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Learning linguistic features from natural

text data by independent component

analysis

Master’s Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Technology

Espoo, 13.1.2005

Supervisor: Prof. Timo Honkela
Instructor: Doc. Aapo Hyvärinen



Teknillinen korkeakoulu Diplomityön tiivistelmä

Tietotekniikan osasto

Tekijä Päiväys
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ta. Symbolinen kirjoittu kieli voidaan koodata numeerisessa muodossa ja ana-
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Chapter 1

Introduction

Statistical methods in natural language processing have been an active research
field in the last ten years [20, 7, 32, 43, 38, 10, 15]. Increased computational
power and storage capabilities have made storing and analyzing large electronic
language corpora feasible.

Traditional linguistic methods prefer rule-based and hand-crafted models, that
are subjective of their creators knowledge and intentions. Statistics provides
a more objective method to model languages flexibly and adaptively.1 Unsu-
pervised methods, such as independent component analysis (ICA) [24], that is
studied in detail in this thesis, needs only examples of language usage for the
learning process. The estimated models will reflect the language, vocabulary
and style of the data used. Simple statistical models may not capture all the
subtleties of the language, but are easier to create and adjust to specific needs
than manually created models.

Language can be modeled on several linguistic levels, for instance, on phonetic,
orthographic, morphologic, syntactic, semantic, and pragmatic levels, ranging
from acoustics to intentions. The models can increase our knowledge of lan-
guage based communication and the process of learning languages. This will
help creating applications, such as automatic translation, speech processing,
information retrieval and other natural language processing tasks.

Some of the statistical methods previously applied to the problem of analyzing
and modeling natural language include the self-organizing map (SOM) [27],
singular value decomposition (SVD) [18] and several clustering methods [7, 20,

1The remaining subjective aspects include the choice of corpora, processing methods and
parameters.
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1.1. Problem setting 5

13, 32, 2, 33]. The methods have been used, for instance, to create automatic
categorization and vector models for words.

Independent component analysis is an unsupervised method for extracting
statistically independent components from observed mixtures of signals. The
assumption is that the observations are linear combinations of source signals in
a noise free environment. In contrast to singular value decomposition, which
uses only second order statistics, independent component analysis uses infor-
mation from higher order statistics [24].

1.1 Problem setting

Data modeling using statistical methods is an active research area. Increased
calculation power and electronically stored large data sets has made statistical
analysis feasible for multimedia signals such as sound, text and video. The
analysis of natural language is a complex task, and several methods have al-
ready been applied to it. In this thesis, independent component analysis is
applied to the analysis of written natural language. The emerging features are
considered to represent linguistic information in the corpora.

Traditional linguistic features depend on the language and are manually deter-
mined. Several sets of word categories exist for different corpora and languages.
Applying methods to several languages and corpora with manually constructed
components is not straightforward. Automatic extraction of linguistic features
should benefit the analysis of natural language and natural language processing
in general.

1.2 Aim of the Thesis

The aim of this thesis is to further study the emerging linguistic represen-
tation found by independent component analysis, an unsupervised statistical
method that has only information on word frequencies in different contexts.
The learned features provide a distributed representation of words, where a
word can have several features simultaneously. This thesis studies how well
the learned features capture linguistic information by the closeness of match
between the learned features and traditional manually determined linguistic
categories.
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1.3 Contributions of the Thesis

The work in this thesis is based on the paper by Honkela et al. [19] where the
idea of applying independent component analysis to extract linguistic infor-
mation from contextual information was first introduced. In this thesis, the
framework and parameter selections have been studied in more detail by the
author, and a method for comparing the extracted features and traditional
linguistic categories has been studied.

1.4 Structure of the Thesis

The structure of this thesis is the following.

After introducing the problem in Chapter 1, the basic background information
if covered in Chapter 2. Natural language processing and information theory
are reviewed from the point of statistical natural language processing. The
applied computational methods, principal component analysis, singular value
decomposition and independent component analysis are introduced.

Related topics to this thesis are discussed in Chapter 3. Word categoriza-
tion and contextual information are themes closely related to this work. Self-
organizing map, latent semantic analysis (LSA) [32] and other statistical mod-
els are discussed as alternatives to independent component analysis.

In Chapter 4, the integral part of this thesis, applying independent component
analysis to word contexts, is introduced. The method, the meaning of different
parameter and the selection of learning data are discussed.

A survey of the data sets is done in Chapter 5 and the conducted experiments
and results are explained in Chapter 6 in detail.

Finally, in Chapter 7, conclusions about the work are drawn, and the future
and meaning of the work are discussed.



Chapter 2

Background

Statistical natural language processing can be approached with many tools,
depending on the view of what language is and how it should be represented.
Information theory provides the means to analyse language as a stochastic
communication system. With a stochastic approach, uncorrelatedness and
independence are important concepts. Statistical methods, such as principal
component analysis, singular value decomposition and independent component
analysis, play a major part in statistical natural language processing and in
this work.

2.1 Natural language processing

The optimistic visions of human-quality automatic translation, speech recog-
nition and synthesis from the early days of natural language processing were
soon discarded, when several of the problems revealed to be difficult to solve.

A late trend in natural language processing is to use statistical and adaptive
methods that are taught on real examples of language usage. Digital stor-
age and computational power are inexpensive enough to make it feasible to
use large corpora that are needed for a statistical representation of languages.
The use of statistical methods can be motivated by how the human brain learns
language without explicit knowledge of grammar or other linguistic informa-
tion.

Models constructed with statistical methods and tools, such as information
theory, may give insight to cognitive processes. Statistical and unsupervised
models may also result in systems that, for instance, can adapt and handle

7



2.1. Natural language processing 8

errors better than hand-crafted and non-stochastic systems. The diversity of
language requires models for different languages and dialects as well as for
spoken and written representations. Languages are also studied and modeled
on several levels varying from acoustics to intentions.

2.1.1 Linguistics

Language is an essential part of the human world. Linguistic science tries
to explain how languages are acquired, produced and understood. A major
part of the grammatically well-formed phrases can be generated by using sim-
ple syntactic rules that combine linguistic structures, but they fail to explain
everything. As the linguist Sapir stated, “all grammars leak” [42].

Linguists have approached the problem of modeling language by trying to
understand the language in human mind (rationalist approach) and the actual
use of the language (empiricist approach) [38].

2.1.2 Categorization

Categories as abstractions are need for the interpretation of the empirical word.
Aristotle (384–332 B.C.) already distinguished ten categories. The most com-
mon are 1. Items (objects). 2. Qualities (properties). 3. States or state
changes. 4. Relations (spatial, temporal, and other). The three first cate-
gories correspond to linguistic categories of nouns, adjectives and verbs. The
fourth category can be represented with syntax, prepositions, postpositions,
endings and inflections [40].

The membership in a category can be chosen in many different ways. Each
item could belong to only one or to several categories simultaneously. Likewise,
belonging to a category can be crisp or graded. In a crisp membership, an
object either belongs to category, or it doesn’t belong to it. In a graded
membership, being in a category is indicated, for instance, by a real number,
that tells how much the objects resembles the category.

Categorization is also a major phenomenon in language in general. It can be
seen in the way languages assign different names to different things. There are
for instance animals, emotions and colors. There are also hierarchies of cate-
gories and sub-categories, for instance, different names for colors and different
species of animals. Categorization has been modeled for instance by shared
features of members and by prototype theory [30].
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One linguistic task is categorization, in which things are labeled as belonging
to different classes. Closely related NLP tasks include author and language
identification, text categorization by topic, and disambiguation. In all the
tasks a class is assigned for an object.

Categorization is also related to perception. A phenomenon called categorical
perception tells how the differences between categories and inside a category
are perceived, for instance, how spoken utterances of vowel categories are per-
ceived [17]. The differences between utterances from different categories are
perceived more clearly, whereas the differences inside a category are not so
easily distinguished. Similar phenomenon has been observed in the color per-
ception of the visual system [39].

2.2 Information Theory

Language is a form of communication, in which messages are expressed in a
medium, be it speech, sign language or writing, and transferred to others, who
try to understand the conveyed ideas by what they understand themselves. To
express a message, first it must be represented in a language. The language
might have a set of symbols, and rules and meanings for combining the symbols.
The symbols are furthermore relayed to the receiver, for instance, in speech
the message is transformed into sound waves by the acoustic properties of the
vocal cords and the vocal tract. The receiver must interpret the heard sounds
as words in order to receive the symbols. To understand the meaning of the
message, the receiver must interpret the received symbols in a meaningful
context. On the other hand, it has been pointed out that information theory
does not provide the means to handle semantics.

Information theory has been the basis for understanding communication sys-
tems. In the following, the essentials of information theory is introduced.
Information theory has also contributed to independent component analysis
by giving measures of independence.

