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1 Introduction

Anomaly detection refers to the process of locating observations (instances,

events, data points) in a collection of data which deviate from what is stan-

dard, normal or expected. The term anomaly is often used interchange-

ably with outlier or novelty and refers to “an observation which deviates

so much from the other observations as to arouse suspicions that it was

generated by a different mechanism” [9]. Thus, to detect anomalies, a ref-

erence model on what is normal is needed. Typically, a training data set of

normal observations is used either directly or indirectly by, e.g., training

a statistical model to estimate the probability density of normal data.

Anomaly detection has applications, e.g., in credit card fraud detection,

network intrusion detection, aircraft engine damage detection, video and

electronic surveillance and health-care informatics. In each problem, the

nature of the data and the notion of an anomaly varies greatly which

makes anomaly detection a very complex and diverse problem domain.

Semi-supervised anomaly detection is a particular anomaly detection

problem with two data sets. The first one is called the normal data, and it

is labeled as not containing anomalies. The second data set is unlabeled

and can contain both normal and anomalous observations. Traditional

anomaly detection methods would compare observations in the second

data set one-by-one to the model created from the normal data, and la-

bel unexpected instances as anomalies. Instead of this, we propose to

study the unlabeled data set as a whole: We form a probabilistic model

for the second data set which is a mixture of the normal model and an

additional anomaly model. This way we can detect anomalous observa-

tions even if they lie among the normal data, as long as the distribution

changes strongly enough. Such previously unobserved patterns are some-

times called collective anomalies which according to Chandola et al. [2]

are “a subset of instances that occur together as a collection and whose

occurrence is not normal with respect to a normal behavior”.

The proposed model has many desirable features. First, it is fully proba-
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Introduction

bilistic, thus providing models and outputs that can be easily interpreted.

Second, there is a single model parameter that directly gives an estimate

for the amount of anomalies in the unlabeled data. Third, the approach

has a wide application potential with diverse data sets as the Gaussian

distributions used in this study can be easily replaced with any other

parametric distribution.

To achieve this, we make a number of assumptions on the problem set-

ting. First, we assume that the normal data has a fixed distribution. In

particular, the method is not applicable to situations where there are tem-

poral changes in the normal data. Second, anomalies are assumed to oc-

cur collectively, i.e., a single isolated anomalous observation might not be

detected. Also, too small of a proportion of anomalous events, say less

than a few percent, handicaps the method. Third, anomalies are assumed

to occur as an excess in the distribution of the normal data.

This paper is organized as follows: We start with a brief overview of

recent work on anomaly detection below in Sect. 1.1. We then introduce

our probabilistic anomaly detection model in Sect. 2 and describe the

fixed-background expectation-maximization (EM) algorithm for locating

the anomalous patterns in Sect. 3. This section also provides implemen-

tational details of the algorithm and the means for testing the statisti-

cal significance of the anomaly model. In Sections 4 and 5, we report

the performance of the method with artificial data and a data set from

high energy physics related to the search of the Higgs boson. We discuss

other potential applications of the method and directions for future work

in Sect. 6 and summarize our findings of Sect. 7.

1.1 Related Work

There are many comprehensive reviews available about the domain of

anomaly detection. A recent survey by Chandola et al. [2] covers prac-

tically the whole field. Markou and Singh [14, 15] cover statistical and

neural network based approaches. They point out that the most of the

statistical techniques are based on modeling the normal data and classi-

fying observations that fall in the regions of low density as anomalous.

Previously, Argwal [1], Eskin [7] and Lauer [13], among others, have

used parametric mixture models in anomaly detection. Eskin [7] used

the EM algorithm to train a mixture model to represent the normal and
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Introduction

anomaly classes. His technique requires some prior knowledge about the

classes of the observations and, moreover, he uses a uniform distribution

to model the anomalous data. A common assumption in most of the liter-

ature is that anomalies have a more widespread distribution compared to

the normal data.

In background subtraction (see, e.g., [21]), one uses separate models for

the normal and the unlabeled data sets. Anomalies can then be detected

by calculating the difference between the two models. However, this ap-

proach does not allow for probabilistic interpretation of the results.

