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year to another. Three different studies of three different sites linked this inter–annual variation to three different

drivers: spring temperature, precipitation and VPD. The La Thuile data set provides the required data to re–visit

this hypothesis and assign (conditional) probabilities to the potential drivers. The braves among the ecologists who

accepted the La Thuile challenge soon had to admit their recklessness: the data set contains at least one dimension

too much to allow for the usage of established approaches such multiple–regressions, wavelets or self–organizing

maps.

Depending on the selected approach and question at hand, the diurnal variability may be removed from the data

set by using variables that are representative at the daily scale. The seasonal variability can be accounted for by

de–trending the data which implies that the residuals are then analyzed. Although pre–processing reduces the

information content of the data set, it may be acceptable from an ecological point of view. The analysis then

proceeds and yields for every site in the analysis an individual time series of regression coefficients, U–matrix

or wavelet coefficients for respectively multiple regressions, self–organizing maps and wavelets. Although these

outputs look similar, quantitative comparison across sites is hampered by the lack of formal tools to post–process

these outputs across sites. This spatial aspect is my so–called too–manieth dimension.

If developed, these tools should as well account for the difference between the calendar year and the timing of the

processes under study. For example: the period between the time that NEE is dominated by CO2–uptake and the

maximum CO2 uptake might be of particular interest for an analysis. Although this period is easy to identify, it

occurs earlier in the calendar year and last longer in temperate compared to boreal regions. Hence, post–processing

techniques should be capable of comparing relationships (described by means of regression coefficients, U–matrix

or wavelet coefficients) with a different time and length of occurrence.

Related: Luyssaert et al. (2007); In this study a self–organizing map (SOM) is used to describe the relation-

ships between a set of variables describing the weather condition and the CO2 exchange between forest and the

atmosphere. Although the SOM results in interesting relationships, the analysis comes short in synthesizing these

relationships across sites.

3.19 RGB imagery as a useful data source in ecological research

Hella E. Ahrends

Recent studies demonstrate the suitability of standard digital cameras or webcams for phenological observations

in forests. This data mining strategy is user–friendly, cost–effective and highly objective. RGB cameras provide

archivable documentation, data that can be used for quantitative and qualitative evaluations and the applicability of

a technique independent from observer skills. They provide information on e.g. meteorological conditions (such

as visibility, fog), changes in canopy structure, visible plant responses to drought stress or snow cover and, thus,

are most useful in ecosystem monitoring and ecological research. We suggest that this technique has high potential

to bridge the gap between spatially integrated species–averaged information from satellites and point observations

at the species level. Some applications, mainly with respect to remote sensing phenology, are shown.

Related: Ahrends et al. (2008)

3.20 Environmental informatics and data mining in analysis of CO2 data

Mika Sulkava

There are many frameworks for learning from data. Commonly used frameworks include statistical learning, ex-

ploratory and confirmatory data-analysis, machine learning, knowledge discovery in databases, data mining, and

pattern recognition. Environmental statistics and environmental informatics are fields related to learning from en-

vironmental data (Sulkava, 2008). The most significant difference between these fields is the importance of the

different frameworks of learning. Data analysis in statistics is often confirmatory, i.e., hypotheses are tested and
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either confirmed or rejected. In addition, data is usually collected from carefully designed experiments, which

involve sampling, randomization, replication, controlling for confounding variables, etc. In many cases environ-

mental data from, e.g., monitoring networks cannot be treated the same way as data from controlled experiments.

The characteristics of these frameworks and fields and their suitability to solving scientific problems related to

CO2 fluxes and concentrations are discussed.

Three examples of how methods of environmental informatics—especially data mining and exploratory data-

analysis—have been successfully applied in analysis of CO2 data are presented. First, it is shown how parametric

curve fitting, time series segmentations, cross-correlations, sparse regression, and neural networks, such as the

Self-Organizing Map (SOM, Kohonen, 2001) have been used in finding drivers of anomalies in CO2 fluxes of

pine forests at different latitudes. These analyses revealed that anomalies in net ecosystem exchange (NEE) are

dominated by anomalies in gross photosynthesis (GPP, Luyssaert et al., 2007). Second, it is presented how time

series segmentation and trend detection (e.g., Sulkava et al., 2007) with permutation tests and methods for com-

bining p-values have been used for studying changes in CO2 concentrations between different parts of Europe.

This methodology revealed many statistically significant trends in the differences between a coastal station and

inland stations. The time-series were analyzed at different resolutions, which exposed some relatively fast changes

in addition to the longer-term trends. Third, the use of clustering of the SOM (Vesanto and Sulkava, 2002) in a

sampling problem for studying the representativeness of the European CO2 flux tower network is demonstrated

(Canfora et al., 2009). The analysis showed that the network mostly represents the European domain rather well

in respect to the variables considered. However, North-Eastern and South-Eastern climatic and ecophysiological

conditions were found to be poorly sampled for several plant functional types. The results of all cases above are

encouraging for using data-driven methods of environmental informatics in learning from CO2 data.

Related: Vesanto and Sulkava (2002); Luyssaert et al. (2007); Sulkava et al. (2007); Sulkava (2008); Canfora et al.

(2009)

3.21 The evolving patterns of monsoonal precipitation over India

Nishant Malik⋆, Norbert Marwan & Jürgen Kurths

We present an analysis of a high resolution daily rainfall gridded data set from 1951 to 2007 for India. In the

light of changing characteristics of precipitation at the global scale due to atmospheric warming it is of extreme

importance to understand how the spatio-temporal behaviour of monsoonal precipitation has evolved over the

last few decades. We employ some standard linear trend detection methods and principal component analysis to

study the evolution of monsoonal precipitation patterns. We use recurrence plots to calculate spatial complexities

and there evolution over the time scales concerned in the data set and correlate them to some new features that has

emerged in the rainfall events. Monsoonal precipitation usually occurs in the form of large scale spatial activity and

here we show a method to find these scales and divide India into different monsoonal regions based on a measure

of event synchronization and then compare it using other measures like cross-correlation and mutual information.

3.22 Information driven ecohydrologic self–organization

Praveen Kumar

Interaction between processes in nature leads to self-organization. For example, the dynamics of vegetation growth

is affected by prevailing above and below ground conditions, but the energy, water and carbon fluxes in and out

of the vegetation modify this environment itself. This self-organized feedback, facilitated by the variability of

the component processes that interact, is continually evolving. Yet, ascertaining the precise role of the variability

in this feedback dynamics remains an open question. Towards this goal, using observations of moisture, energy,

and carbon fluxes from Fluxnet towers, we measure the predictive information provided by one variable to the
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