2.2.1 Entropy and information

Entropy H(X) measures the average information of the finite set of possible
outcomes xi of the random variable X. The uncertainty of the event xi is
measured as the probability p(xi) = P (X = xi). The entropy H(X) of such
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discrete random variable X is defined by the formula

H(X) = −
∑

x∈X

p(x) log p(x) = E

{

1

log p(x)

}

(2.1)

where p log p goes to zero in the limit p→ 0. If the base of the logarithm is two,
the quantity is expressed in bits. In a discrete system, entropy is maximized
when all the probabilities p(x) are equal. Entropy is minimized when a single
outcome is fixed, i.e., it has probability one, and all the other outcomes have
zero probability.

For continuous variables there is an infinite number of outcomes, and the
formula

H(X) = −

∫

p(x) log p(x)dx = E

{

1

log p(x)

}

(2.2)

for differential entropy is used. An important result is that a Gaussian vari-
able has the largest entropy among all continuous random variables with fixed
variance.

2.2.2 Joint entropy and conditional entropy

The amount of information in a pair of random variables X, Y is measured
with the joint entropy

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y) = H(X) + H(Y |X) (2.3)

The conditional entropy

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x|y) log p(x|y) =
∑

x∈X

p(x)H(Y |X = x) (2.4)

expresses the unknown information about Y when X is known.

2.2.3 Mutual information

Mutual information

I(X; Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X) (2.5)

=
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
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measures the common information in the two random variables X and Y , i.e.,
the amount of information one random variable contains about the another. It
is a symmetric and non-negative measure, that is zero when the two variables
are independent. Independence is discussed in Section 2.3.2. The relationship
between mutual information I and entropy H is illustrated in Figure 2.1. Mu-
tual information has been applied to automatic word categorization [33] and
independent component analysis [24].

H(X) H(Y )

H(X|Y ) H(Y |X)I(X; Y )

H(X, Y )

Figure 2.1: Mutual information I(X; Y ) measures the common information
between two random variables, X and Y . The information of a random variable
is measured with entropy H.

2.2.4 Negentropy

Given the information that a Gaussian variable maximizes differential entropy,
it can be seen that entropy can be used as measure of non-Gaussianity. A more
approachable measure is negentropy

J(X) = H(XGauss)−H(X) (2.6)

where XGauss is a Gaussian random vector of the same covariance matrix as
X. Negentropy J(X) is always nonnegative and zero only when X is Gaus-
sian. Unfortunately, negentropy is computationally too demanding to be used
directly, so approximations are commonly used.
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2.2.5 Natural language processing

Shannon’s models of communication over noisy channels are derived using
information theory. Language can be seen as communication through a noisy
channel, and several statistical NLP tasks, such as speech recognition, can be
seen as decoding problems, where the original signal is being decoded from
the noisy output with the help of a model for the encoding process. In speech
recognition, the problem is to decode the original word sequence from the
speech signal using an acoustic model that represents the encoding of the word
sequence to the speech signal. Similarly, ideas can be conveying using a word
sequence as the medium. The several layers of linguistic analysis, mentioned
in Chapter 1, makes natural language processing a demanding task.

2.3 Uncorrelatedness and independence

In the following, two measures, uncorrelatedness and statistical independence,
are discussed as measures for comparing random variables statistically. Uncor-
relatedness is based on second order central-moment statistics, and is a special
case of statistical independence, that considers higher-order statistics.

2.3.1 Uncorrelatedness

For two random vectors x and y to be uncorrelated, their cross-covariance
matrix Cxy must be a zero matrix:

Cxy = E
{

(x−mx)(y −my)T
}

= 0, (2.7)

where mx = E {x} and my = E {y} are the mean vectors of x and y, respec-
tively. For zero-mean variables, zero covariance is equivalent to zero correla-
tion. The requirement of Equation 2.7 is equivalent to the condition

Rxy = E
{

xyT
}

= E {x}E
{

yT
}

= mxm
T
y (2.8)

on the correlation matrix Rxy.

Considering the correlations between the components of a random vector x

defined by the covariance matrix Cx

Cx = E
{

(x−mx)(x−mx)T
}

(2.9)
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the requirement of Equation 2.7 can never be met. At best, the correlation
matrix is a diagonal matrix

Cx = [ĉij] = diag
(

σ2
x1

, σ2
x2

, . . .
)

(2.10)

with the variances σ2
xi

of the components xi in the diagonal values cii. The
components cij of the covariance matrix Cx are the covariances between com-
ponents xi and xj, which is zero if the components are uncorrelated. For real
valued signals the covariances are real, and the symmetry of the covariances
matrix follows from the symmetry

cov (x, y) = cov (y, x) (2.11)

property of covariance for real signals.

Random vectors having zero-mean and an identity matrix as the covariance
matrix are called white or sphered. Thus the requirements for whiteness are

mx = 0, Rx = Cx = I (2.12)

where I is an identity matrix.

2.3.2 Statistical independence

Independent component analysis relies on the concept of statistical indepen-
dence. For the random variables x and y to be independent, knowing the value
of x must not give any information about the value of y, and vice versa. Ex-
amples of independent processes are the value of a dice thrown and of a coin
tossed, or speech signal and background noise originating from a ventilation
system, in which the value of the dice throw does not affect the outcome of
the coin toss.

A necessary and sufficient condition for the independence of two scalar random
variables is that their joint probability density px,y(x, y) is factorizable to the
marginal densities:

px,y(x, y) = px(x)py(y), (2.13)

and the definition of Equation 2.13 generalizes to random vectors and multiple
variables:

px,y,z,...(x,y, z, . . .) = px(x)py(y)pz(z) . . . . (2.14)

Independent variables satisfy

E {gx(x)gy(y)gz(z) . . .} = E {gx(x)}E {gy(y)}E {gz(z)} . . . (2.15)
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for any absolutely integrable functions g(·). Comparing Equations 2.15 and 2.8,
it can be seen that uncorrelatedness follows from independence with linear
functions g(·), and independence is a much stronger property than uncorrelat-
edness.

2.4 Principal Component Analysis

Principal component analysis [18] is a statistical method that finds an orthog-
onal basis which transforms possibly correlated variables into a number of
uncorrelated variables without losing any information. The directions of the
basis vectors, called principal components, give the directions of the largest
variances in the data. The data vectors are projected onto the orthogonal ba-
sis, where the projected vectors are uncorrelated. Uncorrelatedness is defined
in Section 2.3.1.

Additionally, principal component analysis can be used to reduce the dimen-
sion of the data optimally in the mean square sense, by using only the principal
components with the largest variances, i.e., modeling the data with only a sub-
set of the new basis vectors. Projecting the data vectors to the new basis gives
projected vectors that are uncorrelated and possibly lower-dimensional than
the original vectors. The projected vectors can be analyzed as they are, or
they can be used as input to further processing. For instance, independent
component analysis, reviewed in Section 2.6.4 can be seen as an extension of
principal component analysis.

The process of finding the principal components can be thought as first taking
the direction of the largest variance in the data and naming it the first principal
component. Further principal components are calculated on a subspace that
is orthogonal to the principal components already found. Figure 2.2 shows the
principal components of a two-dimensional Gaussian variable.

A closed form solution to PCA can be derived using the eigenvalues λk of
the covariance matrix Cx of a random vector population x = (x1, . . . , xm)T .
The eigenvectors are in fact the directions of the principal components. The
covariance matrix of Equation 2.7 and the mean vector mx can be estimated
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from sample vectors X = (x1, . . . ,xN) as

m̂x =
1

N

N
∑

i=1

xi (2.16)

Ĉx =
1

N

N
∑

i=1

(xi − m̂x)(xi − m̂x)T (2.17)

and the estimates m̂x and Ĉx can be used in the analytical formulas.

Following from the properties of the covariance matrix Cx, the eigenvalue
decomposition

CxQ = ΛQ (2.18)

can then always be calculated, where Q = (q1, . . . ,qm) is a m × m matrix
with the eigenvectors qi as columns, and Λ = diag (λ1, . . . , λm) is a diagonal
matrix with the corresponding eigenvalues λ1 ≥ · · · ≥ λm.

With Q being orthogonal, its inverse is its transpose, and Equation 2.18 can
be rewritten as the orthogonal similarity transformation

QT CxQ = Λ (2.19)

by multiplying with Q−1 = QT on the left.

Now the linear transformation

V = Λ−
1

2 QT (2.20)

z = V(x−mx)

whitens the data so that the components are uncorrelated and variances equal
unity, i.e., the covariance matrix is an identity matrix I. This can be verified
by writing the covariance matrix Cz for the transformed vectors z:

Cz = E
{

(z− E {z})(z− E {z})T
}

= E
{

zzT
}

= Λ−
1

2QT E
{

xxT
}

QΛ−
1

2 (2.21)

= Λ−
1

2QT CxQΛ−
1

2 = Λ−
1

2 ΛΛ−
1

2

= I

and it can be seen that the transformed vectors z satisfy the whiteness condi-
tions in Equation 2.12 of identity covariance matrix and zero mean.