In semi-supervised anomaly detection, there has recently been at least

neural network, support vector machine and Markov model based ap-

proaches. Hawkins [10] uses a replicator multi-layer feed-forward neu-

ral network to form a compressed model of the normal data. Anomalies

can then be detected by their large reconstruction errors. In the field of

support vector machines, this kind of a problem is usually referred to as

one-class classification and is studied, for instance, in [8, 22, 24].

Statisticians have approached similar problem settings as ours using

empirical distribution function based goodness-of-fit tests, such as the

Anderson-Darling test [4]. Such tests are however only able to indicate if

the observed data follows the hypothesized distribution while our frame-

work also performs pattern recognition for the anomalies. Wang et al.

[26] propose another hypothesis testing based anomaly detection method

in the context of detecting nuclear explosions. While extending this work,

Sain et al. [23] also show how the method fails if the nuclear blasts are

too similar compared to other seismic activity.
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2 Fixed-Background Model for Anomaly
Detection

When the anomalies are among the normal data, an event-by-event clas-

sification is usually difficult. Nevertheless, one can detect changes in the

distribution of the data—there are more observations in the regions con-

taining anomalies than one would expect according to the model of the

normal data. To detect such changes, we proceed in two steps. First, we

utilize parametric density estimation to learn a normal model, pN(x) us-

ing the labeled normal data. The next step is to model the unlabeled data

with a fixed-background model, pFB(x), which is a mixture of the normal

model and a new anomaly model pA(x):

pFB(x) = (1− λ)pN(x) + λpA(x). (2.1)

Above, the anomaly model, pA(x), represents the unexpected data and λ

is the proportion of anomalous observations in the model.

Figure 2.1a illustrates a univariate data set of normal data generated

from a Gaussian distribution and a maximum likelihood Gaussian den-

sity pN(x) estimated using the data set. Figure 2.1b shows a very simple

anomalous pattern that can be modeled with a single additional univari-

ate Gaussian. Given a sample contaminated with these anomalies, our

goal is to find an optimal combination of the parameters of the anomaly

model (µA, σA) and the mixing coefficient λ in (2.1). The resulting model

pFB(x) is shown with a black line and the anomaly model pA(x) with a

gray line in Fig. 2.1b.

For an event-by-event anomaly detection a discriminant function D(x)

is needed. A natural choice is to use the posterior probability

p(anomaly|x) =
λpA(x)

(1− λ)pN(x) + λpA(x)
≡ D(x). (2.2)

The decision rule for selecting events is as follows

D(x) =

 ≥ T ⇒ x is an anomaly,

< T ⇒ x is normal,
(2.3)
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Figure 2.1. (a) A histogram of a one dimensional data set of normal data from a Gaussian
distribution and an estimated normal model pN(x). (b) An illustration of the
fixed-background model in a univariate case. The histogram shows the un-
labeled data (the light gray excess in the histogram denotes the anomalous
observations) and the plot shows the fixed-background model estimated us-
ing the data. The fixed-background model pFB(x) is shown with a black line
and the anomaly model pA(x) with a gray line.

where the constant T ∈ [0, 1] is a threshold which can be used to control

the sensitivity of the classifier. As extreme cases, if T = 0, all events are

classified as anomalies, and if T = 1, all events are classified as normal.
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3 Methods

In this section, we describe the methods used in our experiments. We first

review the EM algorithm for multivariate mixtures of Gaussians (MoG)

and then describe in detail a specific variant of the algorithm for learning

the fixed-background model (2.1). We conclude this section by showing

how the statistical significance of the model can be verified using non-

parametric bootstrapping.

3.1 Mixture of Multivariate Gaussian Distributions

Finite mixtures of distributions are a flexible method for modeling com-

plex data sets [16]. In this work, we use mixtures of multivariate Gaus-

sian distributions or shortly mixtures of Gaussians (MoG) to represent

the distribution of the data. Even though the data might not in reality be

a sample from a MoG, it can often be modeled with a sufficient accuracy

using a mixture of Gaussian components. The mixture of J multivariate

Gaussian distributions is defined as

p(x|θ) =

J∑
j=1

πjN (x|µj ,Σj), (3.1)

whereN (x|µj ,Σj) denotes the probability density of a multivariate Gaus-

sian with mean µj and covariance matrix Σj at x. The πj are mixture

proportions (or mixing coefficients) which satisfy πj ≥ 0 and
∑J

j=1 πj = 1,

and θ = {πj ,µj ,Σj}Jj=1 represents the parameters of the mixture model

with J components.

