prediction is comparable; SEPCA requires
6 components, while EPLS requires 1 shared and 5 noise components. The added
benefit of EPLS is primarily improved interpretation: one can directly tell that the
interesting subspace is one-dimensional.
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Figure 8: Prediction errors (lower is better) for the supervised EPCA experiment.
The solid line depicts the error for a one-component EPLS-solution, while the other
two curves are classical SEPCA models. The dashed line assumed equal modeling
power for the target and covariates, while the dotted line weights the covariate mod-
eling part with α = 10−3. A wide range of values of α result in similar performance
(not shown).

7.2 The effect of the prior

In Section 5, a family of prior distributions controlled by the regularization pa-
rameter β was presented. Here it is illustrated how the regularization improves
the predictive performance of the model on the SPECT data obtained from the
UCI repository (http://archive.ics.uci.edu/ml/datasets/SPECT+Heart). The
standard PCA task of missing value imputation with one component is solved for
100 values of the regularization parameter, and the reconstruction performance is
measured by the log likelihood (14).

As the data is binary, the Bernoulli distribution and prior

a(UVT ) =
N∏
n=1

D∏
d=1

λ(UVT )nd − νg
(

(UVT )nd

)
,

with Gaussian priors for U and V (as in Equations (40) and (41)) are chosen.
That is, the computationally simple assumption of individual Gaussian priors for U
and V is made. This does not necessarily match the requirements of the Bernoulli
distribution and that is why the prior is complemented with a separate conjugate
term for UVT , which is specifically chosen for the observation likelihood in order to
regularize the solution.

The main purpose of the experiment is to illustrate the effect of the regularization
parameter β. The hyperparameters are chosen with a validation set separately for
β = 0 and β = 1 resulting in values σ2

V = 100 and σ2
U = 0.001 and λ = 0.1 and

ν = 0.2. The β parameter is then varied, keeping the hyperparameters fixed, and
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Figure 9: Illustration of the reconstruction performance with different regularization
values. For each β 10 random initializations are used and all of the results are
included in the plot to illustrate how already the simple conjugate gradient algorithm
almost always converges to the the global optimum. The best generalization ability
is obtained with intermediate value demonstrating that the full prior outperforms
the simpler ones.

in Figure 9 it is shown that the optimal predictive performance is obtained with β
around 0.4. That is, regularizing a sensible model with separate priors p(U)p(V)
by conjugately defined prior on UVT improves the predictive performance.

7.3 Exponential family canonical correlation analysis

7.3.1 Classification in the joint space

One use for CCA is in finding a shared representation that contains the variation
relevant to both data sources. The ability to do that can be indirectly measured by
attempting to classify the samples given the representation (Tripathi et al., 2008).
On artificial data where the shared variation is known to be predictive of the class
labels, a model extracting the true shared variation should have the best perfor-
mance.

Two collections of toy data sets are created from the model in Section 4.3.4 for
M = 3 with KS = 1, K2 = 2 and K3 = 2 and N = 50, D1 = 1 and D2 = D3 = 20.
CCA is only ran for y2 and y3 using y1 as external label set used to measure the
accuracy of the different methods. The first collection is binary and the second is
count data. Four different variants of CCA are learned to study the effect of the
link function and inference algorithm. First, standard linear CCA is applied to
obtain a baseline. As shown in Figure 10, it overfits severely to such small data for
both distributions. Bayesian Gaussian CCA (Klami and Kaski, 2007), which has
an incorrect link function here (namely the identity function), outperforms classical
CCA on binary data, but not on the skewed data with Poisson distribution.

The exponential family CCA with correct distributional assumptions and HMC
inference outperforms the alternatives for both data sets, showing the importance of
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Figure 10: Performance of various CCA models, measured as the classification er-
ror of a K-nearest neighbor classifier with K = 9 in the shared latent space. All
Bayesian variants outperform classical CCA for binary data (a), and the exponen-
tial family variants making the correct distribution assumption outperform the one
with incorrect distribution (Gaussian; BCCA), especially for the more skewed Pois-
son data (b). The two sampling algorithms for the exponential family variant are
comparable, but the HMC sampler with β = 0.5 (BECCA) gives slightly better
accuracy than GiBECCA. The box-plots show the 25%, 50% and 75% quantiles.

using the right distribution. Here the regularization value was fixed to β = 0.5 and
we used λ = 0.1 and ν = 0.2 for the hyperparameters. Finally, for comparison the
alternative sampler presented in Section 6.2.3 (GiBECCA) is included. It is slightly
worse than the HMC sampler using the full prior of (37), but has the advantage of
faster convergence (Figure 11).