The reverse transformation to the original space is

V−1 = QΛ
1

2 (2.22)

x = V−1z + mx
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Figure 2.2: A two-dimensional dataset and the estimated principal compo-
nents. Projecting the data to the principal component with the largest variance
(longer line) preserves most of the structure in the data.

Dimensionality reduction can be accomplished by selecting only the first n

(n < m) largest eigenvalues Λ̂ = diag (λ1, . . . , λn) and the corresponding eigen-
vectors Q̂ = (q1, . . . ,qn). This is equivalent to selecting the principal compo-
nents responsible for the largest variances in the data. This is illustrated in
Figure 2.2, where only one principal component models the two-dimensional
data quite well. The approximation error, ε, can be shown to be equal to the
sum of the eigenvalues of the principal components left out

ε =

m
∑

j=n+1

λj (2.23)

and it minimizes the mean square error between the original vector x and it’s
approximation x̂ = V−1z + mx in the reduced orthogonal base with the given
number of principal components.

2.5 Singular value decomposition

In singular value decomposition [18], the latent structure of vectors is used to
decompose a matrix X of size t× d into the product of three other matrices

X = USVT (2.24)

as illustrated in Fig. 2.3. The matrices U and V contain the left and right
singular vectors, respectively, and S is a diagonal m × m matrix of singular
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t× d t×m m×m

S

m× d

X = U VT

Figure 2.3: Singular value decomposition decomposes the matrix X into three
matrices U, S and V using the latent structure in the vectors of X. The
diagonal matrix S has the singular values in descending order. Optimal re-
construction in the least-squares sense is accomplished by dropping out the
smallest singular values and the corresponding vectors from the left and right
singular matrices. This is illustrated in the shading of the boxes representing
the matrices.

values in descending order. The matrices U and V have orthogonal, unit-
length columns and describe the original row and column entities with the
orthogonal factors. The singular values scale the components appropriately,
so that the original matrix is reconstructed [32]. Singular value decomposition
can always be calculated and is unique up to some permutations in the product
matrices [13] and the number of factors m is at most min (t, d).

The dimensionality of the factorization can be reduced optimally in the least-
squares sense by dropping out small singular values in the reconstruction.
In Figure 2.3, dimension reduction is illustrated with lighter shading of the
dropped out regions.

2.5.1 Relation to principal component analysis

In principal component analysis, explained in Section 2.4, the square symmet-
ric covariance matrix CX = XXT , is decomposed into the product QΛQT .
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The eigenvectors of the covariance matrix are the columns of Q, and the eigen-
values are the diagonal values in Λ.

Singular value decomposition X = USVT is directly related to the eigenanal-
ysis done by principal component analysis. The left singular vectors U are the
eigenvectors of the square symmetric matrix XXT and the right singular vec-
tors V are the eigenvectors of the matrix XTX. In both cases the eigenvalues
Λ are proportional to the squared singular values S2.

2.6 Independent Component Analysis

Estimating original signals from observations of mixture signals without any in-
formation about the original signals or the mixing process is called blind source
separation (BSS). In the following, independent component analysis [12, 24],
an unsupervised statistical method for blind signal separation is introduced.
The basic principles behind independent component analysis, and how the
independence of signals is measured are explained. A short overview of an
estimation algorithm is given.

2.6.1 Introduction

Independent component analysis does blind source separation by trying to es-
timate a linear mixing matrix and the original signals using observations of
the mixture signals under the assumption that the sources are statistically in-
dependent. ICA has been applied successfully to biomedical signal processing,
telecommunications, speech processing, image feature extraction, and classifi-
cation systems [3, 48, 45, 45, 1, 16, 6, 34, 4].

An often mentioned application with independent component analysis is the
so-called “cocktail-party problem”, in which the objective is to separate in-
dividual sound sources in a room. The observations are recorded in different
locations of the room with each microphone recording only a cacophony of
voices. A simplified view of the mixing process creates each observation as a
linear weighted sum of the original sources. The weights are determined solely
by the attenuation of the sound, i.e., distance between the source and the
microphone. Assuming statistical independence of the sources, independent
component analysis can be used to estimate the original sound sources.

The “cocktail-party problem” is a good example of how independent compo-
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nent analysis is usually applied by assuming simple mixing process and statis-
tical independence of the sources, when neither may not hold. In the problem,
the mixing process is simplified by neglecting important acoustic effects, such
as time delay and reverberation, as well as the possibility of people moving.
Also, statistical independence may not hold in this case because, for instance,
people may take turns talking and listening.

An example of signal separation with ICA is given in Figure 2.4, where three
original signals are mixed with random weights to create three mixture signals.
The extracted independent components are quite close to the original signals,
except for the signs and the order of signals. It should be noted that even
though the original signals are periodic, the ICA algorithm does not take
advantage of the time information. Actually, the order of the samples should
have no effect on the results.
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Figure 2.4: a) Original sine, sawtooth and impulse noise signals. b) Mixture
signals created by combining the original signals with random weights. c)
Independent components extracted from the mixture signals. The original
signals are found quite well by ICA, except for the order and the signs of the
sources.
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2.6.2 ICA framework

In matrix form, the ICA framework is usually defined as the linear noise-free
generative model

x = As, (2.25)

where the latent source signals or independent components, are represented
by the random variable vector s = (s1, . . . , sn)T . The observed mixture signals
x = (x1, . . . , xn)T are generated by multiplying the sources with a constant
n×n square mixing-matrix A. The source signals si are assumed to have zero
mean, which means that the observed signal components xj are zero mean
also.

The generative model of Equation 2.25 can also be written as

x =

n
∑

k=1

aksk, (2.26)

where the columns ak of the mixing matrix A, give the basis where the obser-
vations are represented.

Given samples of observations xi, 1 ≤ i ≤ N , and the information that the
sources sj are statistically independent, the problem is to estimate both the
mixing-matrix A and the sources s simultaneously.

If the estimated mixing matrix A is known, the sources can be estimated
by multiplying the observed signals with the inverse of the estimated mixing
matrix W = A−1:

s = y = A−1y = Wx. (2.27)

Assumptions for ICA

The sources sk can be assumed to be zero mean

E {sk} = 0, (2.28)

without any loss of generality. This makes the mixed observations x zero mean
also and the assumption reduces the complexity of the estimation algorithms.

The sources are assumed to be statistically independent. Section 2.3.2 intro-
duces the requirements for statistical independence. The assumption seems
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quite hard to meet in most processes. Instead, independent component anal-
ysis in interpreted as finding the most independent components. In an an-
other view, independent component analysis is seen as the maximization of
the sparseness of the sources [24], i.e., the sources should have only a few
entries that differ significantly from zero.

One more assumption for ICA is that only one of the sources can be normally
distributed [24]. Otherwise the distributions of the sources can be unknown.
To see why ICA is impossible when there are more than one normal source,
consider the case of two independent, white and normal variables y1 and y2.
This is illustrated in Figure 2.5. The joint distribution

p(y1, y2) =
1

2π
exp

(

−
y2

1 + y2
2

2

)

(2.29)

is also normal and completely symmetric, so the directions of the columns of
the mixing matrix cannot be determined.

Figure 2.5: A distribution of two independent, white and normally distributed
components.

Ambiguities of ICA

There are certain ambiguities, namely the order, signs and magnitudes of the
sources, that cannot be inferred with independent component analysis. These
follow from the linearity of Equation 2.25, and the fact that the sources and
the mixing matrix are estimated simultaneously.

The order of the summation in Equation 2.26 can be modified without chang-
ing the result, i.e., the order of the sources cannot be determined within the
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ICA framework. This differs from principal component analysis, where the
eigenvalues define an ordering of the eigenvectors. The ambiguity of the or-
der of the sources can be written as a multiplication of the sources s with a
permutation matrix P and the mixing matrix A with the inverse of the per-
mutation matrix. Similarly, the sources can be scaled and the signs changed
with a full-rank diagonal scaling matrix M = diag (m1, . . . , mn), as long as
the mixing matrix is scaled appropriately. These ambiguities can be combined
into a matrix B = PM that scales, changes signs, and permutes the sources:

x = (A(PM)−1)(PMs) = (AB−1)Bs. (2.30)

From these properties it follows that the signs, variances and the relative im-
portances of the sources cannot be determined. As the variances of the sources
cannot be determined, they are usually scaled to unity, E {s2

k} = 1. These
ambiguities are visible in the example Figure 2.4, where the estimated inde-
pendent components do not have the same order nor the signs as the original
signals.

Measuring independence

The fundamental task in ICA is to measure the independence of the estimated
components y = Wx. There are several ways to do it. An intuitive approach
is to search for maximally non-Gaussian components. This can be motivated
by the central limit theorem, that says that the sum of a large number of in-
dependent random variables converges to a normal distribution. Then the less
the components resemble normal distributions, the less constituent variables
it has.