3.2 EM Algorithm for the Normal Model

Let us first consider the case of fitting a MoG model with J components to

the normal data with N observations xi, i = 1, . . . , N . The log-likelihood
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of the parameters θ is

l(θ) = log(L(θ)) =

N∑
i=1

log

 J∑
j=1

πjN (xi|µj ,Σj)

 . (3.2)

Here we have assumed that the observations are independent and identi-

cally distributed (i.i.d.).

The maximum likelihood (ML) estimate of the parameters can be ob-

tained by maximizing (3.2) which is carried out by using the EM algo-

rithm [5, 18]. The algorithm proceeds in two steps. In the expectation step

(E-step), the posterior probabilities for each data point xi being generated

by the jth component

p(zij = 1|xi,θk) =
πkjN (xi|µkj ,Σk

j )∑J
j′=1 π

k
j′N (xi|µkj′Σk

j′)
≡ γkij (3.3)

are computed. Here, θk contains the parameter estimates at the kth itera-

tion and zi indicates the component which generated the ith observation.

In the subsequent maximization step (M-step), the parameter values are

updated according to the following equations

πk+1
j =

1

N

N∑
i=1

γkij , (3.4)

µk+1
j =

∑N
i=1 γ

k
ijxi∑N

i=1 γ
k
ij

, (3.5)

Σk+1
j =

∑N
i=1 γ

k
ij(xi − µ

k+1
j )(xi − µk+1

j )T∑N
i=1 γ

k
ij

. (3.6)

A detailed derivation of the EM algorithm for mixtures of Gaussians

can be found in [18] where it is also shown that each iteration of the EM

algorithm increases the log-likelihood until a local maximum is found.

3.3 The Fixed-Background EM Algorithm

In this section, we elaborate how to use the EM algorithm to estimate

models of the form (2.1). We call this variant of the algorithm the fixed-

background EM algorithm.

The goal is to search for unmodeled anomalies in the unlabeled data set.

Now, the normal model pN(x) in equation (2.1) is fixed and both λ and the

parameters of pA(x) need to be optimized to maximize the log-likelihood.

Here, pA(x) can be either a single Gaussian or more generally a MoG with
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Q components. We can now write (2.1) as follows

pFB(x) = (1− λ)pN(x) + λ

J+Q∑
q=J+1

π̃qN (x|µq,Σq)

= πNpN(x) +

J+Q∑
q=J+1

πqN (x|µq,Σq), (3.7)

where we have defined πN = 1 − λ and πq = λπ̃q, q = J + 1, . . . , J + Q.

The mixture proportions satisfy πN +
∑J+Q

q=J+1 πq = 1 and
∑J+Q

q=J+1 πq =∑J+Q
q=J+1 λπ̃q = λ. This anomaly detection model and its components are

illustrated in Fig. 3.1.

The EM update equations for model (3.7) are easily found by straight-

forward analogy to the standard EM algorithm. In the E-step, the poste-

rior probabilities of the normal model and the components of the anomaly

MoG are updated as follows

p(ziN = 1|xi,θk) =
πkNpN(xi)

πkNpN(xi) +
∑J+Q

q′=J+1 π
k
q′N (xi|µkq′ ,Σk

q′)
≡ γkiN,(3.8)

p(ziq = 1|xi,θk) =
πkqN (xi|µkq ,Σk

q )

πkNpN(xi) +
∑J+Q

q′=J+1 π
k
q′N (xi|µkq′ ,Σk

q′)
≡ γkiq. (3.9)

In the first equation, ziN = 1 denotes that the ith observation was gener-

ated by the normal model pN(x). In the second equation q = J + 1, . . . , J +

Q. In the consequent M-step, means and covariances are updated using

(3.5) and (3.6) for indices j = J + 1, . . . , J +Q. The mixture proportions for

these indices are also updated with (3.4), while the mixture proportion of

the normal model follows from the normalization constraint

πk+1
N = 1−

J+Q∑
q=J+1

πk+1
q

(
=

1

N

N∑
i=1

γkiN

)
. (3.10)