7.3.2 Movie data

To demonstrate the visualization capabilities of ECCA, a small collection of movies
described with two views, selected from information available in the Allmovie database
(http://www.allmovie.com/) are analyzed. The first view is the binarized bag-of-
words representation of a brief description of the movie, while the other is a multi-
variate genre classification in binary format. Each movie may belong to a subset of
10 genres, which extends the task beyond supervised visualization or SPCA.

The main interest is in demonstrating the capability of BECCA to separate
shared information from structured “noise” present in only one of the views. Hence,
the content descriptions are manually constructed to contain both. A subset of
terms (total of 32 terms listed in Table 3) for the bag-of-words representation is
manually chosen, so that half of the terms were chosen as genre-related and half
were other terms chosen near the genre-related terms in frequency order to provide
a contrast group. As an example, the most frequent terms in the genre-related set
are love, comedy and drama, while the corresponding words in the noise set are two,
woman, some, chosen because their frequency matched best the genre-related words.

BECCA is applied on this data, aiming to extract the components that best
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Figure 11: Comparison of the sampling methods. The convergence of the two sam-
plers is monitored by calculating the PSRF-values (Section 2.3) with 4 separate
chains. The horizontal line corresponds to value 1.1 and the chain is converged if
the value falls below that (Gelman et al., 2004). GiBECCA converges considerably
faster than BECCA (approximately 20-fold difference). The figure also demonstrates
that if PSRF value is monitored too early it can give misleading results, because the
movement of the BECCA sampler in the beginning is slow (PSRF values smaller
than 1.1).

capture the genre variation. The GiBECCA inference method (Algorithm 2) is used
because interpreting the actual components is easier in that model, and because
it was found out to be nearly as good as HMC with the full prior in the previous
experiment while being much faster to compute. Figure 12 shows the first two shared
projection vectors, that is, the first two columns of V. It is immediately noticed how
the part covering the noise-terms in VS2 is around zero for all terms, showing that
the shared components do not capture description-specific noise. At the same time,
each projection picks a subset of genre-related terms and actual genre memberships.
Closer inspection of the features reveals that the first component separates romantic
movies from action movies, while the second component mainly separates family-
targeted genres (cartoons, family movies) from drama.
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Table 3: Features of movie data set.

Genres Genre-related Genre-independent
descriptions descriptions

action love two
animation comedy woman
art foreign drama some

classic death brother
comedy relationship now
drama war former
family police little
horror romantic still

romance violent head
thriller beautiful involved

action town
marriage keep

crime few
escape working

romance offer
thriller meanwhile
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Figure 12: Illustration of the first two CCA components of the movie data. In both
figures the top 10 bars represent the 10 genre membership indicators, the next 17
bars the genre-related words in the textual description of the movie, and the bottom
16 bars the genre-independent terms. Genre-related terms are present in the projec-
tions much more strongly than the genre-independent ’noise’-terms, as they should.
The first shared component (a) picks most genre-related terms, detecting a strong
link between the genre memberships and the descriptions. The second shared com-
ponent (b) extracts a more detailed relationship: family/comedy/animation movies
are separated from the rest by absence of the word drama in the descriptions.
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8 Discussion

Exponential family generalization of principal component analysis (EPCA) is an
active research area with recent publications published in the top machine learning
conferences (Collins et al., 2002; Gordon, 2002; Guo and Schuurmans, 2008; Guo,
2009; Mohamed et al., 2009; Sajama and Orlitsky, 2004; Schein et al., 2003; Singh
and Gordon, 2008; Rish et al., 2008; Tipping, 2001). In this thesis, a general frame-
work for matrix factorizations or projection methods in the exponential family was
presented by building on EPCA. It was described how various methods for analyzing
paired data sources can be derived from the general model by simple restrictions on
the projection vectors. As practical examples the first Bayesian exponential family
variants of partial least squares and canonical correlation analysis were presented,
opening up possibilities for applying basic tools for varying data types in a prin-
cipled way. It was also shown how straightforward prior assumptions may lead to
poor performance in exponential family models, and a regularizing prior was given
to overcome the problems. Furthermore, inference methods were discussed for the
models demonstrating the variants on both artificial and real life data. The new
sampling algorithm presented in this thesis, was shown to be much faster than the
previous approach (Mohamed et al., 2009) but slightly less accurate.

However, there is still work to be done: There are not yet good methods for
inferring hyperparameters of the regularizing prior (which makes also model com-
plexity selection difficult), and there remain open challenges in how to effectively do
inference for CCA-like models with explicit noise components. For Gaussian models
the inference is efficient due to analytical marginalization, whereas other distribu-
tions are still lacking efficient algorithms. A solution that utilizes the marginalized
variant as a part of the process was proposed, but it is only applicable for a special
case of our general prior family.
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