Non-Gaussianity can be measured, for instance, by kurtosis or by approxima-
tions of negentropy. Other methods include maximum likelihood estimation
and minimizing the mutual information of the components, many of which
have been shown to be equivalent [24].

One independent component can be estimated as y = wTx, where w needs to
be determined. If w really is one of the independent components, it is one of
the rows of the inverse of the mixing matrix A.

Information theory and ICA

Information theory provides measures of independence, a fundamental func-
tion in independent component analysis. The independent components are
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estimated by maximizing a function F (s1, . . . , sn) that measures independence
of random variables, where the components sj are calculated using the Equa-
tion 2.27. In Section 2.2, mutual information and negentropy were introduced
as measures of independence.

2.6.3 Preprocessing

Preprocessing techniques are often necessary to modify the data to be suitable
for the algorithm used. Computationally lighter methods, such as PCA, can
also reduce the complexity of the problem by solving part of it, or reducing
the dimension of the data [24].

Here the basic preprocessing methods are discussed. Centering and whitening
make the estimation simpler by reducing the space of the problem. Dimension-
ality of the data can be reduced by principal component analysis to remove
noise and achieve a square mixing matrix.

Centering

As mentioned earlier, the observations x can be assumed to be zero mean. Let’s
call the non-centered observation vectors x′. Now the centered observations x

are simply
x = x′ − E {x′} , (2.31)

and after the estimation of the zero mean sources s, the mean can be restored

s′ = s + WE {x′} (2.32)

to the sources.

Whitening

One method for simplifying the problem is called whitening, introduced in
Section 2.3.1. In whitening, the variables are forced to be uncorrelated and to
have unit variance. When the observations x are centered, uncorrelatedness
equals to zero correlation. A whitening transformation V is always possible
to achieve. One method to calculate the whitening transformation V is the
eigenvalue decomposition, which is explained in more detail in Section 2.4.
Writing Equation 2.25 for the whitened vectors

z = Vx = (VA)s = Ãs (2.33)
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makes the whitened mixing matrix Ã = VA orthogonal, as can seen from

E
{

zzT
}

= ÃE
{

ssT
}

ÃT = ÃÃT = I (2.34)

This restricts the space of the mixing matrices to orthogonal matrices, and
thus reduces the number of degrees of freedom in the problem. The orthog-
onality of the whitened mixing matrix Ã states that it is in fact a rotation
matrix and whitening has estimated the independent components up to a
rotation. Independent component analysis can thus be defined as principal
component analysis followed by whitening and an orthogonal rotation. After
PCA, whitening requires only scaling variances to one. This is illustrated in
Figure 2.6, where ICA is illustrated as centering, whitening and rotation.

Dimension reduction

In addition to whitening, the dimensionality of the observations can be reduced
with PCA, as explained in Section 2.4. Instead of using all the principal com-
ponents when projecting the vectors, only the ones with the largest variances
are used. Dimension reduction can be seen as a method for removing noise
and making the ICA algorithm simpler by making the mixing matrix square.

2.6.4 FastICA

The FastICA [14] algorithm is a very efficient batch algorithm for independent
component analysis implemented in MATLAB programming language. It can
be seen as a fixed-point iteration algorithm or as an approximating Newton
method. A detailed derivation and description of the algorithm can be found
in [24].

The fundamental iteration step in FastICA for a unit length row vector w of
W, the estimate of the inverse of the mixing matrix, is

w ← E
{

zg(wTz)
}

− E
{

g′(wTz)
}

w (2.35)

where the nonlinearity g can be almost any smooth function. The FastICA
algorithm requires the data vectors z to be centered and whitened.

The algorithm can be used to estimate one independent component at a time
using a deflationary orthogonalization algorithm. Another approach is to es-
timate all the components simultaneously using symmetric orthogonalization.
The orthogonality constraint for the independent components follows from the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Original uniformly distributed two-dimensional data (a) is mul-
tiplied by the mixing matrix A to create the observed data (b), which is
preprocessed by centering (c) and whitening (d). ICA is applied to finding the
missing rotation (e), and finally the mean is restored (f). The ambiguities in
the signs and the variances of the estimated sources are visible.
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independence assumption, which requires that the components are uncorre-
lated, which equals orthogonality in the whitened space. The constraint is
enforced by orthogonalization and normalizing to unit norm the estimated
independent components after each step.



Chapter 3

Related works

In this thesis features are extracted from words in contexts using independent
component analysis, and the closeness of match between the features and tradi-
tional word categories is studied. Earlier, independent component analysis has
been applied to several other problems, and different kinds of signals. Word
categorization is also a widely researched area and has been approached with
several statistical methods.

Statistical methods require input in vector form, which introduces a problem
when symbolic written language is studied. Vector space models solve this by
representing words as different vectors. In order to model words, contextual
information can be calculated from a language corpora. The self-organizing
map, latent semantic indexing, singular value decomposition and independent
component analysis are statistical methods that have been used to analyze
words and text. In the following, these topics will be briefly discussed.

3.1 Contextual information

The use of contextual information is a widely used approach in the statistical
analysis of natural language corpora [38, 9, 29]. When a word vector is assigned
to each word, contextual information can be calculated as the sum of occurring
words in each context. The context can be simply defined as the previous or
next word, or a window of words. In information retrieval, each context window
could span a whole document. In natural language processing, the frequencies
of word sequences of length n, called n-grams, are widely used.

27
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3.1.1 N-grams

A typical task in natural language processing is to calculate the probability
P (V ) of a word sequence V = v1, v2, . . . , vT . To simplify the calculations,
Markov assumption is made: the probability of the k:th word vk is conditional
only to the n preceding words

P (V ) = P (v1, v2, . . . , vT )

= P (v1)P (v2|v1)P (v3|v1, v2) · · ·P (vT |vT−1, vT−2, . . . , v2, v1)

≈ P (v1)P (v2|v1)
T

∏

k=3

P (vk|vk−1, . . . , vk−n). (3.1)

The conditional word P (vk|vk−1, . . . , vk−n) probabilities can be interpreted as
Markov-chain transition probabilities. The n-gram model is then the n− 1:th
order Markov model.

The conditional word probabilities need to be estimated from corpus data.
The frequencies of word n-grams give maximum likelihood estimates. When n

is high, it takes a huge text corpus to get reasonable estimates, because most
of the word sequences occur only very infrequently. Bi-grams (n = 2) and
trigrams (n = 3) are commonly used in natural language processing tasks, as
they can be estimated with some accuracy from a reasonable amount of data.

3.2 Vector space models

Written language is usually represented using discrete symbols, such as char-
acters and words, in computerized form. Using the symbolic form of, for
instance words, directly in numeric algorithms may generate unwanted cor-
relations. For instance, the the semantic closeness between words “window”,
“glass” and “widow” differ from the correlations between their phonetic or
written representations [20].

A general method for representing words in numeric form is to assign an n-
dimensional vector vi for each word wi, where the word vectors are orthogo-
nal [41]

vT
i vj = 0, i 6= j. (3.2)
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To represent a set of words a simple weighted sum

c =
∑

i

bivi (3.3)

of the word vectors can be taken. The weights can be used to emphasize
wanted words.

In a simple bag-of-words model, the dimension of the word vectors is the same
as the size of the vocabulary. Each word wi is represented by a vector with one
in component i and others equal to zero. This ensures that the words vectors
for different words are orthogonal.

If the dimension of the words vectors vi is equal to the size of the vocabulary,
the calculations may be computationally demanding when the number of word
grows large enough. Another reason to apply dimension reduction techniques
is to allow correlation between related words. Dimension reduction can be
interpreted as projecting the bag-of-words vectors to lower-dimensional vectors
using a projection matrix P, where the columns of the matrix are the lower-
dimensional vectors for the words.

Depending on the method, the projection matrix might try to preserve the
orthogonality equally between different word vectors or to try to preserve it
only when the words are not related to each other. Random projection is a
method that tries to keep all the words orthonormal. A language corpora can
be used to measure statistics for the words and a computational method, such
as independent component analysis, can be used to calculate the a vector set
for the words that relaxes the orthogonality restraint on related words.

3.2.1 Random projection

Random projection (RP) [26] assigns random vectors for word vectors. This
equals to using random columns in the projection matrix P. Compared to
statistical methods, random projection is fast and computationally simple,
but it does not take into account any correlations between the vectors.

3.2.2 Statistical projection methods

Dimension reduction techniques that take into account the connections be-
tween words, use statistics of the actual use of words. The calculated statistics
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determine the relations between words, and a vector set minimizing the recon-
struction error, such as the mean square error, is chosen.

The statistical methods include latent semantic analysis (LSA) that is used
with text documents, independent component analysis studied in this thesis,
and non-negative matrix factorization (NMF) [13, 8, 49] In the following, latent
semantic analysis is studied in more detail.