3.4 Additional Remarks

Assessing the number of components in mixture models is a hard problem

which has not been completely resolved [16]. We use the cross-validation-

based information criterion (CVIC) for model selection in the Higgs exper-

iments of Sect. 5, but take the correct number of components as given in

our artificial data experiments. Naturally, any known information crite-

rion can be used to perform model selection for the normal model. Further

discussion about model selection can be found in, e.g, [16, 25].
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normal model pN(x) with J components︷ ︸︸ ︷
π1 · · · πJ

N (µ1,Σ1) · · · N (µJ ,ΣJ)

⇓

πN

pN(x)

anomaly model pA(x) with Q components︷ ︸︸ ︷
πJ+1 · · · πJ+Q

N (µJ+1,ΣJ+1) · · · N (µJ+Q,ΣJ+Q)

︸ ︷︷ ︸
fixed-background model pFB(x) with J +Q components

Figure 3.1. Illustration of the proposed anomaly detection model. The normal model
pN(x) and anomaly model pA(x) are mixtures of Gaussians with J and Q

components, respectively. The normal model is combined with the anomaly
model with an additional mixture proportion πN to give the fixed-background
model pFB.

The maximization of the log-likelihood function of a Gaussian mixture

model is not a well-posed problem due to the singularities corresponding

to one of the Gaussian components “collapsing” onto a single data point,

i.e., σj → 0 in the one-dimensional case. With multivariate data, this

corresponds to the case where the smallest eigenvalue of the covariance

matrix Σ tends to zero. In this work, we avoid this problem by resetting

the mean of a collapsing component to a randomly chosen data point while

also resetting its variance or covariance matrix to some large value. We

also reset the components with a very small mixture proportion to avoid

unnecessary nuisance components.

We assess the “goodness” of the components in the anomaly model using

a simple likelihood comparison. Using the likelihood of the normal model

as a reference, we take components of the anomaly model one at a time

and combine them with the normal model. Components that have learned

some anomalous patterns in the unlabeled data should increase the likeli-

hood compared to the normal model. On the other hand, if the component

under investigation decreases the likelihood, it is most probably useless.

Again, components that do not appear to capture any anomalies in the

data are reset to a random data point.

We also exploit the resetting heuristics above in order to remove excess

components from the anomaly model. We assume that a component can

be removed if it has been reset too many times and, consequently, hinders

the convergence of the fixed-background EM algorithm. Finally, while es-
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timating the fixed-background model, the convergence of the algorithm

is denied if the fixed-background model decreases the log-likelihood com-

pared to the normal model. Instead, poor components are reset and the

EM iteration continues until a model that increases the log-likelihood is

found or all anomalous components have been removed.

3.5 Statistical Significance of the Anomaly Model

Once we have fitted the fixed-background model pFB(x) to the unlabeled

data that potentially contains anomalies, we should be able to say if the

anomaly model represents statistical fluctuations in the normal data or

a real anomalous contribution. To this end, we perform a likelihood ratio

test for the significance of pFB(x) (see e.g. [11, 3]). We test the background-

only null hypothesis H0, i.e., πN = 1, against the anomaly hypothesis

πN < 1. The test is based on the statistic

Λ =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
, (3.11)

where Θ0 refers to the set of parameters allowed by the null hypothesis

and L(θ) is the likelihood function. In our case, the nominator is simply

the likelihood of the normal model and the denominator the likelihood of

the fixed-background model.

Small values of Λ give evidence against the null hypothesis. We may

also equivalently reject the null for large values of the test statistic

D = −2 log Λ. (3.12)

A result known as Wilks’ theorem states that under certain regularity

conditions D is asymptotically χ2 distributed under the null H0. Unfor-

tunately, these conditions are not satisfied for mixture models [17] and

hence one needs to consider alternative methods for recovering the distri-

bution of D.

We follow the approach taken by Wang et al. [26] and use nonparametric

bootstrap simulation [6] to estimate the distribution of D. The algorithm

is as follows:

1. Sample with replacement N observations from the normal data set

used to learn the normal model pN(x). Here N equals to the number

of data points in the unlabeled data set.

13
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2. Use the fixed-background EM algorithm to learn pFB(x).

3. Compute D.

4. Repeat from 1. until R observations of D have been obtained.

Note that also parametric bootstrapping where one generates samples

from pN(x) could have been used. However, the nonparametric version

makes the test more robust against misspecification of pN(x).

The obtained bootstrap sample allows us to estimate the 100(1 − α)th

percentile of the distribution of D. Let us denote this by Dα. We then

reject the null hypothesis H0 at a significance level α if Dobs ≥ Dα, where

Dobs denotes the value of D for the unlabeled data set. Additionally, the

simulated distribution of D can be used to obtain the p-value of Dobs.

14



4 Experiments with Artificial Data

We test the fixed-background EM algorithm with artificial data generated

from mixtures of Gaussians. Two data sets are generated for each model:

a collection of normal data for training the normal model and an unla-

beled test data set consisting of some small amount of anomalies among

a new sample of normal data. The data are generated using five compo-

nents for the normal data and three additional anomalous components for

the test data. The means and variances of the components are randomly

generated in such a way that the anomalies appear as clusters among the

normal data. Figure 4.1 shows examples of anomalous instances denoted

by the gray proportions on the histogram bars on top of the normal data.

We use 10 different generative models and generate for each 10 different

pairs of data sets consisting of 100 000 data points. Furthermore, we test

each data set with different proportions of anomalies ranging from 1 % to

20 %.

For each data set we train a fixed-background model as described in

Sections 2 and 3.3. The model is then used to classify the data in the test

set as normal or anomalous with different thresholds according to (2.2)

and (2.3). This allows us to construct the receiver operating characteristic

(ROC) curves for each experiment, and use the area under the ROC curve

(AUC) as a single measure for the classifier performance, 0 < AUC ≤ 1.

We use the original generative model as an optimal model to obtain gold

standard AUC for each test data set. We also compare the results with a

traditional outlier detection model where data points at low density areas

of the normal model are considered anomalies.

Figure 4.2a shows the median of the AUC values obtained using the

fixed-background model. The dashed line denotes the median AUC ob-

tained using the generative model itself as a classifier for the test data.

Given that the test data contains a sufficient amount of anomalies, the

resulting AUC values are practically identical. However, the robustness

of the fixed-background EM algorithm starts to suffer when the test data

15
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Figure 4.1. Two examples of artificial test data sets with 100 000 observations contain-
ing 10 000 (10 %, left column) and 3000 (3 %, right column) anomalous ob-
servations (light gray area on the histograms). The top row shows the es-
timated models such that the gray line denotes the normal model and the
black line denotes the fixed-background model. The estimated anomaly pro-
portions λ are 0.082 and 0.033, respectively. The bottom row shows the ROC
curves for the models. The area under curve (AUC) is practically the same
for the fixed-background model (FBM) and the optimal model (Opt). The
traditional method (Trad), which treats instances that fall in regions of low
normal model density as anomalies, performs significantly worse with this
kind of data.

contains less than 3 % of anomalies. Figure 4.2b shows a box plot of the

estimated anomaly proportions λ. The small boxes on the diagonal show

the interquartile range of the estimated λs which are in good agreement

with the correct results. The whiskers show the full range of the esti-

mates. The wide downward range results from the algorithm occasionally

being able to find only a portion of the anomalous data.
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Figure 4.2. The results of our artificial data experiments with unlabeled test data sets
containing 100 000 data points. (a) Comparison between AUC of the fixed-
background EM (solid line) and the generative model used to generate the
data (gray dashed line) with different amount of anomalies in the test data.
(b) Estimation of the anomaly proportion (λ) using fixed-background EM.
The small boxes show the interquartile range and the whiskers show the
full range of the estimates. Gray dashed line shows the correct anomaly pro-
portion.
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5 Demonstration: Search for the Higgs
Boson