3.3 Latent semantic analysis

Latent semantic analysis [13, 32] was first introduced as a tool for information
retrieval, where singular value decomposition, explained in Section 2.5.1, is
used to represent documents using latent topics. The emerging representa-
tion enables the comparison of both document and word similarity, as well as
keyword querying.

The documents are represented in a term by document matrix X, where the
frequencies xij for terms ti (rows of the matrix) are given for each document
dj (columns xj of the matrix). All structural information of the documents is
lost in the representation. Usually only a few hundred singular values (latent
topics) are extracted from thousands of documents when the term by document
matrix is expressed in the reduced space

X̂ = USVT . (3.4)

Each singular value represents one latent topic in the document collection.
The left singular vectors, represented by the term by topic matrix U, define
the weights of terms in latent topics. Similarly, the right singular vectors in
the document by topic matrix V, defines the weights of the latent topics in
each document.

The singular value decomposition can be used to compare terms and documents
in the low-dimensional space. The matrix

X̂X̂T = USVTVSUT = US2UT (3.5)

gives all the dot products of the term vectors (rows of X̂) scaled by the singular
values and can be used to compare the similarity of terms. Two documents
can be compared by the dot product of their document vectors (columns of
X̂) scaled by the singular values. All the comparisons are collected into the
elements of the matrix

X̂T X̂ = VSUTUSVT = VS2VT . (3.6)
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New documents dq, or pseudo documents constructed from query terms, can be
transformed into a document vector xq by calculating the number of occurring
terms. The transformation into the latent topic space is

vq = xT
q US−1 (3.7)

and the components of vq give the weights of latent topics in the document
dq. This can be further compared with other documents with Equation 3.6 to
retrieve similar documents or examine the distribution of the latent topics.

After its introduction, latent semantic analysis has been applied to modeling
language, and has been shown to match human performance [13, 31].

3.4 Self-organizing map

The self-organizing map algorithm creates a non-linear mapping from the orig-
inal high-dimensional space to a usually two-dimensional sheet-like grid or map
of nodes. Unsupervised learning fits the map to the data, so that the learning
results in a map that reflects the topology and distribution of the data in the
original space.

A self-organizing map can be used in the analysis, visualization, clustering and
exploration of the data, and has been applied to various tasks. Earlier papers,
where the self-organizing map has been used in analyzing text, include the
analysis of artificially generated short sentences [40], Grimm fairy tales [20]
and Finnish verbs [29] using contextual information. Short overviews of those
papers are given in Section 3.6.

3.5 Independent component analysis

Independent component analysis has been applied to various multimedia sig-
nals, including sound [5, 16], images [6, 21], video [44] and text [28, 7]. It
has also been applied to other task, such as stock analysis [1] and biomedical
analysis [47, 46, 45]. ICA can be used to find an underlying basis of features
(latent variables), or to separate mixed signals (cocktail-party problem). Thus
it can be applied to several tasks.

The linear noise-free ICA framework has further been extended into several
directions. Noisy ICA adds a noise term in the linear framework [22]. Topo-
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graphic ICA relaxes the independence assumption between components [23].
Nonlinear ICA allows the generative model to have nonlinearities [25].

3.6 Word categorization

Word categorization and language modeling has been studied using also other
statistical methods than ICA. These methods include self-organizing map, clus-
tering and information theory [43, 40, 20, 29].

In [43] an analysis of the Brown text corpus was conducted using contextual in-
formation and singular value decomposition. A baseline experiment calculated
the left and right contexts for 47,025 words using the the most frequent 250
words as the context words. The resulting 47,025-by-500 matrix was reduced
to a 47,025-by-50 matrix using singular value decomposition. The 47,025 re-
duced word vectors were then clustered into 200 classes using the group-average
agglomeration algorithm Buckshot. The words were classified as the most com-
mon syntactic category in each class. All occurrences of a word are assigned to
one class. The classification was used to measure the performance of part-of-
speech tagging. The ambiguity of words was tackled in further experiments.
SVD based approach uses only second order statistics, and ICA, that takes
advantage of higher order statistics, can be seen as an extension of it.

In [40] the self-organizing map algorithm was applied to averaged contextual
information calculated from artificially generated short sentences of nouns,
verbs and adverbs. With a thirty word vocabulary, each word was represented
by a 7-dimensional random vector xs of unit length. The context of a word
was calculated as the preceding and the succeeding word pair, and it was
averaged over 10,000 generated sentences. The resulting thirty 14-dimensional
average word contexts xa were normalized to unit length. The input data,
x = [axs,xa]

T , to the self-organizing map algorithm consisted of the the scaled
(with a = 0.2) symbol vector xs for each word and the averaged word context
vector xa. The semantic word map was created by writing the word at the map
position, where the symbol signal x = [xs, 0]T gave the maximum response.

A similar study using real world data was done in [20], where the relationships
between the 150 most frequent words of the Grimm tales were studied. Each
focus word was represented by a 90-dimensional random real vector. The code
vectors of the words in a contextual window were then concatenated in to a
single input vector x(t). In order to equalize the mapping for the selected 150
words statistically, and to speed up computation, a solution used in [40] was
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applied. The contexts were averaged relating to a particular focus word. As
the main result of the SOM-based analysis, the general organization of the
map reflected both syntactic and semantic categories. However, the found
categorization is implicit and does not provide explicit features explaining the
syntactic and semantic characteristics.

In [29] the conceptual similarities of the 600 most frequent Finnish verbs in a
newspaper corpus were studied. Contextual information was calculated using
features calculated from the preceding and the two following words relative to
the analyzed verbs. The three conducted experiments used the morphosyn-
tactic properties of words, individual nouns in base form and noun categories
as features. In all the experiments, random mapping was applied to reduce
the dimensionality of the vectors. A self-organizing map with 140 units was
taught on the feature vectors for the verbs. The resulting maps were evalu-
ated by comparison with existing verb classification, and by exploring the maps
visually. Morphosyntactic features were found to give the best match when
compared to existing semantic classification of verbs, and the lexical organi-
zation of the map displayed structure based on cultural, social and emotional
aspects. Features based on nouns created maps that highlighted topics in the
corpus.



Chapter 4

Analysis of words in contexts

using ICA

4.1 Introduction

The goal of analyzing words in contexts is to learn interesting and useful com-
ponents from natural language data with independent component analysis.
The learning is done at word level from written language. Here a word, e.g.
“blue” or “12”, is a unique string of letters separated by white-spaces or possi-
bly punctuation marks. The needed statistics are estimated from a text corpus,
which represents the usage of written English.

In this thesis, it is assumed that the word usage statistics tell something about
the structure and the rules of the language. Word frequencies tell how com-
mon a word is. The co-occurrence frequencies of words in contexts contain
information on shared features between words.

In linguistics, a syntactic word category is usually defined as a set words, where
the syntax of the language is not broken when a word is replaced with another
word from the same word category. This is called is a replacement test. For
instance, in the sentence “Mary gave John two flowers”, the word “flowers” can
be replaced with any plural noun without violating the syntax of the language.
It is assumed that there is no mechanism for checking whether a sentence is
syntactically correct, and a statistical replacement test of context similarity
is applied instead. The idea is that, if words occur in similar contexts, they
should be assigned to the same category. The co-occurrence statistics are
collected into context histograms, in which the the co-occurrences of the focus

34
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words in a given context are collected. If there are enough examples of the use
of the language, the co-occurrence statistics should tell something about the
structure of the language.

It might be reasonable to assume that the context histograms are mixtures of
word sets that resemble word categories. As an example, consider what kind of
words could immediately precede nouns (e.g. “flower” and “girl”). Here each
noun creates a new context histogram, and the counts of immediately preceding
words are the elements in the context histograms. The counts of words are
calculated for the focus words that are being analyzed. The noun and the
location of the focus related to the noun define the context. The mentioned
nouns are countable, so they could be preceded by numerals (“two flowers”,
“four girls”). Nouns can also have other attributes (“beautiful flowers”, “young
girls”). In case of noun contexts, the histograms might have a high frequency
for adjectives. For plural noun contexts, in addition to adjectives, there might
also be high frequency counts for numerals.

Word categories are connected to context free grammars (CFGs) and proba-
bilistic context free grammars (PCFGs), which are methods for encoding the
syntax of a language, i.e., how sentences are created from connecting smaller
elements together [38]. Grammars use rules to show how syntactically correct
sentences are created from smaller parts, such as phrases and words categories
and words.

A closer connection can be seen between the analysis of words in contexts and
Markov models (MMs). With Markov models, there are transition probabilities
between words, and word sequences are generated by emitting words using the
transition probabilities. With hidden Markov models (HMMs), the transitions
are between hidden states and each state has emission probabilities for the
observed words. With linear ICA, a weighted sum of the feature vectors encode
a histogram of words for each context, for instance, the previous word.