We demonstrate the applicability of the fixed-background EM algorithm

to real world problems by considering searches for new particles in high

energy particle physics. Throughout this section, we use the terms back-

ground and signal data instead of normal and anomalous data to conform

with the physics terminology. The new physics signals usually manifest

themselves as an excess of certain types of collision events in particle de-

tectors. These events can be simulated with a Monte Carlo generator,

which is fairly accurate for the background data of known physics, but

for the unknown new physics, the simulation might contain inaccuracies

or free parameters which results in uncertainty in the exact nature of the

signal. To avert the risk of missing the signal or some part of it, one would

like to search for new signals without relying on any particular Monte

Carlo model. Such approaches are called model-independent, one exam-

ple of which is our fixed-background EM algorithm. For more information

on the physics motivations of the algorithm as well as a comparison to

more traditional model-dependent data analysis methods, see [12].

5.1 Description of the Data Set

We apply our method to a data set containing a simulated signal produced

by the Higgs boson. This is a particle predicted by the Standard Model of

particle physics to explain the mass of the other particles in the model.

More precisely, we consider a data set produced by the CDF collaboration

[19, 20] containing background events and Monte Carlo simulated Higgs

events where the Higgs is produced in association with the W boson and

decays into two bottom quarks, qq̄ →WH → lνbb̄. This signal looks differ-

ent for different Higgs masses mH which is an unknown free parameter in

the Standard Model. The advantage of the semi-supervised anomaly de-

tection approach is that one is potentially able to detect the signal without
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knowledge of mH.

Each observation in the data set corresponds to a single collision event

in the CDF detector at the Tevatron proton-antiproton collider. The data

vectors consist of 8 variables corresponding to different characteristics

of the topology of a collision event. To facilitate density estimation, the

dimensionality of the logarithmically normalized data was reduced to 2

using PCA on the background data.

We used 3406 data points to train the normal model which was then

used to detect signals of 400 data points of masses mH = 100, 115, 135,

150 GeV among another sample of 3406 observations of background data.

Hence, the unlabeled sample contained 10.5 % of signal events. In reality,

the expected signal is roughly 5 to 50 times weaker than this, but due

to the limited number of background events available, the signal had to

be amplified for this demonstration. As shown by the experiments with

artificial data, we expect to be able to find also weaker signals should

more background observations be available.

5.2 Modeling the Higgs Data

We used cross-validation-based information criterion (CVIC) [25] in order

to select a suitable number of components J for the normal model. When

a 5-fold cross-validation was performed, the evaluation log-likelihood was

maximized with J = 5. Figure 5.1a shows contours of the resulting normal

model in the two-dimensional principal subspace.

We then ran the fixed-background EM algorithm for the signals with dif-

ferent masses starting withQ = 3 and allowed for heuristic removal of un-

necessary components as described in Sect. 3.4. The algorithm converged

with one anomalous component for mH = 100 GeV and two components

for the rest of the masses. The resulting anomaly model for mH = 150 GeV

is shown in Fig. 5.1b.

The statistical significance of these models was then evaluated using the

bootstrap technique described in Sec. 3.5 based onR = 50000 resamplings.

It was found out that at 5 % significance level the background-only null

hypothesis was rejected for all the considered mass points. Figure 5.2a

shows the distribution of the test statistic and the p-values of the models.

It turns out that the higher the mass, the more significant the model be-

comes. The peak of the test statistic distribution at the origin results from
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Figure 5.1. (a) A projection of the Higgs background data into its two-dimensional prin-
cipal subspace. The solid lines show contours of the estimated 5-component
MoG for the background. (b) A projection of the mH = 150 GeV test data set
into the two-dimensional principal subspace. The solid lines show contours
of the estimated 2-component MoG for the signal.

situations where all the components of the anomaly model are correctly

removed by the removal heuristics.

5.3 Anomaly Detection Results

The fixed-background models can be used for event classification using

(2.2) and (2.3). Figure 5.2b shows ROC curves for the classifiers with dif-

ferent Higgs masses. One can see that regardless of the mass of the Higgs,

the fixed-background EM is able to identify the signal with a good accu-

racy. The classification results are slightly better with higher masses be-

cause the high-mass signal lies on a region of the data space with slightly

lower background density than the low-mass signal.