With enough contexts, a statistical feature extraction method might be able to
find features that resemble syntactic words categories, for instance, adjectives
and numerals. If independent component analysis is used to extract the fea-
tures, it is assumed that the context histograms are linear mixtures of features.

A numerical representation for the words is needed in order to use them for
calculations. This can be accomplished by using a vector space model [41] and
attaching a real-numbered vector vi to each word wi.
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4.2 Context histograms

In the experiments explained in this thesis, the data for the ICA algorithm are
the word co-occurrence frequencies in different contexts (context histograms).
A context, c, is defined with the surrounding words of the focus word w. The
co-occurrence frequencies of words in contexts are the un-normalized maximum
likelihood (ML) estimates of the conditional word probabilities P (w|c).

Only a fraction of the the possible focus words and contexts were selected.
This was done to decrease the dimension of the problem, and to select a repre-
sentative set of the context histograms. In the following, the selection process
is examined in detail.

4.2.1 Focus words

The number of focus words was limited to the most common terms (different
word forms). This was due to the computational costs of too high dimensions
and the low frequency counts of rare words. The most common terms contain
much of the frequency information and cover a major part of the language so
it was natural to chose those words to be modeled. The focus words can be
chosen more specifically, for instance, one could be interested in studying only
words belonging to a certain category.

4.2.2 Context words

The context words should be chosen to capture as much of the interesting
information as possible. This thesis concentrates on examining the similarity
between the learned features and syntactic categories and the data will be
selected to support that task.

The context words can be selected in many ways, e.g. by examining word
frequency [35], function words, variance [37] or by statistical analysis of context
histogram consistency [36]. In this thesis, the most frequent words were chosen
as the context words. It is a simple method but it should give good results [35].

The most frequent words overlap greatly with the so-called function words
(determiners, pronouns, auxiliary verbs etc.), that convey much of the syntactic
information by binding together other words (verbs, nouns, adjectives etc.)
that carry more specific meaning in a sentence.
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An intuitive argument in favor of choosing the most common words is that since
they are common, their co-occurrence histograms with other words is fairly
dense and they represent most of the frequency information. Furthermore,
less frequent words as context words might have more of a semantic role,
and their co-occurrence histograms are significantly sparser. For an example,
consider the portion of nouns, that might occur in the context of the adjective
“humid”. The linear ICA might not find traditional syntactic categories, but
more semantic ones. If the goal is to find components with more semantic
information, the context words could be selected differently.

4.2.3 Context types

The context of a word can be defined in many different ways. In information
retrieval, the context might span the whole document and the counts of words
are calculated as the occurring words inside the document. Similar approach
is used in topic analysis [7], where the text is divided into small overlapping
segments which are treated as documents. An example of a more focused
context is the n-gram model

P (wk|wk−n+1, wk−n+2, . . . , wk−1) (4.1)

where the next word a sequence, wk, is modeled using only the n−1 preceding
words. Simple bigrams (n = 2) and trigrams (n = 3) are commonly used in
natural language processing. The context could also be defined by examining
the text in sentence level.

The context can consist of more than one word, or the context word can
occur in several places. Examples of different context types would be the the
word immediately preceding the focus word (P (wk|wk−1 = c)), the two words
following the focus words (P (wk|wk+1 = c1, wk+2 = c2)), or the context word
might appear in a window around the focus words (P (wk|wk−1 = c ∨ wk+1 =
c)). Naturally different context types can be mixed simultaneously. Here single
word contexts with different locations are used, and the context word and the
focus words are not necessarily restricted to be consecutive.

The focus word could be placed far away from the context, or the context words
could be distributed apart from each other and the focus word. This kind of
approach might capture interesting features, and might even be necessary for
some languages, for instance, if morphemes are modeled instead of words.
However, this approach will not be taken here, because in English, much of
the syntactic information is captured in the neighboring words, when a large
corpus is available.
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The length of the context must be limited also for practical reasons. Longer
contexts would mean higher n-grams and more unreliable probability esti-
mates. It would also mean either having a huge number of context histograms
as the combinations of all n−1 context words, or creating a method of choosing
the context histograms.

Limiting the context length and the position of the focus word, in relation to
the context words, restricts the context histograms and the estimated compo-
nents. It is hoped that enough, if not most, of the syntactic information is
captured by the statistics of neighboring words. For better results, it might
be a good idea to vary the length of the context and the location of the fo-
cus word as much as it is computationally possible. This would mean using
context histograms with different lengths and focus word positions.

4.2.4 Creating the data matrix

Contextual information was calculated as context histograms for the focus
words. Given a particular context or m chosen words and their positions
around the focus word position, the corresponding frequencies were extracted
from the text corpus.

When the context histograms have been calculated, a matrix H = (h1, . . . ,hC)
of size F ×C is created. Here F is the number of the focus words, and C is the
number of different context histograms. The rows of H are the signals for the
focus words wi, i = 1, . . . , F and the columns hk, k = 1, . . . , C are the context
histograms. The order of the columns is inconsequential to the ICA algorithm.
The creation of the context matrix is illustrated in Figure 4.1, where the focus
word and the context create a pattern, whose occurrences in the corpus are
calculated.

4.3 Preprocessing

The data matrix H gives the frequencies of the focus words in each context
as the columns. The raw frequency counts are not the best input to the ICA
algorithm, because of the large variations in frequencies, so some preprocessing
is needed.

The frequency data is concentrated on the most frequent words. To lessen the
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context

# small

...pocket is too small to hold ...

...she was far too small to think ...

...the eye is too small to be weighted ...

...the vase being too small to permit ...

fo
cu

s
w

or
d

Figure 4.1: The context matrix H counts the co-occurrences of the focus words
in contexts. The highlighted row is for the focus word “small” with the marked
element counting the instances where the focus word follows the word “too”
and precedes the word “to” in the corpus. Four of such instances is shown.
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effect of the word frequency, the logarithm of the elements increased by one

hij ← log(hij + 1) (4.2)

can be taken or the rows of the histogram matrix can be normalized. This
kind of preprocessing should make the ICA algorithm model the words more
equally, instead of modeling only the most frequent ones.

Normalizing the sum of the columns of the frequency matrix H to one would
correspond to creating a Markov transition matrix from a context to a word.
This approach has the downside of reducing the information contained by the
data, as the frequency of the context would mean nothing. Two histograms
with similar profiles, but with different context frequencies, would be consid-
ered equal. For instance, if two contexts had only co-occurrences with a single
word, they would be considered equally important after normalization, even if
the frequencies would differ significantly.

For computational reasons it might be necessary to perform dimension reduc-
tion before applying independent component analysis. The FastICA pack-
age [14] uses principal component analysis (PCA, explained in Section 2.4) to
reduce the dimension of the problem before the actual ICA algorithm.

4.4 Interpretation of the components

The estimated mixing matrix A = (a1, . . . , aK) and components sk are the
result of applying ICA to the context histogram matrix H.

The order, signs and variances of the components sk cannot be extracted with
ICA, so they can be post-processed. The variances of the components sk are
scaled to one by the FastICA algorithm. As there is no good reason to change
the order of the components, they are left as they are.

The columns ak of the mixing matrix A are the features that linearly model
the context histograms. Each component can be seen as a sum of word vectors
scaled by the intensity of the word in the component. According to our hypoth-
esis, the extracted features ak represent syntactic and semantic information in
the corpus.

Positive values in the features are easier to interpret than negative values.
The skewness of each component sk is measured because positive components
would have positive skewness. If the skewness is not positive, the component
sk and the corresponding feature ak are multiplied by −1. This does not
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affect the ICA model because of the sign ambiguity, but changes the sign of
the skewness. The skewness of the component, and not the components, is
examined because the components skj tell the amount of each component ak.
If the skewness of the components were examined, the result would depend
on the vector model used for words. This post-processing method assumes
that the extracted features are non-negative with possibly signs changed. The
assumption is not exactly true, but the post-processed features are very close
to being non-negative.

The rows of the mixing matrix A give a K-dimensional vector representation
for each word. If the components ak represent linguistic features of the lan-
guage, such as being a noun or past tense, the words could be analyzed using
the rows of the mixing matrix as weights of features for words.



Chapter 5

Datasets

A natural language text corpus provides examples of how language is used.
Word usage statistics in contexts are calculated from a collection of electronic
texts, called the Gutenberg corpus. Manual syntactic categories attached to
words are extracted from a subset of a tagged Brown corpus. In the following,
the corpora and preprocessing techniques are introduced.

5.1 Gutenberg corpus

The natural language corpus as the data for the experiments was a collection
of English texts from Project Gutenberg1. The Gutenberg archive contains
copyright-free e-books and e-texts, published mostly before 1923, which can
be downloaded free of charge. The language, subject and style of language
varies, including plays, novels, letters and text books from various authors.

5.2 Brown corpus

A subset of the tagged Brown corpus2 was used to extract possible categories
for words by listing the tags that were assigned to each instance of the word.
In a tagged corpus, each instance of the words is labeled with a syntactic word
category. The tag-set consisted of 86 tags, some of which are listed in Table 5.1.
The limited vocabulary in the analysis did not take into account tags without

1http://gutenberg.net
2Available on-line at http://www.ldc.upenn.edu/
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any word instances. The set is a subset of the whole Brown corpus tag set3,
as the used subset of the Brown corpus did not contain all possible tags.

Syntactic word categories for each tag t are represented as vectors lt of the
same length as the vocabulary. For each word wi that is marked with the tag
t in the tagged Brown corpus, the vector lt has one in the i:th element and
zero otherwise.

Table 5.1: Examples of the tag-set.
Tag Description Examples

. sentence terminator . ? ; ! :
AT article the a an no every

BEG verb “to be”, present partici-
ple or gerund

being

CD numeral, cardinal one two hundred 1 ten 1885
DT determiner/pronoun, singu-

lar
this each another that

HVD verb “to have”, past tense had
IN preposition of to in with for at on by
JJ adjective great well little good old

JJR adjective, comparative better later longer further
MD modal auxiliary would will could may should
NN noun, singular, common time man day life good king
NNS noun, plural, common men people years eyes things
PN pronoun, nominal one nothing something none
RB adverb some upon now great after
VB verb, base: noninflected

present, imperative or infini-
tive

see come know make go say
take work

VBD verb, past tense said came found saw gave
VBN verb, past participle said come found seen given

5.3 Preprocessing

The 256 English texts retrieved from Project Gutenberg archives were pre-
processed by first removing portions related to the project identification, and
concatenating all the texts. Further preprocessing steps consisted of lower-
casing all characters, conjoining punctuation marks, and removing most of

3All the tags are listed at http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html
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the non-alphanumeric characters. The resulting corpus had 21,951,835 word
instances in running text and 188,386 unique words forms.

For compatibility, the words in the Brown corpus were also lowercased when
listing words for each syntactic category.

5.4 Context histograms

In the experiments, the CMU Language Modeling toolkit [11] was used to ex-
tract vocabularies and n-grams from the corpora. Context data was calculated
from the n-grams by selecting a single word position inside the n-gram as the
focus word, and the rest as the context. This gave a context of length n − 1
with n-grams. The focus words and possible context words were limited in the
experiments.



Chapter 6

Experiments

The experiments reported in this chapter were performed to experimentally
validate the assumption that ICA can find interesting and useful features from
natural language text data. Different preprocessing methods and parameters
were tried to improve the results. Also, contextual information was calculated
in different ways to test its influence on the estimated features. Independent
component analysis and singular value decomposition were compared as fea-
ture extraction methods to verify that ICA improves the results. The match
between syntactic word categories and extracted features was used to compare
different features sets. The steps in the experiments are explained in detail in
the following, followed by the main experiments.

6.1 Testing procedure

The steps in the experiments can be divided into several steps. First, focus
words, context words and contexts types were selected. Next the context his-
tograms were extracted from the Gutenberg text corpus using the selected
words and contexts. The frequencies in the context histograms were prepro-
cessed, and ICA or PCA was applied to extract features. The learned features
were post-processed and analyzed.

6.1.1 Context histogram extraction

Context histograms were extracted from the Gutenberg corpus of written text.
Selected statistics were calculated from the data by choosing focus words and
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their contexts. The context histogram extraction is explained in detail in
Section 5.4. The context histograms restrict the modeled words and the data
for the feature extraction step.

Focus words

The focus words are the words we are modeling and they were chosen to be
the most frequent words in the Gutenberg corpus, with the restriction that
they must also be present in the Brown corpus. The restriction helped the
analysis of the focus words based on the Brown corpus. Selecting the most
frequent words makes sure that there are many non-zero entries in the context
histograms. The focus words could also be chosen differently, for instance, if
only adjectives were chosen, the structure inside adjectives could be examined.

Contexts

Choosing the contexts define the data we are using. The chosen contexts were
single left or right word contexts, were there is a single context word either on
the left or the right side of the focus word, with no words in between them.
Some experiments were conducted with larger contexts with both the left and
the right context words. The contexts were calculated using the most frequent
words with similar reasoning as in choosing the focus words.

6.1.2 Context histogram preprocessing

The frequencies in the context histograms are non-negative and concentrated
on the most frequent words. It is a common practice in natural language
processing to reduce the differences in frequencies. An extreme technique is
to reduce the frequencies to binary data with one stating that a focus words
occurs in the contexts and zero that is does not. Here a less aggressive method
of taking the logarithm of the frequencies added by one is used.

6.1.3 Feature extraction

Either independent component analysis or principal component analysis was
applied to the preprocessed context histograms H = (h1, . . . ,hC) to extract a
selected number of features.
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6.1.4 Post-processing

In the experiments the components of the learned features ak have either high
positive or negative components. To take an advantage of this, and the fact
that ICA cannot find the signs of the sources, the skewness of the correspond-
ing source sk is examined and forced to be non-negative. If the skewness is
negative, the source sk and the corresponding feature ak are multiplied by −1.
After the post-processing, negative components in the features ak have low
absolute values compared to positive components. This can be interpreted as
emerging “soft” non-negativity, where negative components are low in mag-
nitude compared to positive components. With PCA, the above reasoning
doesn’t apply. The post-processing was still done, but a greater care was
taken in analyzing also the negative correlations.

6.1.5 Feature analysis

The learned features ak model the context histograms. With the soft non-
negativity of the features in mind, the component aik can be loosely interpreted
as the degree of membership for word i in feature ak.

To examine the features, the match between features ak and manually deter-
mined syntactic categories l1, . . . , lT is measured, where T is number is syn-
tactic categories. The binary category vectors lt are encoded similarly to the
context histograms vectors, with one for words wi in the category, and zero for
words outside the category. The syntactic categories are extracted from the
tagged Brown corpus, as explained in Section 5.2.

The closeness of match is measured with the normalized correlation

ckt =
aT

k lt

‖ak‖‖lt‖
, −1 ≤ ckt ≤ 1 (6.1)

between the feature ak and the category lt. Negative correlations are ignored,
and the higher the correlation is, the better the match is. The correlation
measure can be interpreted as the cosine of the angle between two vectors in
the word space, where the collinearity of the vectors represents similarity. In
all the experiments, the correlation with the best matching feature maxk ckt

was selected to represent how well the syntactic category t was found by the
feature set. The overall performance of the feature set was measured by the
mean of the best matching correlations. Figure 6.1 shows an example feature
that has a good match for the VBD and MD categories.
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Figure 6.1: An example feature with high correlation with word in VBD (◦)
and MD (×) categories. The component value (y-axis) for words (x-axis) is
marked with (green) dots (·)
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An experiment with categories of random collections of words revealed that
there is a positive correlation between the number of words in the category
lt and the magnitude of the correlation measure. A more important results
was that the ICA-based features do have significantly higher correlations with
the syntactic categories than randomly chosen subsets with same number of
words, from which can be concluded that the learned features have encoded
the syntactic word categories to some extent.

A comparison between the ICA-based features and features extracted with
principal component analysis is done in the following experiments and show
that the ICA-based features perform better with the correlation measure than
the PCA-based features. A comparison to random projected features is not
shown, because the dimensions would not encode any linguistic information
due to the stochastic nature of the dimension reduction process.

6.2 Experiment with different nonlinearities

This experiment tries to optimize the nonlinearity g in the FastICA algorithm.
The non-negativeness of the frequency counts suggests that it might be good
to try to find features with positive components. Also, components with only
positive signs would be be easier to interpret and compare to traditional syn-
tactic categories.

The function G in the FastICA algorithm is a contrast function, and can be
chosen to be almost any non-quadratic function. The derivative of g = G′ is
called the activation function and appears as a nonlinearity in the fixed-point
iteration of Equation 2.35.

In order to combine the robustness of the tanh-nonlinearity and skewness, the
skewed tanh nonlinearity

g(u) =

{

tanh(u), u < 0
a tanh(u), u ≥ 0

(6.2)

was implemented for the FastICA package, where the positive constant a con-
trols the skewness. The larger the value of a, the more skewed the activation
function becomes. A value a = 4 was found to give a good balance between
the skewness and the tanh-nonlinearity.

The new nonlinearity was tested against the nonlinearities ’skew’ and ’tanh’
provided by the FastICA package. The nonlinearities were tested by extracting
a range of features, and calculating the correlation measure for each set of
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features. A single left-word context (context type “cw”) was used, and the
the features were calculated for the most common one thousand words. The
variance in the results was taken into account by learning each set of features
five times. The mean and one standard deviation of the correlation measure
are shown in Figure 6.2. The results show that the skewed tanh performs
better than the other nonlinearities, when the correlation measure is used. The
correlation measure prefers features with positive components, with negative
components reducing the possible highest correlation achievable.
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Figure 6.2: Mean and one standard deviation (y-axis) for the best matches
between traditional categories and a set of estimated features (x-axis) using
the skew (·), tanh (�) and skewed tanh (◦) nonlinearities in the FastICA
algorithm.