From the mixture proportion λ, we get an estimate for the amount of

anomalous events in the test data set. In the case of particle physics,

this is proportional to the cross section of the process, the measurement

of which is the typical goal of many physics analyses. Starting from the

lowest mass, we get the estimates λ = 0.100, 0.121, 0.118, 0.122 which are

all in agreement with the real proportion of 0.105.
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Figure 5.2. (a) Test for the significance of the anomaly model for various Higgs masses.
The histogram shows the probability distribution of the likelihood ratio test
statistic under the background-only null hypothesis. The vertical dashed line
shows the critical value of the test at 5 % significance level and the black
markers denote the test statistics for the fixed-background models with re-
spective p-values. All observed test statistics fall on the critical region of
the test leading to the rejection of the null hypothesis. (b) ROC curves for
the Higgs signal with various Higgs masses mH with the fixed-background
model. The method is able to identify the signal without a priori knowledge
of the mass.

22



6 Discussion

The proposed semi-supervised anomaly detection method is applicable to

problems where anomalies lie among the normal data, or put in other

words, to problems where we want to find an unexpected, unknown or un-

certain signal that does not appear in the known background data. We

showed that the method can be applied to searches of new particles in

high energy physics, but other potential application domains can appear

in many fields of life. One example is epidemiology: when a new type of a

flu appears, one could take measurements of patients with flu symptoms

and compare the distribution to the previous years. The proposed frame-

work could give a hint on how to find the patients that most probably have

the new disease which could prove out to be crucial in the first stages of a

disease outbreak.

The method could also be useful in defense applications and in par-

ticular electronic surveillance. In this case, the normal model would be

trained using day-to-day surveillance data. New measurements could

then be compared to this distribution using the fixed-background EM al-

gorithm in order to detect any increase of certain types of signals or com-

munication patterns and sort out the suspicious observations for further

scrutiny. The same applies to detection of network intrusions.

The general idea of semi-supervised anomaly detection with the fixed-

background model can be implemented in a number of different ways.

First, instead of using mixtures of Gaussians, one could use some other

density estimation method, parametric or nonparametric, especially for

the normal model. Second, even when mixtures of Gaussians are used,

one could use some other statistical learning method instead of the EM

algorithm. For instance, Bayesian approaches based on Markov chain

Monte Carlo sampling or variational approximations might be more ro-

bust and allow taking into account more flexibly prior information about

the anomalies.

One obvious shortcoming of the proposed algorithm is that it is only able
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Discussion

to detect anomalies that manifest themselves as an excess on top of the

expected normal data. In its current form, the method is not applicable to

situations where there is a deficit in the data. For example, in high energy

physics there could be defects in the detectors which cause the observed

number of collision events to be lower than expected. In such situations,

it might possible to extend the methodology to cover cases where some πq
are negative.

Another practical limitation of the algorithm is the curse of dimension-

ality which refers to the fact that the higher the dimensionality of the

data, the larger the number of observations required to achieve density

estimates of certain precision. Thus, a suitable dimensionality reduc-

tion method combined with application-specific preprocessing steps are

needed, as shown by our Higgs demonstration. When implementing these

steps, one should take into account that anomalies should remain as well

separated from the normal data as possible while maintaining the com-

patibility of the normal data samples of the two data sets used in the

method.
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7 Conclusions

We have presented a semi-supervised anomaly detection framework based

on the so called fixed-background model. The proposed model assumes

that the normal data follows a fixed distribution, thus providing the means

to detect anomalous patterns that lie among the normal data and mani-

fest themselves as collective deviations from this distribution. The most

important features of the framework are its ability to perform pattern

recognition of anomalies within the normal data and its fully probabilis-

tic construction.

Learning of the models is carried out using a variant of the EM algo-

rithm called the fixed-background EM. We showed that after some heuris-

tic adjustments, the algorithm is robust enough to consistently find anoma-

lous patterns that make up only a few percent of an unlabeled data set. In

these situations, the method is able to accurately model the distribution

of the anomalies and their percentage among the data.

We demonstrated one possible application of the method within the field

of high energy physics where it could serve as a means of detecting unex-

pected new particles without exact a priori knowledge of their properties.

However, given the generality of the framework, it should be straightfor-

ward to find future applications also on other fields of science and tech-

nology.
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