6.3 Preprocessing of frequency counts

In this experiment, the effect of preprocessing the frequency counts was stud-
ied. In all the other experiments, the logarithm of the frequencies increased
by one was done as a preprocessing step.
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The frequency counts of the words in contexts have a wide range of values,
depending on the frequency of the focus word and the context words. The
dependency is two-fold. First, focus words that are the most common words
occur often with many of the context words. Secondly, the context histograms,
which have the most common words as the context words, contain most of the
frequency information. Both of these effects can be seen in Figure 6.3, which
shows the unprocessed context matrix H for context type cw. The focus words
(rows) and the context histograms (columns) are approximately ordered by the
word frequencies.
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Figure 6.3: The context histogram matrix H for the most frequent one thou-
sand focus words (rows) and one thousand context words (columns) with con-
text type “cw”. The matrix is preprocessed by taking the logarithm of the
elements increased by one. The structure and sparsity of the matrix is visible.

It seemed necessary to carry out some kind of weighting or normalization.
Taking the logarithm of the frequencies increased by one is a typical balancing
technique. It compresses the frequencies, thus making the difference between
the high and low counts less dramatic. Normalization of the context histograms
and the the focus word were also considered and experimented with, as well
as analyzing the data without any normalization.
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The preprocessing techniques created two types of results. Taking the loga-
rithm, or normalizing the focus words by setting the norm of the rows of the
context matrix to one, resulted in features that model well those syntactic cat-
egories that have many words among the focus words. These categories include
noun, verb and adjective categories among others. Without preprocessing the
context histograms resulted in features that model well categories that contain
the most common words. The categories include the punctuation mark cat-
egory, TO-category containing only the infinitival to, pronoun categories and
categories for different inflections of the verb “to be”.

If no preprocessing is done, the resulting features seem to concentrate on the
most common focus words. Taking the logarithm reduces this effect dramat-
ically but does not remove it altogether. Normalization of the focus words
results in very equal modeling of the focus words, but basically ignores the
context histograms with small frequency counts.

The conclusions of this experiment was that both taking the logarithm and
normalizing the focus words give better results than raw un-preprocessed fre-
quency counts. The learned features are also easier to interpret and analyze
further. Both methods could be applied together, for instance, first taking the
logarithm and then normalizing the focus words. However, these preprocess-
ing methods will not model the function word categories, such as the different
words of the verb “to be”, which might be suitable for some tasks.

6.4 Varying the number of context words

In this experiment, the effect of the number of the single left context (“cw”
type context) words to the learned features was examined. The context words
were ordered according to their frequency and a different number of the most
frequent context words were chosen. The context histograms were preprocessed
by taking the logarithm of the frequency counts added by one .

The results show that increasing the number of context words affected lin-
guistic features depending on their linguistic categories. Figure 6.4 shows the
mean and one standard deviation for normalized correlation measure over five
runs with some representative Brown word categories with different number of
context words. The correlation measure keeps increasing for some categories,
but there are categories where the peak is achieved with a finite number of
context words.

The results indicate that there are word categories that are learned best from
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a couple of hundred function words, as well as word categories that need large
amounts of data to be learned. The other experiments were conducted before
this experiment, but the number of context words used in those is not very far
off.

Another experiment with using focus word normalization instead of taking the
logarithm gave very different results, where the number of context words had
only very little effect on how the individual word categories were found. The
focus word normalization gives larger weight to context histograms with high
frequencies and it is clear that adding context histograms with small values
does not change the results.
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Figure 6.4: Mean and one standard deviation over five runs of the highest cor-
relation measure (x-axis) for representative word categories over ICA features
with different number of context words (x-axis). The context type was “cw”
and 50 features were extracted for each run. The solid line shows the mean
over all syntactic word categories, which has a peak around 3500 samples.
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6.5 Varying the context type

One of the main parameters is the context type selection. In this experiment,
the main tests for selecting the context type are discussed and the results are
shown. The results show that the context type affects the results, as was
presumed.

The other parameters used in this experiment were skewed tanh nonlinearity
in the FastICA algorithm and preprocessing the data by taking the logarithm
of the frequencies increased by one.

The idea behind varying the context types was that longer contexts, i.e., two
preceding words instead of only one preceding word, would have more infor-
mation about the relations between words and would thus give better results.
However, longer contexts would also mean sparser data, as there is only a
limited amount of data available. Another point to consider is that longer
contexts would mean more aggressive pruning of the number of contexts, or
else the amount of context histograms could grow quite large. For instance,
using two preceding words as the context with N different context words there
would be N2 context histograms, and the memory requirements would grow
accordingly. Another approach that was not tested here, would be to con-
catenate different contexts, for instance single left and right contexts, and the
number of contexts would grow linearly.

The experiment was conducted using one and two context words, with different
context type positions. For instance, the notation “ccw” states that the two
preceding words, the “c”s, were the context words, and “w” was the modeled
word. Calculations were conducted with all combinations. However, the word
and context were required to be adjacent, i.e., there wasn’t any words between
the context and the word being modeled.

The number of estimated features was varied, and the mean of the best matches
between the syntactic categories and the estimated features was calculated.
Figure 6.5 shows the most important results. It can be seen that ICA outper-
forms PCA with all the context types. As was assumed, longer contexts (two
context words versus one context word) resulted in better results. Additionally,
from Figure 6.6 it was clear that only the distance between the focus word and
context words affected the results. For instance, the “ccw” and “wcc” context
types perform equally well, as well as the “cw” and the “wc” context types.
The “cwc” context type gave clearly the best results, than the “ccw” and “wcc”
context types, which also had two context words but one of the context words
was not adjacent to the focus word. The results also show that the overall
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performance correlates positively with the number of extracted features. The
graphs for features with context types “cw” and “wc” display leveling of the
mean correlation as the number of extracted features increases. This suggests
that the positive correlation between the mean correlation and the number of
extracted features does not depend solely on the number of features.
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Figure 6.5: Mean and one standard deviation (y-axis) for the best correlations
between the traditional categories and a set of estimated features (x-axis).
Features were extracted using both ICA and PCA, with different context types.
The single relatively large variance at 70 features is caused by a rare failure of
the sign-changing scheme.
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Figure 6.6: The effect of context type to the mean correlation (y-axis) for the
best matches with the syntactic categories are calculated for different number
of ICA-based features (x-axis). The distances between the context words and
the focus word have a major effect on the mean correlation.



Chapter 7

Discussion

In the following, the conclusions of the analysis of words in contexts using
independent component analysis are presented. The unsolved questions and
possible solutions, as well as aspects of future research are discussed.

In this thesis, the quality of independent component analysis was studied as
a feature extraction method for written natural language. Short introductions
to independent component analysis and to other methods used were given.
The main work related to the analysis of contextual information and using in-
dependent component analysis in text analysis was discussed. The contextual
information used as data was calculated as occurrences of words in different
contexts from a text corpus. The extracted features were compared to tra-
ditional linguistic syntactic categories by measuring the correlation between
the emergent features and syntactic categories. The meaning of ICA as a word
feature extraction method in contexts was discussed. Several experiments were
conducted on real world data to study the effect of preprocessing techniques
and parameter selections to the results.

The match between the emergent ICA-based features and the syntactic cat-
egories was clear in some features, and possible to find in others. The lin-
guistic features emerge as a result of the structure of the language. It was
also shown that independent component analysis resulted in a better match
between the extracted features and linguistic features, than principal compo-
nent analysis did. That is, ICA was able to find explicit features representing
syntactic categories, whereas PCA resulted in a more implicit representation.
The ambiguous nature of natural language causes the syntactic categories to
be overlapping, with many word forms belonging to more than one syntactic
categories, which made the analysis of the features more difficult.

57
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The most interesting property of the ICA analysis is the ability to find explicit
features representing linguistic features based solely on the contextual infor-
mation, with possibly more than one feature present in a word. Unlike the
latent structure found by PCA or SVD, ICA-based features are informative on
their own. Also, it is important that words can belong to several categories,
i.e., have more than one active feature.

There are unsolved questions left to be studied and answered in the future.
It should be experimented whether the linear ICA model can model language
sufficiently. For instance, nonlinear ICA might be needed to model the com-
plexity of language. The number of features to extract is an open question in
applications of ICA. Part of this constitutes from the uncertainty of not know-
ing what the extracted features actually model. Modeling the ambiguity of
language is another challenge. This thesis treats words in their orthographic
form, without handling the possible multiple meanings of each word. This
need for disambiguation could be tackled by extracting one or more meanings
for each word.

Future work also includes applying the learned ICA-based features to natu-
ral language processing tasks, and experimenting with other languages than
English. Another future research direction is nonlinear processing, such as
thresholding to remove “noise”, with the ICA-based features.
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